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RINGS OF QUOTIENTS OF ULTRAPRIME BANACH ALGEBRASo 

WITH APPLICATIONS TO ELEMENTARY OPERATORS 

Martin Mathieu 

1. INTRODUCTION 

From its beginning, the investigation of non-commutative prime rings has been 

connected with the concept of (right) rings of quotients. The former begun by McCoy 

in [22] and continued by Johnson [15] strongly influenced the development of the latter, 

whose early stages are related with the names of Johnson (16], Utumi (29], Findlay and 

Lambek [7], and others. Both ideas have found important applications in many areas 

of algebra, for instance in the theory of G P !-rings. A comprehensive account of the 

state of art of rings of quotients was given in Stenstrom's book [25], where the more 

sophisticated approach via Gabriel topologies is used. 

In the setting of commutative Banach algebras, Suciu studied algebras of quotients 

which can be normed ([26], [27]). For non-commutative prime normed algebras A over 

C there are, however, obstructions to endow the appropriate 'algebra of quotients', viz. 

Utumi's maximal ring of quotients, Qa(A), with a norm. The center C of Qa(A), the 

so-called extended centroid of A, is a field containing the center of A and, endowed 

with an algebra norm, would therefore coincide with C by Mazur's theorem. As often 

in Banach algebra theory, the truly non-commutative algebras thus play a distinguished 

role among general Banach algebras. 

In the present paper we will introduce a topological version of primeness in the 

following sense. We call a normed algebra A ultraprime if its ultrapower Au with 

respect to some countably incomplete ultrafilter U is a prime algebra. Together with the 

corresponding notion of an ultraprime ideal and an intrinsic characterization (Lemma 

3.1 ), some basic properties and examples of ultra prime normed algebras will be presented 

in Section 3. In particular, we prove that the center of every ultra prime normed algebra 

is trivial and that completion yields an ultraprime Banach algebra (both assertions 



298 

fail for arbitrary prime normed algebras). In Section 4 we will construct, for each 

ultraprime algebra A, an ultraprime normed algebra of quotients, Q(A), which contains 

a homeomorphic image of A and whose center coincides with the extended centroid 

of A (Theorem 4.1). This construction uses in a natural way two automatic continuity 

results for right A-module homomorphisms (Lemmas 4.3 and 4.5). A posteriori, this is 

quite understandable; for example, Kaplansky's well-known result that the centroid of 

a primitive Banach algebra A is trivial ([17], Lemma 9) boils down to the fact that 

every A-bimodule homomorphism on A is continuous. The behaviour of Q(A) is 

somevvhat similar to that of Q"(A.); e.g., for every (topologically) simple unital Banach 

algebra A we have that Q"(A) = Q(A) =A. 

Since we are using the notion of an ultrapower of a normed algebra both as a 

conceptual means as well as a technical device, we have collected several mainly known 

basic results on ultra powers of normed algebras and (multi- )linear mappings in Section 2. 

We have however refrained from making use of the language of non-standard analysis. 

Originally, our study of ultraprime Banach algebras which was begun in [20] was 

motivated by questions concerning properties of elementary operators on Banach alge­

bras. We therefore will apply some of the results on ultraprime algebras, in particular 

Theorem 4.1, to determine the structure of the algebra ££(A) which is generated by 

all left and right multiplications on A. Denoting by Aop the opposite algebra of a 

normed algebra A we have in the case of a prime algebra that A ®c Aop ~ EC(A), and 

thus, if A is ultraprime, A® Aop ~ ££(A) (Theorem 5.1). Some information on the 

spectra of elementary operators will conclude this paper. We remark that many of the 

results in Section 5 were previously obtained in the special case of prime C*-algebras in 

[21]; therefore, we merely provide the additional arguments, where necessary. 

The idea of ultraprimeness as a tool in the spectral theory of elementary operators 

is reminiscent in many of the existing contributions. It was used for the first time by 

Lumer and Rosenblum in the formulation of condition (a) in Lemma 3.1 (see below) for 

the algebra L(E) of all bounded operators on some Banach space E in their paper 

[18], and afterwards taken up by a number of their successors. It appeared explicitly in 

[19], § 4. 
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Although primitive Banach algebras are the prototypes of non-commutative prime 

Banach algebras and are centrally closed, i.e. the extended centroid C is trivial, the 

interrelations between them and ultraprime Banach algebras remain yet undetermined. 

This problem may be connected with Kaplansky's (still unsolved) question whether 

every prime C* -algebra is primitive. 

2. PREREQUISITES ON ULTRAPOWERS OF NORMED ALGEBRAS 

In this section we record all the basic properties of ultra powers which will be needed 

in the sequel. Some of this material is taken from [3], [11] and (24], and for some others 

we have no reference. We will always assume that U is a countably incomplete ultrafilter 

on an infinite set I, i.e. there is a sequence of elements Uk E U satisfying 

00 

and n uk = 0. 
k=l 

For example, every free ultrafilter on N is countably incomplete. 

