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SUBALGEBRAS OF AMENABLE ALGEBRAS 

Richard I. Loy + 

It is well known that a closed ideal I of an amenable Banach algebra A is 

itself amenable if and only if it has a bounded approximate identity, and that if I 

and A/I are both amenable, then so is A. In this note we give some remarks 

concerning the question of whether or not anything can be said about closed 

subalgebras of amenable Banach algebras. 

We begin by recalling some results from harmonic analysis which show, in 

various guises, that the "standard" amenable algebras, V(D, for locally compact 

abelian groups r, always contain non-amenable closed subalgebras, provided 

that r is infinite. For convenience of notation, our discussion will be in terms 

of the dual group G, and the Fourier algebra A( G)= L 1(r)". 

Looking firstly at closed ideals, the remarks above show that the following 

gives a chacterization of amenable ideals in A(G). 

THEOREM 1 ([17], Theorem 13). Let G be a locally compact abelian group, 

Is;;; A(G) a closed ideal. Then I has a bounded approximate identity if and only 

if I= I(E) = { f e A(G): f(E) = (O)} for some closed set E s;;; G which lies in the 

coset ring of G considered as a discrete group. 

In particular, if I has a bounded approximate identity then E = hull(I) is a 

set of synthesis (though not conversely). Thus for G infinite and non-discrete, 

Malliavin's theorem shows the existence of E with I(E) not amenable. Again, 

for G infinite and compact, spectral synthesis fails spectacularly in the sense that 

there exists f e A(G) such that the closed ideals generated by the positive powers 

of f are all distinct ([19]); of course these ideals cannot have bounded 

approximate identities. For G discrete, so every subset of G is of synthesis, take 

t Part of this research was carried out while the author held a United Kingdom Science and 
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E to be any subset not in the coset ring. It is unknown to the present author 

whether it is possible for I(E)2 = I(E), or even (I(E)2)- = I(E), when E is not of 

synthesis. 

Coming now to subalgebras, there is a sirnilar dichotomy between the 

discrete and non-discrete cases as in the above. 

THEOREM 2 ([2]), If G is a non-discrete locally compact abelian group, A(G) 

contains a closed self-adjoint subalgebra B which is not finitely generated. 

The interest for us here is in the proof rather than the result - B is 

constructed to have infinite dimensional point derivation space at some 

maximal ideal. 

THEOREM 3 ([3], Theorem 3.1]). With G as above, there is E c G, a compact set 

of synthesis, such that A(E) = A(G)/l(E) contains a regular closed self-adjoint 

algebra B isometrically isomorphic to an algebra of c= functions on [-1, 1]. 

If B were amenable, then its isomorph B' I':: c= [-1, 1] would be also. 

·Thus the ideal I= { f e B' : f(O) = 0} would have a bounded approximate identity, 

so would factor, whence any f E I would satisfy f (n)(O) = 0 for n ~ 0, and so B' 

would contain no non-zero polynomials. But an examination of the proof from 

[3], in particular Lemma 2.9, shows explicitly that B' contains the Chebyshev 

polynomials (and hence all polynomials of course). 

For infinite discrete abelian groups G there is another approach as follows. 

We will restrict ourselves to G = ;z:, and its dual the circle group 1r, though the 

ideas can be exploited in any discrete group. 

For a dosed subalgebra A<;;;;; A(~), define an equivalence relation - on ;t! 

by n ~ m exactly when f(n) = j(m) for all f E A, and define the "zero" class 

E0 = {n : f(n) = 0 for all f E A}. Since A(Z) c c0(~), all equivalence classes except 
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possibly Eo are necessarily finite. Define A 0 to be the smallest closed 

subalgebra of A containing XF for each non-zero --class F, A o to be the 

algebra of functions constant on each non-zero --class, and zero on Eo . Then 

A 0 ~ A ~A o and they each induce the equivalence relation - on :l. Further, 

A 0 is generated by the idempotents in A o. An example is given in [18] where 
A 

A0 =F-AD, and AD is (singly) generated by f for some f e n 1 < P < 2 LP('lf). 

THEOREM 4 ([12, Lemma 3.3]). If A n LP('lf )A is dense in A for some 

1 < p < 2, then Am !;;;;; A 0 for some m ;::: 2. 

From the example in {18] it follows immediately that there is A 0 which 

does not factor, and so is non-amenable. 

We are interested in whether there are any vestiges of these phenomena in 

general amenable algebras, in particular for subalgebras which are large in some 

sense, and first give a further result involving notions of spectral synthesis. 

THEOREM 5 ([3, Theorem 4.5]). Suppose B is a commutative semi-simple 

regular self-adjoint Banach algebra. Suppose synthesis fails for principal ideals 

in B, that is, there is f E B such that f f! (Bf2)-. Then B has a closed subalgebra 

admitting a non-zero continuous point derivation. 

