FUNCTION THEORY ON BANACH ALGEBRAS

R. Parvatham

First let me recall some notions and results in function theory on the complex plane \mathbb{C} . Then by adopting suitable means they are extended to Banach algebras.

Let D be a region (an open connected set) in \mathbb{C} and let H(D) be the class of all functions holomorphic in D. In general, in this work the study of univalent functions is confined to the class of functions $S = \{f \in H(E) : f(0) = 0 \text{ and } f \text{ is univalent in } E\}$ where $E = \{z \in \mathbb{C} : |z| < 1\}$ is the open unit disc in \mathbb{C} .

A domain D in C is said to be *convex* if the line joining any two points in D lies in D. A function $f \in S$ is said to be *convex* in E if f(E) is a convex set. Let K denote the collection of all convex functions in E. The analytic criteria for $f \in K$ is $\Re e \left\{ 1 + z \frac{f''(z)}{f'(z)} \right\} > 0$ in E.

A domain D in C is said to be starshaped with respect to a point $O \in D$ if the line joining any point $a \in D$ to O lies completely in D. It is obvious that any convex domain is starshaped with respect to each of its points. A function $f \in S$ is said to be starlike in E if f(E) is a starshaped domain with respect to the origin. Let S^* denote the collection of all starlike functions in E. Clearly we have $K \subseteq S^*$. The analytic criteria for $f \in S^*$ is $\Re e\left\{\frac{zf'(z)}{f(z)}\right\} > 0$ in E. Thus we have Alexander's theorem, namely: $f \in K$ if and only if $zf'(z) \in S^*$. Also $f \in S^*$ can be equivalently put as $(1-t)f(E) \subseteq f(E)$, for all $t \in I = [0,1]$. For details of the study of geometric function theory on the complex plane, the readers are referred to [1].

Recently another new class S_c^* of functions that are starlike with respect to conjugate points has been introduced by Thomas and El Rabha [5]. A function $f \in S$

is said to be starlike with respect to conjugate points if $\Re e\{2zf'(z)[f(z) + \overline{f(\overline{z})}]^{-1}\} > 0$ in E. It is easy to verify that $g(z) = f(z) + \overline{f(\overline{z})})/2 \in S^*$ whenever $f \in S_c^*$.

With this background let me pass on to function theory on a Banach algebra.

Let R be a commutative Banach algebra over the complex numbers with identity (denoted by e) and let \mathcal{M} be the space of all maximal ideals in R. Then \mathcal{M} is a compact Hausdorff space where the topology is the weakest topology on \mathcal{M} such that for each $x \in \mathbb{R}$ the Gelfand transformation \hat{x} of x is a continuous function on \mathcal{M} . Assume further that the Gelfand homomorphism $x \to \hat{x}$ of R into $C(\mathcal{M})$ is an isometry so that $||x|| = \sup\{|\hat{x}(M)| : M \in \mathcal{M}\}$ for all $x \in \mathbb{R}$. Under this assumption we may, and do, identify $x \in \mathbb{R}$ with its Gelfand transform $\hat{x} \in C(\mathcal{M})$. Let $B = \{x \in \mathbb{R} : ||x|| < 1\}$. If D is an open set in R, $F : D \to \mathbb{R}$ is said to be *L-analytic in* D, [4], if for each $x \in D$ there exists $F'(x) \in \mathbb{R}$ such that

$$\lim_{h \to 0} \frac{\|F(x+h) - F(x) - xF'(x)\|}{\|h\|} = 0.$$

If $F: B \to R$ is L-analytic in B with F(0) = 0, then for each $x \in B$, $F(x) = \sum_{1}^{\infty} a_n x^n$ where $a_n \in R$ and the series converges uniformly on $\{x \in R : ||x|| < \delta\}$ for each $\delta < 1$, [3]. If $F: B \to R$ is L-analytic in B and for each $y \in F(B)$ there is an open neighbourhood V of y on which F^{-1} exists and is L-analytic, then we say that F is *locally bi-analytic* in B. If F is univalent and locally bi-analytic in B, then F is said to be *bi-analytic* in B.