Let E be a normed space, and denote by f 00(l, E) the space of all bounded 

functions from I into E. The set nu = {(x;);ei E .e=(I, E) I limu llx;ll = 0} 

is a closed subspace of f 00(1, E) (equipped with the sup-norm), and the quotient 

.e=(I, E)fnu is called the ultrapower of E (with respect to the ultrafilter U); we will 

denote it by Eu. If we write (x;) for the elements in .e=(I,E) and (x;)u for the 

cosets in Eu, we have that ll(x;)ull = limu llx;ll (cf., e.g., (24]). We will identify E 

with an isometric subspace of Eu via x r-+ (x, x, ... )u. 

The following is an immediate consequence of the ultrafilter property. 

PROPOSITION 2.1. If x E Eu has norm one, then there is (x;) E .e=(I,E) 

with (x;)u = x and llx;ll = 1 for all i E I. 

If A is a normed algebra (over C), the 'coordinatewise' operations in .e=(I, A) 

will induce algebra operations in Au, i.e. (x;)u (y;)u := (x;y;)u. Endowed with these, 

Au becomes a Banach algebra, and a C* -algebra if A is a C* -algebra. 
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Suppose now that E, E(l), ... , E(n) are normed spaces and T: E(l) X ••• xE(n) -t 

E is a bounded multilinear mapping. Putting 

A ( (1) (n)) ·- ( ( (1) (n))) Tux; , ... ,x; u .- T X; , ..• ,xi u 

we obtain a well-defined mapping into Eu which is bounded and multilinear if we 

identify (E(l) EB ... EB E(n))~ with .fti]) EB ... EB E~n) canonically using the £1-norm on 

both spaces. We have IITII = Wf'ull· (The arguments for the linear case, cf. (24], carry 

over verbatim.) 

Applying this to bilinear mappings yields the following. 

PROPOSITION 2.2. Let A be a (unital) normed algebra and M be a (unit 

linked) normed A-module. Then Mu is a (unit linked) Banach Au-module. In partic­

ular, if I is an ideal of A, then iu is a closed ideal of Au. 

PROPOSITION 2.3. Let I be a closed ideal of the normed algebra A. Then 

the ultra power (A/ I)~ of the quotient algebra A/ I and the quotient algebra Au/ iu 

are isometrically isomorphic. 

Outline of proof. Since the canonical epimorphism 1r: A-t A/ I is open, its extension 

iru: Au-+ (A/I)~ is open too. If x = (xi)u E Au then, for each E > 0, there is 

(yi)E£00 (I,I) suchthat 117r(x;)ll2llx;+y;ll-e whence 

Thus, lliru(.i)ll 2 llp(x)ll where p: Au-+ Au flu is the canonical epimorphism. In 

particular, keriru ~ ker p and we obtain a commutative diagran1 

A ------t 

A/ I ------t (A/ I)~ 

where IY : (A/ I)~ -+ Au/ iu is defined by IY o ir u = p and is an open contractive 

algebra homomorphism. A simple argument shows that IY is indeed an isometry. 
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For a complex normed algebra A without identity denote by A+C its unitization. 

Its ultrapower has the following simple description. 

PROPOSITION 2.4. The Banach algebras (A+ C)~ and Au+ C are zso-

metrically isomorphic. 

If A is a unital normed algebra, we consider the algebra Mn(A), n E N, of 

n X n-matrices over A as a subalgebra of L(An) where An is endowed with the 

£1-norm. 

PROPOSITION 2.5. The Banach algebras Mn(A)~ and Mn(Au) are isomet-

rically isomorphic. 

The isomorphism is, of course, given by (a;)u t--t [(a;(p;, v))uh~p,v~n where 

(a;) E .e=(I,Mn(A)), a;= [a;(p;,v)h~p,v~n· 

The last result in this preliminary section will be used to show that the class of 

ultraprime normed algebras is stable under ultrapowers. A proof of it can be found in 

[24; § 13). If U and V are ultrafilters on I and J respectively, their product U x V 

consists of all sets Y satisfying 

{j E J I {i E I I (i,j) E Y} E U} E v 

and defines an ultrafilter on I x J which is countably incomplete if either U or V 1s 

countably incomplete. 