In view of matters raised elsewhere in these proceedings, [9], it is of interest 

to remark, following [3], that if the real elements cp e B satisfy llexp(incp)ll = 
0( In I k), where k = k(cp), then the failure of synthesis in B implies the failure of 

synthesis for principal ideals. Indeed, as this is not detailed in [3], we give a proof 

here using a technique that has arisen in [1, 5, 9, 10]. Thus suppose synthesis fails 
A 

in B, so there is a compact set K c <PB such that if J(K) = { f e B : f -1(0) is a 
A 

neighbourhood of K }, then J(K)- ~ I(K); choose f e I(K) \ J(K)- with f real · 

without loss of generality. Then the coset f = f + J(K)- lies in the radical R of 
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the quotient algebra B / J(K)-. Let exp(i 1) = 1 + If with r E R. The hypothesis 

on B shows that 

110 + r)nll = II exp(inf) II O( I n I )k = o( I n I )k + 1 

for some k ~ 1. But then by [14,4.10.1], ric + L" O. Thus 

o = (expif- Ok+ 1:: [ 
jm 

m! 
m = 1 

fm] k + 1 == 1/k + 1 [ I.:I 1m - 1 ] k + 1 f 

m=l 

whence flc + 1 = 0 since the second factor in the last expression is invertible, so 

that / k + 1 E J(K)-. Choosing the least possible k with this property, and 

. f (Bf2)- (1' b /2 h f k l' Ih k f 2k lib SupposIng E f say J = Imn ~ 00 n ' we ,ave. := 1ll1.n ~ = &Ii n = U, 

a contradiction. Thus synthesis fails for the principal ideal (Bj)-. (In fact it 

follows that l(K) / J(K)- is nil, and hence nilpotent, so that I(K)m ~ ](K)- for 

some m ~ 2.) 

Recall that a commutative semisimple Banach algebra is said to have the 

Stone-Weierstrass property if it has no proper, point separating, self-adjoint, 

closed subalgebras. That amenability is not sufficient to guarantee the Stone

Weierstrass property follows from an example of Katznelson and Rudin, [15], 

where it is shown that A (T) fails to have the latter property - a closed 

subalgebra B is constructed, self-adjoint and point separating, but B * ACT). B 

is certainly a "large" subalgebra of A(1f), and it would be of interest to know 

whether it is amenable. This is especially so since, as we now show, B is not 

generated by its doubly power bounded elements (d. [10], §V). 

Define functions in: Z H zn on 1[, and set S = {n E ~ : in E B}. Since B is 

a self-adjoint subalgebra, S is a group under addition, and as B is proper, S 

cannot contain 1 or -1. Choose the least k E S greater than 1. Then for 

mE S\{O}, there exist p, q E ~ such that pm + qk = (m, k), so that em, k) E s. 
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But I (m, k) I :::;; k, whence (m, k) "" k and m is a multiple of k. It foHows that 

either S '" {O} or S = {kn : n E ~} for some I k I > 1. In either case the functions 

{in: n E 5} do not separate the points of 1', and so they do not generate B. 

Finally, the Beurling-Helson theorem [20, Theorem 4.7.5] shows that the doubly 

power bounded elements of ACE') are unimodular multiples of the functions 

{fn : n E ~}, so that {).fn: n E S, I A I "" I} is the set of doubly power bounded 

elements of B, which thus does not generate B. 

We remark further that in this example, which is constructed from a totally 

disconnected subset P c 1r of positive measure, B will contain the set I(P) if P 

is taken, as it may, to be a set of synthesis. A(1f)/I(P) is then an amenable algebra 

with P as its maximal ideal space, yet it is not generated by its idempotents, 

which all lie in B/I(P). See [15] for details. 

Pursuing these properties a little further, we note that if A is a 

commutative, semisimple Banach algebra generated by its idempotents, then A 

has the Stone-Weierstrass property, [15]. Further, A is weakly amenable, [6], but 

of course need not be amenable (for example,..l2 with pointwise operations). If 

the idempotents are uniformly bounded, then certainly amenability is the case, 

even without the presupposition of semi-simplicity, since A = C( CPA) by an old 

result of Dunford (see [Ill, Proposition 5.43). Without the boundednesss of the 

idempotents, amenability may fail even if the primitive idempotents are 

bounded (the Feldman example). 

With this evidence at hand we raise the following question. 

QUESTION. Do there exist (infinite dimensional) amenable Banach algebras aU 

of whose dosed subalgebras are amenable? 

For suitably restricted algebras we can give a succinct answer. 

THEOREM 6. Let A be a unital uniform algebra with carrier space X. Then aU 

closed subalgebras of A are amenable if and only if X is scattered. 
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Proof. Suppose that A has the stated property. By Scheinberg's theorem, [16, 

Theorem 56], we have A= C(X) . 

