
61 

ON NORMS ON ALGEBRAS 

H.G. Dales 

L INTRODUCTION 

In order to be quite explicit, let me collect in this section some fundamental 

definitions. 

Throughout, an algebra is a linear, associative algebra over a field IF , which is 

always either IR or { . An algebra is unital if it has an identity; the identity is usually 

denoted by e . If A is an algebra without identity, then A# is the algebra formed 

by adjoining an identity to A ; if A is unital, then A# = A . 

l.L DEFINITION. Let A be an algebra. An algebra seminorm on A is a map 

JI.Jl:A -liR such that: 

(i) llall 2: 0 (a E A) ; 

(ii) !Ia + bll :::: Jlall + llbll (a,b E A) ; 

(iii) lla:a!l = I a:l llall (a: E IF , a E A) ; 

(iv) llabll:::: llallllbll (a,b E A) . 

The map JJ.JI is an algebra norm if, further: 

(v) II all > 0 (a E A\ {0}) . 

An algebra A with a norm 11.11 is a norrned algebra; the normed algebra is a 

Banach algebra if the norm is complete. An algebra A is normable if there is an 

algebra norm on A . 

The spectrum o-(a) of an element a of an algebra A is 

o-(a) = {z E {: ze- a is not invertible in A#}, 

and the spectral radius of a is 



v(a) = sup{lzl: z E a(a)}, 

where v(a) = 0 if a(a) = 0 . 
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An element a is quasi-nilpotent if v(a) = 0 , and we write Q(A) for the set of 

quasi-nilpotent elements of A . 

Let A be an algebra, and let a,b E A . Then the quasi-product of a and b 

is a o b , where 

a o b = a + b - ab . 

An element a is quasi-invertible if there exists b E A with a o b = b o a= 0 ; we 

write q-Inv A for the set of quasi-invertible elements of A. 

The radical of an algebra A , rad A , is the intersection of the maximal 

modular left ideals of A, so that radA is a (two-sided) ideal in A. By definition, 

A is semisimple if rad A = { 0} . 

We have the following standard characterization of radA. 

1.2. PROPOSITION. Let A be an algebra. Then 

radA ={a E A: Aa c q-Inv A} . 

The most fundamental results about general Banach algebras are the following. 

1.3. THEOREM. Let A be a Banach algebra, and let a E A . 

(i) If v(a) < 1 , then a E q-Inv A . 

(ii) a(a) is a non-empty, compact subset of { . 

(iii) v(a) = 1 im llanlll/n . 
ll__,OO 

2. UNIQUENESS OF COMPLETE NORM 

The first topic that I would like to explore in these lectures is the 'uniqueness 

of norm problem' for Banach algebras. 
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2.1. DEFINITION. Let (A,II-11) be a Banach algebra. Then A has a unique 

complete norm if, for each algebra norm 111-111 on A such that (A,III-111) is a Banach 

algebra, 111-111 is equivalent to 11-11 . 

The uniqueness of norm problem is to characterize in some way the class of 

Banach algebras which have a unique complete norm. 

The first result in this area is the classic theorem of Gelfand of 1941. Let me 

recall a proof that does not use Gelfand theory. First recall ([5]) that, if A is a 

commutative Banach algebra, if a1'" .. ,an E A , and if f. > 0 , then there is an algebra 

norm 11.11 on A , equivalent to the given norm, such that 

!Ia. II < v(a.) + f. (j = l, ... ,n) . 
J J 

(1) 

It follows that, if A is a Banach algebra and a,b E A with ab = ba, then 

v(a +b) ::; v(a) + v(b). (2) 

2.2. THEOREM. (Gelfand) Each commutative, semisimple Banach algebra has a 

unique complete norm. 

Proof. Let (A,!!. II) be a commutative, semisimple Banach algebra, and let 111.111 be a 

complete algebra norm on A. Take (a ) c A such that a -1 0 in (A,I!.II) and 
n n 

a -1 a in (A,III·IID . For each b E A , 
n 

v(ba)::; v(ba ) + v(b(a-a )) by (2) 
n n 

:S llbll !Ia II + lllblllllla-a Ill n n 

Thus ba E Q(A) , Aa c q - Inv A , and a E rad A . 