PROPOSITION 2.6. Let A be a normed algebra. Then there zs a natural 

isometric algebra isomorphism from (Au)~ onto Auxv· 

3. THE CONCEPT OF AN ULTRAPRIME NORMED ALGEBRA 

Since the initiating paper by McCoy [22], the idea of a non-commutative prime ring 

has been elaborated to an important concept in algebra and has found a vast variety 

of applications. While closed prime ideals in topological rings have also been studied 

(see e.g. [30)) and used in analysis, for instance in automatic continuity theory [2], they 
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were mostly replaced by primitive ideals because of the better behaviour of the latter 

under topological manipulations. In this section we introduce a class of 'well-behaved' 

closed prime ideals of a normed algebra and study some of their basic properties. The 

more subtle construction of a ring of quotients (which is fundamental to the theory of 

prime rings) is deferred to the next section. 

Throughout, A will denote a normed algebra over C if not further specified. An 

ideal I of A is called prime if I 1 I 2 ~ I, I 1,I2 ideals of A, implies I 1 ~ I or 

Iz ~ I. The algebra A is called prime if the zero ideal 0 is a prime ideal. Hence, I is 

a prime ideal if and only if the quotient algebra A/ I is prime. The property of being 

a prime ideal is easily expressed in terms of operators. Let Ma,b: A --Jo A, x r--+ axb, 

where a, b E A, denote a (two-sided) multiplication on A. Then, I is a prime ideal if 

and only if Ma,bA ~ I implies a E I or b E I ( cf. e.g. [13], Prop. VIII.2.2). 

We prepare our definition by the following lemma. 

LEMMA 3.1. The following conditions are equivalent: 

(a) For each pair ((xk)kEN, (Yie)kEN) of sequences in A with llxkll = I!Ykll = 1 

for all kEN there exists a bounded sequence (zk)kEN m A such that the 

sequence (xkZkYk)kEN does not converge to zero. 

(b) There exists a constant n, > 0 such that for all a, b E A 

(c) Every ultrapower Au of A is prime. 

(d) There exists an ultrapower Au of A which is prime. 

Proof. (a)==} (b) Put r; = inf {IIMa,blllllall = Jlbll = 1}. If r; = 0, then there is a pair 

of sequences (xk)kEN, (yk)kEN in the unit sphere of A such that lim IIMxk,Yk Jl = 0. 
k-= 

Hence, for each (zk)kEN E £=(N, A) the sequence (XkZkYk)kEN tends to zero. 

(b)==} (c) Let a,b E Au with Jlall = llbll = L If (ai) E a, (b;) E b are such 

that JJa;IJ = llb;ll = 1 for all i (cf Proposition 2.1), then IIMa.,d 2': n, > 0 whence 

IIMa,bll = limu IIMa,,d > 0. Thus, Au is prime. 



303 

(c) :::} (d) is trivial. 

(d) =? (a) Let (Uk)kEN be a decreasing sequence of elements Uk E U such that 

nkEN uk = 0. We may assume that ul =I and that uk \ uk+l =1=- 0. Then, for each 

i E I, there is precisely one kEN such that i E Uk \Uk+l· By means ofthis, we define 

a mapping £00 (N, A) -7 £00 (1, A), (xk) H (x;) by X;:= Xk if i E uk \ uk+l· (Clearly, 

this is an isometry.) If (xk), (Yk) E £00 (N,A) are such that llxkll = IIYkll = 1 for all 

k E N, we thus obtain x := (x;)u, fj := (y;)u E Au with llxll = 111111 = 1. Since Au 

is prime, there is z = (z;)u E Au with xzfj =1=- 0. Therefore, for some E > 0, the set 

V = {i E I lllx;z;y;ll ~ c} E U. Putting Vk = V n Uk we obtain a decreasing sequence 

(Vk)kEN <;;; U with empty intersection. Hence, there are infinitely many k E N with 

vk \ vk+l =1=- 0. For each k E N we let Zk = Zi where i E vk \ vk+l =1=- 0 is arbitrary 

and, if Vk \ Vk+ 1 = 0, i is arbitrarily choosen from Uk \ Uk+l· Thus, we obtain 

(zk) E i 00 (N, A) satisfying llxkZkYkll ~ E for infinitely many k, i.e. XkZkYk-/+ 0. 

REMARK. Condition (a) is included in the above lemma mainly for historical rea­

sons (see the Introduction and Section 5). 

Let I be a closed ideal of A. By Proposition 2.3, the ultrapower (A/ I)~ 1s a 

prime algebra if and only if fu is a prime ideal of Au. This leads us to the following 

definition. 

DEFINITION 3.2. A closed ideal I of A is called an ultraprime ideal if iu 
is a prime ideal in some ultrapower Au of A. The normed algebra A is called 

ultraprime if some ultrapower Au is a prime Banach algebra. By the above, I is an 

ultraprime ideal if and only if A/ I is an ultraprime algebra. 

Before giving examples we list some of the basic properties of ultraprime ideals and 

algebras. The first is immediate from the definition and Lemma 3.1; the question of 

reversing its statement will be discussed below. 

PROPOSITION 3.3. Every ultraprime ideal is a closed prime ideal. 