If F is L-analytic in B then for each $M \in \mathcal{M}$, there is an associated holomorphic function $F_M : E \to \mathbb{C}$ defined by $F_M(z) = F(ze)(M)$ for all $z \in E$. If $F(x) = \sum_{1}^{\infty} a_n x^n$ is L-analytic in B then F(x)/x stands for the L-analytic function $\sum_{1}^{\infty} a_n x^{n-1}$ in B.

Now let the notion of a starlike mapping be extended to R as follows.

DEFINITION 1. A bi-analytic map $F: B \to R$ is said to be *starlike* in B if F(0) = 0and $(1-t)F(B) \subseteq F(B)$, for all $t \in I$.

DEFINITION 2. U: D \rightarrow R is said to have *positive real part* if U is L-analytic in D and $\Re_{\ell}(U(x)(M)) \ge 0$ in D for each $M \in \mathcal{U}$ and each $x \in D$.

If in addition $\mathscr{R} \neq U(x)(M) > 0$ for all $M \in \mathcal{M}$ and $x \in D$, we write $U \in \mathcal{P}(D)$, and if D = B, then \mathcal{P} is written for $\mathcal{P}(B)$.

DEFINITION 3. A bi-analytic map $F : B \to R$ is said to be *convex* in B if F(B) is a convex domain.

The following results of [2] give the relation between these notions in R and \mathbb{C} .

THEOREM 1. [2] Let $F(x) = \sum_{n=1}^{\infty} a_n x^n$ be locally bi-analytic in B. Then F is starlike in B if and only if $F_M(z) = \sum_{n=1}^{\infty} a_n(M) z^n$ is starlike in E for all $M \in \mathcal{M}$.

THEOREM 2. [2] Let $F(x) = \sum_{1}^{\infty} a_n x^n$ be locally bi-analytic in B. F is convex in B if and only if $F_M(z) = \sum_{1}^{\infty} a_n(M)z^n$ is convex in E for each $M \in \mathcal{M}$. Thus Alexander's relation holds, namely F is convex in B if and only if $\Phi(x) = xF'(x)$ is starlike in B.

Amongst other results, the proofs of these use the following lemma which we need below.

LEMMA 1. [2] Let U have positive real part in B.

(1) If
$$M \in \mathcal{M}$$
, then

$$\frac{1-\|\mathbf{x}\|}{1+\|\mathbf{x}\|} \ \mathscr{R}e\mathbf{U}(0)(\mathbf{M}) \le \ \mathscr{R}e\mathbf{U}(\mathbf{x})(\mathbf{M}) \le \frac{1+\|\mathbf{x}\|}{1-\|\mathbf{x}\|} \ \mathscr{R}e\mathbf{U}(0)(\mathbf{M}) \ for \ all \ \mathbf{x} \in \mathbf{B} \ ,$$

and so

$$\mathscr{R}eU(0)(M) > 0$$
 if and only if $\mathscr{R}eU(x)(M) > 0$ for all $x \in B$.

(2) *R*∈U(0)(M) > 0 for all M ∈ *M* implies U(x) is nonsingular for all x ∈ B.

Now let us define a new class of mappings in B which is analogous to the class S_c^* in C. For this we need the basic space to be a Banach *-algebra.

A Banach algebra R is called a Banach *-algebra if it has an involution; that is, there is given a mapping $x \to x^*$ of R into itself such that (i) $(x+y)^* = x^* + y^*$, (ii) $(\alpha x)^* = \overline{\alpha} x^*$, (iii) $(xy)^* = y^* x^*$, (iv) $x^{**} = x$. It follows that $0^* = 0$ and $e^* = e$. The element x^* is called the adjoint of x. Let R^* be a commutative Banach *-algebra with identity e and \mathscr{M} be the space of all maximal ideals of R^* . We will assume that $R^* = C(\mathscr{M})$ with natural involution. This is equivalent to assuming the Gelfand transform is isometric and symmetric.