But A is semisimple, so that a = 0 . By the closed graph theorem, it follows 

that 111·111 is equivalent to II· II . 
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The extension of Gelfand's theorem to general (not necessarily commutative) 

semisimple Banach algebras was an open question for a long time. The question was 

brought into prominence by Rickart, who obtained some partial results, and discussed 

it in Chapter II, §3.5, of his classic treatise ([25)). Eventually the problem was 

resolved by Johnson ([20)); you will know of the great influence of the ideas of this 

paper on automatic continuity theory. I had always assumed that Johnson's proof was 

definitive until the advent of Aupetit's paper ([2)), which contains a different proof. 

The key fact that Aupetit proved is equation (3), below. 

Let E and F be Banach spaces, and let T:E ~ F be a linear map. Then the 

separating space, S(T) , of T is defined to be 

S(T) = {y E F: there exists (x ) c E such that x --t 0 and Tx --t y} . 
n n n 

Of course, T is continuous if and only if S(T) = {0} . 

2.3. THEOREM. (Aupetit) Let A and B be Banach algebras, and let T:A ~ B be a 

linear map such that vB(Ta) :::: v A (a) (a E A) . Suppose that b E S(T) . Then 

(3) 

The proof that Aupetit gave of this theorem uses some facts about subharmonic 

functions, and in particular about subharmonic regularizations, that are not quite 

standard. I now wish to present a proof of the non-commutative version of Gelfand's 

theorem that is related to Au petit's proof, but which replaces the background in the 

theory of subharmonic functions with the modest requirement that one knows the 

maximum modulus theorem. The proof is due to T.J. R·ansford ([24)), and I am 

grateful to him for permission to give it in these lectures. 

The starting point is Hadamard's three circles theorem, which follows 

immediately from the maximum modulus theorem for analytic functions. 
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2.4. LEMMA. Take R1, R2, R3 with 0 < R1 < R2 < R3 , and suppose that f is 

analytic on a neighbourhood of the annulus { z E {: R1 :5 I z I :5 R3} . Set 

M. = sup{lf(z)j: lzl = R.} (j = 1,2,3). 
J J 

Then 

(4) 

The algebra of polynomials in one indeterminate over an algebra A is denoted 

by A(X]. 

2.5. LEMMA. Let A be a Banach algebra, let p E A[X] , and take R > 1 . Then 

(v(p(1)))2 :S sup v(p(z)). sup v(p(z)). (5) 
lzi=R lzl=l/R 

Proof. Take q E A[X] and take ,\ a continuous linear functional on A with 

IIAII = 1 and /\(q(1)) = llq(l)ll, and apply 2.4 with R1 = 1/R, R2 = 1, R3 = R, and 

f = ,\ o q . Then, by ( 4), 

jf(l)i 2 :S sup jf(z)j. sup lf(z)l, 
lzi=R lzl=l/R 

and so 

jjq(l)ll 2 :S sup llq(z)ll- sup llq(z)ll. (6) 
lzi=R lzl=l/R 

2n 2n l/2n 
Apply (6) with q = p , where n E IN. By 1.3(iii) , liP (z)ll ___, v(p(z)) 

n / n 
pointwise, and the sequence (jjp2 (z)ii 1 2 ) is decreasing, and so (5) follows. 

2.6. THEOREM. Let A and B be Banach algebras, and let T:A __, B be a linear 

map such that vB(Ta) :S v A (Ta) (a E A) . Suppose that bE S(T) . Then 
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(7) 

Proof. Take a -1 0 in A with Ta -1 b in B , and take a E A and f > 0 0 As 
n n 

before, we may suppose that the norms on A and B are such that 

Take R > 1 , and apply 205 with p(X) = (Ta -Ta ) + (Ta )X E B[X] 0 Then 
n n 

p(l) = Ta, and so, by (5), 

(8) 

By hypothesis, vB(p(z))::::: vA(a- a +za), and so vB(p(z))::::: lla-a II+ lzllla II 0 

n n n n 

Also vB(p(z))::::: IITa- Ta II+ lziiiTa II, and so, by (8), we have 
n n 

(vB(Ta) )2 ::::: (II a- a II + Rlla II)( I ITa- Ta II + -R1 11Ta II) n n n n 

for all n E IN . Let n -1 oo to obtain 

(vB(Ta))2 ::::: llaii(IITa- bll + ~llbll), 

and then let R --1 oo to obtain 

vB(Ta)) 2 ::::: llall IITa- bll , 

::::: (vA(a) + t)(vA(Ta- b)+ t) 0 

But this holds for all f > 0 , and so the result follows. 
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Remark. Formula (7) suffices for our purposes, but it is not exactly the same as (3). 