PROPOSITION 3.4. The center of every ultraprime normed algebra is trivial. 
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Proof. If the dimension of the center is at least two, then, by [31], 14.4, its com-

pletion contains a non-zero topological divisor of zero. By a 3 c:-argument there exist 

sequences (xk)kEN, (Yk)kEN of unit vectors in the center such that lim XkYk = 0. 
k-oo 

Thus, lim XkZkYk = 0 for every bounded sequence (zk)kEN, which is impossible if the 
k-co 

algebra is ultraprime (Lemma 3.1). 

Since a prime Banach algebra may well be commutative, e.g. the convolution algebra 

L 1 (R+ ), this result indicates that the ultraprime algebras form a distinguished class 

among all prime Banach algebras. This is also supported by the next proposition which 

shows in particular that the completion of an ultraprime normed algebra is an ultraprime 

Banach algebra whereas an analogous result for prime algebras fails. 

PROPOSITION 3.5. Let B be a subalgebra of the normed algebra A. Then 

B is ultraprime if and only if its closure B is ultraprime. 

Proof. This follows immediately from the fact that Bu and (B)~ are isometrically 

isomorphic. 

The next three results are consequences of corresponding results which hold in the 

purely algebraic setting of prime ideals. 

PROPOSITION 3.6. Every ideal of an ultraprime normed algebra is an ultra-

prime algebra. 

Proof. If I is an ideal of the ultraprime algebra then fu is an ideal in the prime 

algebra Au (Proposition 2.2), and thus a prime algebra by [22], Lemma 2. 

PROPOSITION 3.7. A normed algebra A without identity is ultraprime if and 

only if its unitization A + C is ultraprime. 

Proof. Since A is an ideal in A+ C, the "if"-part follows from the preceeding 

proposition. By Proposition 2.4, (A+ C)~ = Au + C is the unitization of Au whence 

the "only if"-part is a consequence of the fact that the unitization of a prime algebra 

is still prime. 
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PROPOSITION 3.8. Let _4 be a unital uliraprime normed algebra. Then the 

n x n-matrix algebra Mn(A) is also ultraprime. 

P:roof. From Proposition 2.5 and [22], Thm. 8 we conclude that Mn(A)~ = Mn(Au) 

is prime, if Au is prime. 

The next result shows that the class of ultraprime normed algebras is stable under 

ultra powers. 

PROPOSITION 3.9. Every ultrapower of an ultraprime normed algebra is ultra-

pnme. 

Proof. This follows at once from Proposition 2.6 and Lemma 3.1. Alternatively, one 

may analyze the proof of Lemma 3.1 in order to realize that condition (b) is inherited 

by any ultrapower. 

We conclude this section with some examples of ultraprime algebras. Observe at 

first that each finite dimensional prime algebra A is ultraprime (with respect to any 

norm), for the algebras A and Au are canonically isomorphic. The algebra L(E) of 

all bounded linear operators on a normed space E is ultraprime since IIMa,bll = llallllbll 
for all a, bE L(E). More generally, every subalgebra of L(E) which contains all finite 

rank operators is ultraprime. It was proved in (21; I] that every closed prime ideal of a 

C*-algebra is an ultr:aprime ideal. Even more is true in the von Neumann algebra case. 

Recall that a factor is a von Neumann algebra with one-dimensional center. 

EXAMPLE. Every closed ideal of a factor is an ultraprime ideal. 

If I is a dosed ideal of the factor A, it suffices to show that I is a prime ideal. Let 

rr: A _... A/ I denote the canonical quotient map :and take a, b E A\ I. Without loss of 

generality we may assume a, b ~ 0. If a= J0
00 .,\de>. is the spectral decomposition of 

a, then, for each E > 0, we put Pe = 1- f[o,e:); then, ape ~ EPe and lla- ap.,jj :S E. 

Since a tJ_ I, there exists Pe tJ_ I. Similarly, there is qe tJ_ I such that bq" ~ Eqe and 

lib- bq.,!l :::; E (there is, of course, a common c). Using the comparability theorem we 
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may write Pe: :2:: uu* and u*u = qe: for some u E A, say. Then, 

= jj7r(bqeu'"pea2 pe:Uqeb)jj 

:2:: c:2 117r(bqeu*p,uqeb)jj 

= c:2 117r(uqeb)jj 2 

= c:2!17r(uq.,b2qeu*)ll 

:2:: c:4jj7r(uqeu*)ll > 0, 

whence aub rf. I. Hence, 1r(A) is a prime algebra and I is a prime ideal. 

4. A CONSTRUCTION OF A RING OF QUOTIENTS 

Throughout this section, A will denote a non-zero ultraprime normed algebra. We 

will construct an 'algebra of quotients' of A, closely related to Utumi's ring of quotients, 

which can be normed in such a way that it becomes an ultraprime algebra containing a 

homeomorphic image of A. For a thorough discussion of the algebraic theory of rings 

of quotients we refer to [25]. 