DEFINITION 4. Let $B^* = \{x \in R^* : ||x|| < 1\}$. Suppose $F : B^* \to R^*$ is bi-analytic in B^* . We say that F is starlike with respect to adjoint elements in B^* if F(0) = 0and x F'(x) U(x) = G(x), for each $x \in B^*$, where $G(x) = (F(x) + F(x^*))^*)/2$ and U has positive real part in B^* .

THEOREM 3. Let $F(x) = \sum_{n=1}^{\infty} a_n x^n$ be locally bi-analytic in B^* . Then F is starlike with respect to adjoint elements in B^* if and only if $F_M(z) = \sum_{n=1}^{\infty} a_n(M) z^n$ is starlike with respect to conjugate points in E for all $M \in \mathcal{M}$.

PROOF. Assume that F is starlike with respect to adjoint elements in B^* . Then $x F'(x) U(x) = G(x) = \frac{1}{2} (F(x) + F(x^*))^*)$ where U has positive real part in B^* . However, by equating the coefficients, $\Re e U(0)(M) = 1$ for all $M \in \mathcal{M}$ and hence $U \in \mathcal{P}$ by Lemma 1. Setting x = ze, and using the fact that $a_n^*(M) = \overline{a_n(M)}$, we conclude that

$$0 < \mathcal{R} e U(ze)(M) = \mathcal{R} e \left\{ \frac{\sum_{1}^{\infty} (a_n(M) + \overline{a_n(M)}) z^n}{2 \sum_{1}^{\infty} na_n(M) z^n} \right\} \text{ in } E.$$

Thus F_M is starlike with respect to conjugate points in E.

Conversely assume that F_M is starlike with respect to conjugate points in E for every $M \in \mathcal{M}$. Set $P(\omega) = \frac{F(\omega) + (F(\omega^*))}{2\omega F'(\omega)}^*$ for all $\omega \in B^*$. Then $F_M \in S_c^*$ which implies $P \in \mathcal{P}$. Now to see the univalence of F, let $x_1, x_2 \in B^*, x_1 \neq x_2$, and choose $M \in \mathcal{M}$ so that $|(x_2-x_1)(M)| = ||x_2-x_1||$. Note that whenever $F_M \in S_c^*$,

$$G_{M}(z) = \frac{F_{M}(z) + F_{M}(\overline{z})}{2} = \sum_{1}^{\infty} \frac{a_{n}(M) + \overline{a_{n}(M)}}{2} z^{n} \in S^{*} \text{ . Define } G : B^{*} \to R^{*} \text{ by}$$

$$\begin{split} & G(x) = \sum_{1}^{\infty} \; \frac{a_n(M) \; + \; \overline{a_n(M)}}{2} \; x^n \; . \ \, \text{Thus} \ \, G(x) = \frac{F(x) \; + \; (F(x^*))^*}{2} \; , \, \text{and by Theorem 1} \; G \\ & \text{is starlike in } B^* \; \text{since } \; G_M(z) \in S^* \; . \ \, \text{By Alexander's relation there is a mapping } \Phi \; , \\ & \text{convex in } B^* \; , \; \text{such that} \; G(x) = x \Phi'(x) \; \text{ for all } \; x \in B^* \; ; \; \text{ in particular } \Phi \; \text{ is } \\ & \text{bi-analytic. Now } \; F_M \in S_c^* \; \text{implies} \; \, \mathcal{R}_{\mathcal{C}} \bigg\{ z \; \frac{F_M'(z)}{G_M(z)} \bigg\} = \mathcal{R}_{\mathcal{C}} \bigg\{ \frac{F_M'(z)}{\Phi_M'(z)} \bigg\} > 0 \; \text{ in } E \; . \end{split}$$