To obtain (3) itself, we may proceed as follows. 

k Fix k E IN , and apply Lemma 2.4 with R1 = 1/R, R2 = 1 , and R3 = R . 

Instead of (5), we have 

(v(p(l))k+l s supk v(p(z)). [ sup v(p(z))lk, 
Jzi=R JzJ=l/R 

and hence 

But now, taking kth roots and letting k-) oo, we obtain (3). 

We can now prove the general form of Gelfand's theorem. 

2.7. THEOREM. Let A be a Banach algebra, let B be a semisimple Banach algebra, 

and let 8:A -1 B be an epimorphism. Then 8 is automatically continuous. In 

particular, each semisimple Banach algebra has a unique complete norm. 

Proof. Since aB( 8a) c a A (a) U {0} (a E A) , Theorem 2.6 applies. 

Take b0 E <5(8) and bE B, say b = 8a and b0 = 8a0 , where a,a0 EA. 

Since <5(8) is an ideal in B, bb0 E <5(8), and so, by (7), 

whence bb0 E Q(B) . Thus Bb0 c Q(B) , bE rad B, and b = 0, giving the result. 

Let us explore a little further the class of Banach algebras that have a unique 

complete norm. In fact, it is still the case that we have no reasonable characterization 

of this class, even among commutative Banach algebras, after 50 years. 
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Certainly one can have commutative Banach algebras A with dim rad A = i 

which do not have a unique complete norm. The following classical example is due to 

Feldman (see (3]). 

2.8. EXAMPLE. The sequence space .? is a Banach algebra with respect to 

coordinatewise multiplication and the norm 

11<>112 = [i I a. If (a= (an) E i'). 

Set A = .? 0 { , the linear space direct sum, and define multiplication on A by 

setting 

(a,z)(J],w) = (a/1 ,0). 

Then A is a commutative algebra and radA = {0} 0 {. 

Clearly A is a Banach algebra with respect to the norm 11·11 1 given by 

ll(a,z)ll 1 = llall2 + lzl . Now let >. be any linear functional on .? such that >.i.el is 

00 

the functional (a ) ~-+ L a , and set 
n n=1 n 

ll(a,z)ll 2 =max {llall2, i>.(a)- zl} ((a,z) E A). 

Then 11·11 2 is a complete norm on A. For a,/1 E.? , we have a/1 E .el , and 

00 

I>.( a/1) I ~ J11 an/1n I ~ II all 2 11/111 2 . It follows that 11·11 2 is an algebra norm on A . 

Clearly the norms 11·11 1 and 11·11 2 are not equivalent. 

For a discussion of the uniqueness of norm problem in Banach algebras with 

finite-dimensional radical, see (23). 

Nevertheless, the class of commutative Banach algebras with a unique complete 

norm is much wider than the class of semisimple algebras. For example, it contains 

the following standard examples (see [8)): 
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(i) the convolution algebras L 1(!R+,w) , where w is a weight function on 

!R+ . , 

(ii) the radical convolution algebras L![O,l] and C*(O,l]; 

(iii) each Banach algebra of power series. 

To prove these results, one argues as follows. Let A and B be commutative 

Banach algebras, and let B:A -1 B be an epimorphism. Set 6 = 6( B) . Then for each 

sequence (b ) c B , the sequence 
n 

of closed ideals in B is eventually constant. If B is one of the above examples, this 

can only happen in the case where 6 = {0} , and so such a () is then automatically 

continuous. 

A reasonable guess is that every commutative Banach algebra which is an 

integral domain has a unique complete norm. In this direction, the following has been 

shown by Cusack ( [7]). 

2.9. THEOREM. Assume that there is an integral domain which is a Banach algebra 

with respect to each of two norms, which are not equivalent to each other. Then there 

is a commutative, topologically simple Banach algebra. 