If I is a (not necessarily closed) ideal of A, by HomA(I, A) we will denote the set 

of all continuous right A-module homomorphisms from I into A. Using the primeness 

of A, it is easily seen that each f E HomA(l, A) is in fact linear; hence, if endowed 

with the operator norm, HomA(I,A) becomes a normed left A-module. If I 1 , I 2 are 

non-zero ideals of A, a coherent family of (continuous) linear mappings 

is defined by restricting each f E HomA(I11 A) to I 2 • As a direct limit of complex vector 

spaces, Q(A) = lim HomA(I, A); in order to endow Q(A), the 'algebra of quotients' 
-t 

of A, with the structure of a normed algebra we will construct Q(A) in the following 

alternative way. 

Let I denote the lattice of all non-zero ideals of A, and put M = {(I, f) I IE I, 

f E HomA(I, A)}. We define an equivalence relation on M by 

(I, f),.,..., (J,g) if there is U E I, U ~In J such that fw = 9iU· 
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(The primeness of A yields the transitivity of this relation.) 

REMARK. If (I, f)"" (J,g) then fiinJ = giinJ· In fact, put h = f- g and 

take U E I with h(U) = 0. For x E In J, y E U we have h(x)y = h(xy) = 0, i.e. 

h(I n J)U = 0. Since h(I n J) is a right ideal of A and A is prime, it follows that 

h(I n J) = 0. This remark will be used repeatedly in the sequel. 

Let Q(A) := M/"" be the set of all equivalence classes, and denote the equivalence 

class of (I, f) E M by [(I, f)]. Using the primeness of A, it is easily verified that the 

following operations are well-defined 

[(I, f)]+ [(J,g)] :=[(In J,f +g)], 

>.[(I, f)] := [(I,>.!)], 

[(I, f)]· [(J,g)] := [(JI,fg)], 

for all (I, f), ( J, g) E M and >. E C. The usual associativity and distributivity laws 

are satisfied too. 

THEOREM 4.1. Let A be an ultraprime normed algebra. 

(a) With the operations defined as above, Q( A) becomes a prime unital algebra 

containing an isomorphic image of A. Its center Z(Q(A)) is a field and 

coincides with the extended centroid of A. 

(b) By llqll = inf {llfll I (I, f) E q}, q E Q(A), an algebra norm is defined on 

Q(A), whose restriction to A is equivalent to the original norm. Endowed 

with this norm, Q(A) becomes a unital ultraprime normed algebra. 

DEFINITION 4.2. Q(A) is called the normed algebra of quotients of the ultra-

prime algebra A; its completion Q(A) is the Banach algebra of quotients of A. By 

Theorem 4.1 and Proposition 3.5, Q(A) is an ultraprime Banach algebra. 

We will divide the proof of Theorem 4.1 into several lemmas. The crucial one is 

the following automatic continuity result. In the sequel, "' will always denote a positive 

real number satisfying condition (b) of Lemma 3.1. 
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LEMMA 4.3. Every non-zero A-bimodule homomorphism f: I --+ A, I E I, is a 

topological isomorphism onto its image. 

Proof. For all x, y E I we have 

Thus, 11!11 =sup {llf(x)lllllxll ~ 1} < oo and IJJ(y)ll 2:: K li!IIIIYII for all Y E I. 

Utumi's maximal ring of quotients arises from extending the equivalence relation 

to Ma, the set of all pairs (I, f) with IE I and f: I--+ A an arbitrary right 

A-module homomorphism; Qa(A) := Ma/"' becomes a prime unital algebra whose 

center Z(Qa(A)) is called the extended centroid of A (cf. [12], Chap. 1.3). 

COROLLARY 4.4. Z(Q(A)) = Z(Qa(A)) is afield. 

Proof. Let f: I--+ A be an A-bimodule homomorphism on IE I. If (J,g) E Ma, 

then, for all x E I, y, z E J, we have 

fg(yxz) = f(g(y)xz) = g(y)f(xz) = g(yf(xz)) = gf(yxz); 

hence,fgiJIJ=gfiJIJ and 0-:/=JIJ~JiniJ. Itfollowsthat f(I,f)] commutes 

with [(J,g)]. 

On the other hand, if (I,f) E q E Z(Qa(A)) then, for every a E A, [(I,f)]· 

[(A, La)J = [(A, La)J · [(I, f)]. Hence f o La = Lao f on AI n IA; in particular, for all 

x, y E I, bE A, we have 

f(ax)by = f oLa(xby) =Lao f(xby) = af(x)by, 

and the primeness of A yields f( ax) = af( x ), x E I, a E A. Thus, f is an A-bimodule 

homomorphism. 