Consider $H = F \circ \Phi^{-1} : \Phi(B^*) \to R^*$ and let $y_1 = \Phi(x_1)$ and $y_2 = \Phi(x_2)$. Then since $\Phi(B^*)$ is convex, $\{ty_2+(1-t)y_1 : t \in I\} \subseteq \Phi(B^*)$, and so $F(x_2) - F(x_1) = H(y_2) - H(y_1) = \int_0^1 H'(ty_2+(1-t)y_1) (y_2-y_1) dt$. Thus

$$\begin{split} |(\mathbf{F}(\mathbf{x}_{2}) - \mathbf{F}(\mathbf{x}_{1}))(\mathbf{M})| &= |(\mathbf{H}(\mathbf{y}_{2}) - \mathbf{H}(\mathbf{y}_{1}))(\mathbf{M})| \\ &= |(\mathbf{y}_{2} - \mathbf{y}_{1})(\mathbf{M})| \cdot \left| \int_{0}^{1} \mathbf{H}'(\mathbf{t}\mathbf{y}_{2} + (1 - \mathbf{t})\mathbf{y}_{1})(\mathbf{M})d\mathbf{t} \right| , \\ &\geq |(\mathbf{y}_{2} - \mathbf{y}_{1})(\mathbf{M})| \cdot \int_{0}^{1} \mathcal{R}e\mathbf{H}'(\mathbf{t}\mathbf{y}_{2} + (1 - \mathbf{t})\mathbf{y}_{1})(\mathbf{M})d\mathbf{t} , \\ &= |(\mathbf{y}_{2} - \mathbf{y}_{1})(\mathbf{M})| \cdot \int_{0}^{1} \mathcal{R}e\left\{ \frac{\mathbf{F}'_{\mathbf{M}}(\Phi^{-1}(\mathbf{t}\mathbf{y}_{2} + (1 - \mathbf{t})\mathbf{y}_{1})(\mathbf{M}))}{\Phi'_{\mathbf{M}}(\Phi^{-1}(\mathbf{t}\mathbf{y}_{2} + (1 - \mathbf{t})\mathbf{y}_{1})(\mathbf{M}))} \right\} d\mathbf{t} \end{split}$$

> 0

if $|(y_2 - y_1)(M)| \neq 0$. But

$$0 \neq ||\mathbf{x}_{2}^{-}\mathbf{x}_{1}|| = |(\mathbf{x}_{2}^{-}\mathbf{x}_{1})(\mathbf{M})| = |(\mathbf{y}_{2}^{-}\mathbf{y}_{1})(\mathbf{M})| \cdot |\int_{0}^{1} (\Phi^{-1})'(t\mathbf{y}_{2}^{+}(1-t)\mathbf{y}_{1})(\mathbf{M})dt ;$$

and hence $|(y_2-y_1)(M)| \neq 0$ which implies $F(x_2) \neq F(x_1)$, thereby giving the desired result.

REFERENCES

- [1] P. Duren, *Univalent Functions*, Springer Verlag, New York, 1983.
- [2] L. F. Heath and T. J. Suffridge, Starlike, convex, close-to-convex, spirallike, and Φ -like maps in a commutative Banach algebra with identity, *Trans. Amer. Math. Soc.*, 250(1979) 195-212.
- [3] E. Hille and R. S. Phillips, *Functional analysis and semigroups*, Amer. Math. Soc. Colloq. Publ., 31, Providence R. I., 1957.
- [4] E. R. Lorch, The theory of analytic functions in normed abelian vector rings, *Trans. Amer. Math. Soc.*, 54 (1943), 414-425.
- [5] D. K. Thomas, and Md. El. Babha, On a subclass of close-to-convex functions, J. Ramanujan Math. Soc., 2 (1987).

Ramanujan Institute for Advanced Study in Mathematics University of Madras Madras 600005 India.