(A Banach algebra A is topologically simple if dim A > 1 and if the only 

closed ideals in A are {0} and A . No commutative, topologically simple Banach 

algebra is known.) 

If the existence of topologically simple Banach algebras cannot be ruled out, 

maybe we should approach the uniqueness of norm problem by attacking these 

mythical beasts directly. Let me propose the following problem. 

2.10. QUESTION. Let A be a commutative algebra which is a topologically simple 

algebra with respect to each of two norms. Are the norms necessarily equivalent? 
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3. MINIMUM TOPOLOGIES 

I next explore a concept that is related to uniqueness of norm for Banach 

algebras. 

3.1. DEFINITION. Let (A,II·II) be a Banach algebra. Then A has a minimum 

topology if, for each algebra norm 111·111 on A , there is a constant K such that 

llall S Klllalll (a E A) . 

Clearly, if A has a minimum topology, then A has a unique complete norm. 

The fundamental result about these algebras is, of course, Kaplanskyls theorem 

of 1949 ([21]). The uniform norm on a space n is denoted by I· In, and C0(n,{) 

is the uniform algebra of all complex-valued, continuous functions on a locally 

compact space n vvhich vanish at infinity. 

3.2. THEOREM. Let n be a locally compact space, and let 111·111 be an algebra norm 

on C0(n,() . Then 

Thus C0(0,() has a minimum norm topology. 

I would like to draw your attention to a very old result of Eidelheit, which may 

even go back to Mazur before 1939. The formulation of the proof is taken from 

Bonsall ([4]) . In the next result, 11·11 denotes the operator norm in B(E) , the 

algebra of all bounded operators on a Banach space E . 

3.3. THEOREM. Let E be a Banach space, and let A be a subalgebra of B(E) 

containing the finite-rank operators. Suppose that 111·111 is an algebra norm on A . 

Then there exists a constant K S'ttch that IITII S KIIITIII (T E A) . 
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Proof. To obtain a contradiction, suppose that there is no such constant K . Then 

there exists (S ) c A with IllS Ill = 1 (n E IN) and such that liS II -1 oo as n -1 oo • n n n 

By the uniform boundedness theorem, there exists x0 E E\{0} with (11Snx011:n E IN) 

unbounded, and there exists a continuous linear functional A. on E with 

Define Tx = .A(x)x0 (x E E) . Then T is a rank-one operator, and so TEA. 

Now, for x E E, 

(TS T)(x) = (TS )(.A(x)x0) = .A(x)TS x0 n n n 

= .A(x).A(S x )x = z .A(x)x 
n 0 0 n 0 

= z Tx. 
n 

So TSn T = zn T and I zn I IIITIII :S IIITIII2 IIISnlll for n E IN . But IIITIII > 0 , and so 

I zn I :S IIITIII (n E IN) , a contradiction. 

Thus the result holds. 

3.4. COROLLARY. Let E be a Banach space, and let A be a closed subalgebra of 

B(E) containing the finite-rank operators. Then A has a minimum topology. 

That an arbitrary C*-algebra has a minimum topology is a result of Cleveland 

from 1963 ( [ 6]). Cleveland's proof uses the main boundedness theorem of Bade and 

Curtis; I give a different proof here. 

3.5. LEMMA. Let (A,II·ll) be a C*-algebra, let 1·1 be an algebra norm on A, and 

let B be the completion of (A,I ·I) . Then 

llall 2 :S I all a*l (a E A) (9) 

and An Q(B) = Q(A) . 
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Proo[ Take a EA. Then aa* IS self-adjoint, and so v A (aa*) = llaa*ll . Set 

n = O"(aa*)\{0}. Then f Hjf(aa*) I , C0(n,() -> IR, is an algebra norm. By 3.2, 

v A (aa*) :S I aa*l , and so 

llall 2 = llaa*ll :S I aa*l :S I all a*l , 

giving (9). 

Certainly Q(A) cAn Q(B) . Now take a E An Q(B) . By (9), we have 

llanll 2/n :S I anll/nl (a*)nll/n, and so v A (a)2 :S vB(a)vB(a*) = 0 . Thus a E Q(A) . 

3.6. THEOREM. Let (A ,11·11) be a C*-algebra, and let 111·111 be an algebra norm on 

A . Then there exists K > 0 such that llall :S Klllalll (a E A) . 