Lemma 4.3 now shows that Z(Qa(A)) = Z(Q(A)). Moreover, if q = [(I,f)] E 

Z( Q(A)) is non-zero, then, by Lemma 4.3, f(I) E I and f-1 : f(I) --+A is a continuous 

A-bimodule homomorphism, whence q-1 = [(f(I), f- 1 )]. 
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Proof of 4.1 (a). The axioms of a complex algebra are easily verified. The identity 

in Q(A) is the equivalence class [(A, id)] of the identical homomorphism on A. From 

the primeness of A we conclude that a~--+ [(A, La)] embeds A into Q(A), and we 

will henceforth consider A as a subalgebra of Q(A). 

Let ql = [(I1 ,Jt)], q2 = [(I2,h)] E Q(A) \ {0}, and take Xj E Ij such that 

qjXj = fi(xj) i= 0, j = 1, 2. Since A is prime, there is z E A with q1 x1zq2x2 i= 0 

whence Mq1 ,q2 i= 0. It follows that Q(A) is a prime algebra. 

REMARKS. 1. Suppose that A is an ultraprime Banach algebra. Then, instead 

of M, we could start with Me = {(I, f) E M I I is closed}, and by defining the 

multiplication on Me/"" by [(I, f)]·[(J,g)] = [(J I, fg)] obtain another algebra Qe(A). 

However, since (I, f) "" (I, f) for every (I, f) E M, we actually have Qe(A) = Q(A). 

In the case when A is a prime C*-algebra, an argument similar to [23], 3.12.2 shows 

that every right A-module homomorphism f: I-+ A defined on a closed ideal of A 

is automatically continuous, and hence corresponds uniquely to a left multiplier of I. 

Denoting by LM(I) the space of all left multipliers of I E I, it thus follows that 

Q(A) = limLM(I). 
-+ 

2. In view of Lemma 4.3, we note that every A-bimodule homomorphism from a 

closed ideal of a prime Banach algebra into itself is automatically continuous ( cf. (14], 

Thm 14). 

3. The relation between Q(A) and Qa(A) is clarified by the following observation: 

If q E Qa(A) has a representative (I, f) EM, then q E Q(A). 

This is immediate from the next lemma. 

LEMMA 4.5. If (J,g) ""(I, f) EM then K llgll S llfll· 

Proof. Since giinJ = fiinJ, for each x E I, y E J, z E A, we have 

Mg(y),xZ = g(y)zx = g(yzx) = f(yzx), 

whence IIMg(y),xll S llfi!IIMy,xll· From this we conclude that 

K llg(y)llllxll S IIMg(y),xll S llfiiiiYIIIIxll, 
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which implies K llgiJ ~ llfll· 

COROLLARY 4.6. The expression IJqll = inf {11!11 I (I, f) E q}, q E Q(A), 

defines an algebra norm on Q(A). 

Proof. Let q,qi,q2 E Q(A) and .A E C. By Lemma 4.5, KjlgiJ ~ llqiJ for each 

(J,g) E q; thus llqll = 0 implies q = 0. Also, 

II.Aqll = inf {119111 (J,g) E .Aq} ~ inf {II.Aflll (I, f) E q} = I.AIIIqll· 

But, if (J,g) "'(I, .Af), then II.AfiinJII = II91InJII ~ llgll. Thus, II.Aqll;::: I.AIIIqll. 

If (II. !I) E qi and (I2, h) E q2 then 

and 

II!I + hU = sup{II!I(x) + h(x)lll x E II n I2, llxll = 1} 

~ sup{llfi(x)lll x E II, llxll = 1} + sup{llh(x)lll x E I2, llxll = 1} 

= II!III + 111211, 

II!Ihll = sup{llfi(h(x))lll x E I2I1. IJxiJ = 1} 

~ II!III sup{llh(x)lll x E h llxll = 1} 

= II!IIIIIhll· 

Therefore, 

inf {II Jill (I, f) E q1 + q2} ~ inf {II !I +hIll (II, !I) E q1, (I2, h) E q2} 

~ inf {II !I II+ 1112111 (II, !I) E qi, (I2,h) E q2} 

= inf {IIJIIII (II,fi) E qi} + inf {IJhlll (I2,h) E q2}, 

that is, llq1 + q2JI ~ llq1ll + llq2ll· 

Similarly, 

inf {11!111 (I, f) E q1q2} ~ inf {II!Ihlll (I1, !I) E q1, (I2, h) E q2} 

~ inf {llfdllhlll (!1,!1) E q1, (I2,h) E q2} 

=inf{llf1lll (!1,!1) E q1} ·inf{llhlll (!2,!2) E q2}, 
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Proof of 4.1 (b). Let a E A. If (I, f) "' (A, La), then, for each x E I with 

[[x[[ = 1, 

[If[[= [[LaiJ[[ ~sup {[[azx[[[ z E A, [[z[[ = 1} = [[Ma,x[[ ~ K [[a[[. 