It suffices to consider the case when X infinite. Let Y be a nonempty 

perfect subset of X. By the Cech-Posposil theorem there is a continuous 

surjection of Y onto [0, 1], and the Tietze extension theorem gives a continuous 

extension f: X ---+ [0, 1]. Then g = e2nif e A, with a(g) = {z : I z I = 1}, and so the 

closed unital subalgebra generated by g is isometrically isomorphic to the 

uniform closure of the polynomials on Y, which is not an amenable algebra. 

This contradicts the hypothesis, so that there can be no such Y, that is, X is 

scattered. 

Conversely, suppose that X is scattered, and that A is a closed unital 

subalgebra of C(X) with carrier space w k Then if f e A is invertible in C(X), 

is a countable compact set in a:: not containing 0, [19]. Thus j(X) has no 

interior and does not separate 0::, so by Lavrentiev's theorem there exist 

polynomials lpn} such that Pn(z) ---+ z -1 uniformly on j(X). But then the map 

Pn(/) ~ j-1 in C(X), so that j-1 E A. H follows that (f) A can be identified with a 
1\ 

subset of X. A similar argument shows that A is closed under complex 
1\ 

conjugation ([19]). But then the map f H f is an isometric, conjugate preserving 

isomorphism of A onto a point separating unital subalgebra of C( (f) A). By the 
1\ 

Stone-Weierstrass theorem, A = C((PA), which is amenable, so that A is 

amenable. Any non-unital closed subalgebra A is a maximal ideal in the 

amenable algebra AEBO:: 1, so is itself amenable. 

The result for non-unital uniform algebras is an easy consequence, but 

what can be said more generally ? For any commutative amenable Banach 
1\ 

algebra A, (A)- is an amenable uniform algebra, so Scheinberg's theorem shows 
1\ 

that A is dense in C0( (f) A.). Thus if all closed subalgebras of A are amenable, 

then in particular, for each x e A, the dosed subalgebra generated by x has 

Gelfand transform dense in {/ e C(a(x)) : f(O) = 0}, so that a(x) has empty 
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interior, and has connected complement. The following simple observation 

shows that these latter conditions also follow from a hypothesis of scatteredness. 

THEOREM 7. Suppose that B is commutative unital Banach algebra with 

scattered Silov boundary ;)l[) B . Let A be a closed unital subalgebra of B 

(possibly B itself). Then 

(i) A is inverse closed, 
1\ 

(ii) A is regular on lP A = ;)l[) A which is totally disconnected, 
1\ 

(iii) A is dense in C( lP A), 

(iv) A-1 = exp A. 

Proof. (i), (ii), and (iii) follow immediately from results of Glicksberg [13]. The 

argument there also shows that, for x e A, 

1\ 1\ 
dO'A(x) {;;X(dlPA) !;;;X(dlP8)!: 0'8(x)!: O'A(X) = dO'A(x), 

so that equality holds throughout, and D'A(x) is scattered in ct. Thus GA(x) 

certainly has empty interior and does not separate the plane. If x is invertible 

we can thus define log(x) via the functional calculus and (iv) follows. 

Of course, these results are fragmentary, and certainly having a scattered 

carrier space is not sufficient for amenability of closed subalgebras even if the 

algebra itself is amenable; A(~) gives a counterexample. Scheinberg's result 

applied to finitely generated subalgebras shows that for any J. ={x1, •• , xk} c A, 

the closed subalgebra generated by {1, xl' .. , xk} has Gelfand transform dense in 

C(O'(J.)), whence 'f(O'(J.)) = C(O'(J.)), where 'f(O'(J.)) is the closure of polynomials 

on O'(J.). But in fact this gives no more information than the particular case k = 

1 noted above. Indeed, taking the case k = 2, and supposing that elements x, y 

satisfy 'f(O'(x)) = C(O'(x)) and 'f(O'(y)) = C(O'(y)), the Stone-Weierstrass theorem 

shows that 'f(O'(x) x O'(y)) = C(O'(x) x O'(y)), and since O'(x, y) is a closed subset of 

a(x) x O'(y), Tietze's theorem then gives 'f(O'(x, y)) = C(O'(x, y)). 
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Perhaps the obvious question is whether all dosed subalgebras amenable 

necessitates scattered carrier space. Does the countability of the spectrum of 

every element imply that the carrier space is scattered ? (We note that the 

question of characterising algebras with this countable spectrum property was 

raised in §3.3 of [4]. Characterization of algebras satisfying the stricter condition, 

that the spectrum of each element has only limit point zero, had been given 

earlier in [7, Theorem 4.1], in particular the carrier space of such an algebra is 

discrete.) And, of course, what happens in the noncommutative case ? We 

finally remark that it is known that any non-type I amenable C*-algebra contains 

non-amenable c•·-subalgebras, [8]. 
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