Proof. Let B be the completion of (A,IIHil , and let 6 be the separating space of 

the natural embedding of A in B , so that 6 is a closed ideal in B . Let 

1r :B __, B/6 be the quotient map. Then 1r (A ,11·11).., B/6 is a continuous map: take 

K to be the norm of this map, and set I al =IlK( a) II (a E A), so that I ·I is an 

algebra seminorm on A and I al :S Kllall and I al :S lllalll for all a E A . 

By (3) or (7), An 6 c Q(B) , and so, by 3.5, An 6 c Q(A) . Since An 6 is an 

ideal in A , A n 6 c rad A . But A is semisimple, and so A n 6 = { 0} . This shows 

that 1·1 is actually a norm on A, and so, by (9), llall 2 :s ~aU a*m (a E A) . Thus, 

for a E A, 

llall 2 :S Kl allla*ll = Kl alii all , 

and so II all :S Kl al :S Klllalll . 

4. ORDERED FIELDS 

Before introducing the next topic, it is necessary that I recall some standard 

background from the theory of ordered fields. 
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Let G be a group (always taken to be abelian and written additively, with 

identity 0), and let :S be a partial order on G. Then (G,:S) is an ordered group if 

:S is a total order and if x + z :S y + z whenever x,y,z E G and x :S y . For x E G , 

set lxl =xV (-x). 

Now let K be a real field (so that K is a field with prime field IR ) , and let :S 

be an order on K . Then (K,:S) is an ordered field if (K,+,:S) is an ordered group, 

if a;a ~ 0 in K whenever a; ~ 0 in IR and a ~ 0 in K , and if ab ~ 0 in K 

whenever a,b~O inK. Weset K+={aEK:a~O}. 

The real field K has identity 1 , and we identify IR with !Rl . Let a E K . 

Then a is an infinitesimal of K if n I a I < 1 (n E IN) , a is finite if there exists 

n E IN with I a I :S n , and a is infinitely large if I a I ~ n (n E IN) . We write K* 

and K# for the infinitesimals and for the finite. elements of K , respectively. Then 

K# is a unital subalgebra of K , and K* is its unique maximal ideal. 

The question that I wish to explore here is the following. 

4.1. QUESTION. Under what conditions on K is the algebra K* normable? 

Let us give an example of such a field K . Let n be a compact space, and let 

C(D) denote the real-valued, continuous functions on n. For f,g E C(D) , set 

f :S g if f(x) :S g(x) (x E D) . 

Then (C(D),:S) is a partially ordered set. For xED, set M = {f: f(x) = 0} and 
X 

Jx = {f: f = 0 on a neighbourhood of x} , so that Mx is a maximal ideal of C(D) , Jx 

is an ideal, and J c J = M . Let P be a prime ideal in C(D) . Then there exists a 
X X X 

unique point x E n with J c P c M ; the corresponding maximal ideal is termed 
X X 

MP. Now take f E P and g E C(D) with 0 :S lgl :S lfl . Set h(x) = g2(x)/f(x) 

when f(x) f. 0 and h(x) = 0 when f(x) = 0 . Then hE C(D) and g2 = fh in C(D) . 

So g2 E P , and g E P because P is prime. This shows that P is as an absolutely 

convex ideal in C(D) . 
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4.2. DEFINITION. Let n be a compact space, and let P be a prime ideal in 

C(n) . Then 

AP = C(D)/P, 

and 1rp :C(n)..., AP is the quotient map. Set a :::: 0 in AP if a= ?rp(f), where 

f :::: o in C(n) . 

It follows from the fact that P is an absolutely convex ideal in C(rt) that :::: 

is well-defined on AP . The key fact about this order on AP is that it is a total 

order. For let a E AP , say a= 1rp(f) , where f E C(D) . Then f = f+ + C , where 

t, C E C(n) , t 2:: 0 , C :::; 0 , and tC = 0 . Either t E P or C E P , and so either 

a :::: 0 or a 2:: 0 in AP . 

The quotient field of AP will be denoted KP . It is easy to see that the order 

:::: on AP induces an order :::: on KP , extending the order on AP , such that 

(KP ,::::) is an ordered field. Clearly KP * = Mp/P and KP # = C(fl)/P , and so a 

special case of the first question is the following. 