Therefore, [[a[[ ~ [[[(A, La)J[[ ~ K [[a[[ and the mapping a 1-+ [(A, La)] is a topological 

homomorphism from A into Q(A). 

Take p, q E Q(A) with [[p[[ = [[q[[ = L By definition of the norm, there is 

(I, f) E p with [[f[[ ~ 1. Thus, for every 0 < c < 1, there is x E I, [[x[[ = 1 such 

that [[px[[ = [[f(x)[[ ~ 1-c;. Similarly, there is yEA, [[y[[ = 1 such that [[qy[[ ~ 1-c;. 

By Lemnm 3.1, [[Mpx,q11 [[ ~ K [[px[[[[qy[[ ~ K(l- c:)Z. Therefore, on Q(A), 

Hence, [[Mp,q[[ ~ K2 and thus Q(A) is ultraprime. 

The central closure of a prime algebra A is defined as AZ(Qa(A)) ~ Qa(A), and 

A is called centrally closed if A coincides with its central closure. As an immediate 

consequence of Theorem 4.1 we have the following. 

COROLLARY 4.7. Every ultraprime normed algebra is centrally closed. 

EXAMPLES. Suppose that A = K(H), the C*-algebra of all compact operators 

on some Hilbert space H. Since A is topologically simple, Q(A) is isometrically 

isomorphic with the space of all continuous right A-module homomorphisms, i.e. all left 

centralizers of A. It follows that Q(A) = L(H). In this case, Qa(A) = EndA(F(H)), 

the algebra of all right A-module homomorphisms on the finite rank operators ( cf. [25], 

ex. XIL2.3). 

Now let A = L(H). If f E HomA(I, A.) and I is closed, it follows easily from 

the existence of an approximate identity in I that f = La for some a E A. From 

this and the fact that every non-zero ideal is ultraweakly dense in A, we deduce that 

Q(A) =A. 
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Clearly, similar arguments apply to factors of type II or III, i.e. Q( A) = A and 

Q(I) =A for each non-zero closed ideal I of the factor A (cf. Proposition 3.6). 

5. APPLICATIONS TO ELEMENTARY OPERATORS 

This section is devoted to applications of the concept of an ultraprime algebra to 

operator theory. If A is an algebra, its algebra of elementary operators, &l(A), consists 

of all linear mappings x f-+ L::j=1 aixbj, where aj, bi are finitely many elements in A. 

Denoting the opposite algebra of A by A op, there is a unique canonical epimorphism B 

from A 0 Aop onto &l(A) such that B(a 0 b)= Ma,b· If A is a Banach algebra, then 

B extends to a contraction from the projective tensor product A@ A op into L( A). 

The kernel of B has been determined in several special cases. In [8] Fong and Sourour 

proved that if A is either L(E) for a Banach space E or C(H), the Calkin algebra 

on a separable Hilbert space H, then B is injective. Synnatzschke [28] obtained the 

same result under the assumption that A is a primitive algebra containing sufficiently 

many one-dimensional elements. In [21], we proved that, in the case of a C*-algebra A, 

B is an isomorphism if and only if A is prime. In fact, the proof we used there can be 

modified easily to cover the case of an arbitrary ultraprime normed algebra. 

THEOREM 5.1. Let A be an ultraprime normed algebra. Then B zs an 

isomorphism from A 0 Aop onto &l(A). 

If u E A 0 Aop is represented as u = L::j=l aj 0 bj with {b1, ... , bn} linearly 

independent, then B( u) = L::j=l Mai ,bj = 0 implies ai = 0 for all 1 :S j :S n, whence 

u = 0. This is proved exactly as in [21], Part I, Thm 4.1; we only have to observe that 

every A-bimodule homomorphism from an ideal of A into A is a multiplication by a 

complex number (Theorem 4.1 and Proposition 3.4). 

In the same vein, Corollaries 4.2 and 4.3 of [21], Part I as well as Prop. 4.6 and Cor. 

4.7 take over to the case of an ultraprime normed algebra. In particular, e.e(A) = L(A) 

for every finite dimensional prime algebra. 

The so-called 'range inclusion problem' for elementary operators asks for criteria 

on S E &l(A) to satisfy SA~ J, where J is some prescribed ideal of A. The case 
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A= L(H) was studied to some extent in [1], [5] and [6]. As an immediate consequence 

of Theorem 5.1 we have: 

COROLLARY 5.2. Let J be an ultraprime ideal of the normed algebra. A and 

let S E £f(A). Then SA~ J if and only if there is a representation S = I:j=I ,b; 

with { a 1 , ... , a 11 } and {blo ... , bn} both linearly independent modulo J. 

Combining this with the last example of Section 3 we obtain the following. 

COROLLARY 5.3. Let J be any closed ideal of a factor A and let S E £Ji(A). 

Then SA ~ J if and only if there is a representation S = L,j=l Ma; ,b; with 

{ a 1 , ... , an} and { b1 , ... , } both linearly independent modulo J. 

In [21], the C*-version of Theorem 5.1 is also applied to characterize completely 

positive and (weakly) compact elementary operators. 

In the remainder of this section, we will add some observations on the spectra of 

elementary operators. To this end, A will always denote a unital Banach algebra. 

We use the notion of 'joint spectrum' of an n-tuple a E An as introduced by Harte 

([9], cf. also [10], Chap. 11); however, we prefer the notation used in [21], Part I. In 

particular, Pa(S) and Par(S) stand for the point and the compression speciTum 

of S E £€(A), respectively, while APcr(S) resp. APar(S) denotes the appToximate 

point resp. defect spectrum of S. When necessary, we may indicate by aEC(A)(S) with 

respect to which algebra the spectrum is computed. An n-tuple a = ( a1 , ... , an) is 

called commuting if the set { a 1 , ... , an} is commutative. If X, Y are subsets of en, 

then X o Y := {l:j=l ~jrJj J ~j E X, 7]j E Y}. 

PROPOSITION 5.4. Let A be a unital Banach algebm, a, b E An and let 

S = LJ=l Ma; ,b; E t.'e(A). 

If A zs pnme, then 

and 
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(2) Par( a) oPa(b) ~ Par(S). 

If A is ultraprime, then 

(3) APa(a) oAPar(b) ~ APa(S) 

and 

(4) APar(a)oAPa(b) ~ APar(S). 

If, in addition, a and b are commuting n-tuples, then 

(5) APa(a)oAPa(b) U APar(a)oAPar(b) ~ a(S) 

and 

(6) APa(a) oAPar(b) 2 APa(S). 

Finally, if A is a prime C*-algebra and a, b are commuting, then 

(7) APar(a) oAPa(b) 2 APar(S). 

The inclusions (1), (2) and (3), (4) were proved under the assumption that A 

is a prime C*-algebra in [21], Part I, Thm 3.8, and the argument used takes over to 

the general case almost verbatim. However, we offer an alternative argument for the 

inclusion (3) (an analogous one which proves (4) is omitted). Though it may be less 

direct, it emphasizes the connection to Theorem 5.1. 

Proof of (3). Let p((l, ... ,(2n) = I:j=l (j(j+n E C[(l, ... ,(2n]· Using the well­

known fact that APa(a) = Pa((a)u) and APar(a) = Par((a)u), we obtain 

APa(a) oAPar(b) = Pa((a)u) oPar((b)u) 

= p (PaAu ((a)u) X Pa!u ((b)u)) 

= p (PaAu ((a)u) X Pa~p ((b)u)) 

~ p (PaAu®A;t ((a)u 01,10 (b)u)) 

~ PaAu®A';t (p((a)u 0 1,1 0 (b)u)) 

by [10], 11.7.5 

by the spectral mapping theorem ([10], 11.2.2) 
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n 

= PaAu®A'j_t L aj 0 
j=l 

by Theorem 5.1 and Proposition 3.9 

= APa(S). 

The inclusion (7) was proved in [21], Part I, Thm 3.9, and the argument for (5) 

can also be extracted easily from the proof of ibid., Thm 3.9. 

Proof of 

APa(La, Rb) ~ APO"(La) x APa(Rb) = APa(a) x APa,.(b) 

by [10], 11.6.1. Applying the spectral mapping theorem for commuting n-tuples (ibid., 

11.3.4) we obtain 

REMARKS. 1. Observe that inclusion (6) is valid without any additional hypothesis 

on A. 

2. The additional assumption in (7) is due to the fact that a bounded surjective 

operator on a Banach space need not be right invertible, that is, 

0 E O"r(T) = APa'r(Lr) # 0 E APar(T). 

3. The inclusions (1) and (2) cannot be reversed even for the algebra L(H), when 

H is an infinite dimensional Hilbert space. 

4. In [18], Lumer and Rosenblum started the spectral analysis of elementary op­

erators on the basis of (joint) topological divisors of zero. In fact, they used the ultra­

primeness of L(E) in the form of condition (a) of Lemma 3.1 in order to describe a(S) 

in the case where aj = fj(a), bj = gj(b), a, b E L(E) and h,gj are holomorphic 

functions on a(a), a(b) respectively ([18], Thm 10). 
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5. In a recent paper [4], Eschmeier proved that, if a, b E L(E)n are commut­

ing n-tuples and aT denotes the Taylor joint spectrum, then a(:L;j=l Ma; ,bi) = 

ar(a)oar(b). 
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