4.3. QUESTION. Under what conditions on P is the algebra Mp/P normable? 

Our interest in Question 4.3 arose because of its connection with the question 

of the existence of discontinuous homomorphisms from C(D,{) . (See [9], [12]). 

4.4. THEOREM. Let n be a compact space. Then the following conditions are 

equivalent: 

(a) there is a discontinuous homomorphism from C(n,O into some Banach 

algebra; 

(b) there is an algebra norm on C( 0,{) which is not equivalent to the 

uniform norm; 

(c) there is a non-maximal, prime ideal P in C(fl) such that 

KP * = Mp/P is normable. 
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However, Questions 4.1 and 4.3 also suggest the following question: for which 

ordered fields K is there a compact space n and a non-maximal, prime ideal P in 

C(D) such that K = KP (in the sense that K is isotonically isomorphic to KP)? I 

think that this is an interesting question. We shall return to it later. 

Let me now describe a yet more special example. For background on 

ultrafilters and Stone-Cech compactifications, see [18]. 

Let x; be an infinite cardinal, and let Zl be a free ultrafilter on x; . For 

f,g E IRx: , set 

f N g if { (} < "' : f(o-) = g( (})} E l1 . 

Then "' is an equivalence relation on !Rx; , and the set of equivalence classes is 

denoted by IRx; /ll : this is an ultrapower of IR . The equivalence class containing f is 

[f] . We define 

[fJ + [gJ = [f + gJ , a[~ = l o:fJ , lmgJ = (fgJ , 

and set 

[f] < (g] if {a< "': f(o-) < g(o-)} E lJ 
/), /), 

for f,g E IR /11 and o: E !R . It is standard (e.g., [9]) that (IR /ll, :::; ) is an ordered 

field. 

We recognise this ultrapower as a special case of the field KP as follows. Let 

/3K be the Stone-Cech compactification of the (discrete) space x; . Then (3r;, is the 

collection of ultrafilters on r;, , and a point p E /3K \ ;;; corresponds to the free 

ultrafilter lJ = {U n "': U is a neighbourhood of p in /3x:} . In this situation, f 00 (t;,) , 

the space of all bounded, real-valued sequences on K, is identified with C(/3x:) , and 

the ideal J p is a prime ideal in C(/3;;;) . Then we have 

[~"]*- ~ Z1 - J ' p 
[~I-£]# -C((3r;,) 
lJ - J . 

p 

Thus a third variant of our question is the following. 
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4.4. QUESTION. Under what conditions on /'i, and l1 is the algebra (fR/'i,/ll.)* 

normable? 

5. NECESSARY CONDITIONS AND SUFFICIENT CONDITIONS 

In this section I give necessary conditions and sufficient conditions on a field K 

for the algebra K* to be normable. First I recall the definition of the value group of 

a field. 

Let ( G , ~ ) be an ordered group, and let x,y E G . Then x ~ y if there exists 

n E IN such that IYI ~ nlxl , and x"' y if both x ~ y and y ~ x. Clearly "' is an 

equivalence relation on G . The quotient r = ( G \ { 0}) /"' is the value set of G , the 

elements of r are the archimedean classes of G , and the quotient map 

v:( G\ {0})..., r is the archimedean valuation. We note that v(x + y) :::: v(x) A v(y) 

(x,y E G), and v(-x) = v(x) (x E G); for convenience we set v(O) = oo. 

For x,y E G , set v(x) ~ v(y) if x ~ y . Then ~ is well-defined on r , and 

(r ,~ ) is a totally ordered set. 

Now let (K,~) be an ordered field, with value set r K. For a,b E K\{0}, set 

v(a) + v(b) = v(ab) . 

Then + is well-defined on r K , and it is easily checked that (r K'~) is an ordered 

group; it is the value group of K. We have K* ={a E K: v(a) > 0} and 

K# ={a E K: v(a) :::: 0} . 

Throughout we denote the cardinality of a set S by IS I . We shall refer to 

w , the first infinite ordinal, and to w1 , the first uncountable ordinal; we have 

~ 
I wl = ~0 and I w11 = ~ 1 . The cardinal of the continuum is c = 2 °. The Continuum 

Hypothesis ( CH) is the assertion that c = ~ 1 , and the Generalized Continuum 

~1 
Hypothesis ( GCH) implies also that 2 = ~2 • If we appeal to CH or GCH in a 

proof, this will be specifically stated. 

The following theorem is essentially contained in [12]. 
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5.1. THEOREM. Let K be an ordered field1 and suppose that K* is normable. 

Then I r K I :S c . 

Proof. Let 11-11 be an algebra norm on K*. Take a,b E K*\ {0} with v(a) > v(b) . 

Then there exists c E K*\{0} with a= be. We have 

llanll :S llbnll llcnll (n E IN) . 

Since c E K* = radK#, llcnll 1/n ---l 0 as n ---l oo, and so llcnll < 1 eventually. Thus 

llanll < llbnll eventually. 

Consider the map lj): a f-) (lla11 ll), K*--> IR!N. The above paragraph shows that, 

if 10( a) = lj)(b) , then v( a) = v(b) . Thus lj) induces an injection from f K into IRIN , 

and so I r K I :S IIRIN I = c . 

The following theorem, and other unacknowledged results in the remainder of 

this report, are taken from a paper of myself and W.H. Woodin ([10]). 

5.2. THEOREM. Let K be an ordered field such that IrK I = K, , where 1£ is an 

infinite cardinal. Then : 

(i) K does not contain any strictly increasing sequence of length ,_+ . ,., ' 

(ii) I K I ::; 2K . 

Proof. (i) Set ,\ = ;;, + (so that ,\ is the successor cardinal to 1£ ) • 

To obtain a contradiction, suppose that ( acr : 0' < ,\) is a strictly increasing 

sequence of length A in (K, :S) . 

We begin with two choices. First, for each s E , choose x > 0 in K with 
s 

v(x8 ) = s . Second, for each a > 0 in IR , choose q( a) E IR with q( a) E (~a, ~a) ; we 

have I a- q( a) I < ~( o:) . 

We shall now define a map Q) : ,\ --> r K x Q . For each 0' < ,.\ , consider the 

sequence ( v( a1 - acr) : (} < T < ,.\) . This is an increasing sequence of length A in 

r K , and so the sequence is eventually constant because IrK I < ,.\ ; thb constant 
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value is s0 , say. For each r such that v(a7 - a0 ) = scr , there exists ll7 cr E IR such 
' 

that 

The sequence ( a7 0 ) is an increasing sequence of length A in IR • Since A is a 
' 

regular cardinal ([22, 10.37]), and since A ~ ~1 , the sequence (a7 al is eventually 
' 

constant; this constant value is aa , say. Now define 

<ll:17H(scr,q(acr)), A~fKxQ. 

The cardinality of r K x Q is K , and so there is a cofinal subset of .\ such 

that <P takes a constant value, say (s,(3) , on this subset. Thus we may successively 

choose 171,172,173 < ), such that 173 > 172 > o-1 and such that 

v(acr - acr ) = v(acr - acr ) = v(acr - acr ) = s , 
2 1 3 1 3 2 

(acr - acr )/x E aa 1 + K* , (acr - acr )/x E aa 1 + K* , 
218 1 318 1 

(acr - acr )/x E llcr 1 + K*, q(a0 ) = q(acr) = (3. 
3 2 8 2 1 2 

Since aa1 E (i(3, ~(3) , it follows that 

I a - a - (Jx I < l(Jx 
0"2 (Jl s 3 s 

(10) 

and that 

1 I a~ - a~ - (3x I < -3(3x . 
v3 v1 S S 

(11) 

Since acr2 E (~(J, ~(3) , it follows that 

1 I acr - acr - f3x I < -3(3x3 . 
3 2 s 

(12) 

By (10) and (12), acr - acr > 13(3x , and, by (ll) acr - acr < 13(3x . This is the required 
3 2 s 3 2 s 

contradiction. 

(ii) This is now an immediate consequence of the standard Erdos-Rado 

theorem of infinite combinatorics (e.g.[22,VIII, (B.1)]). To obtain a contradiction, 

suppose that I K I ::: (2x;t , and let :5 be a well-ordering of K . Define a map 'P 

from the set of pairs of elements of K into { 0,1} by setting 
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{ 
0 if < and -< coincide on {a,b} , 

cp({a,b}) = 
1 other wise. 

Then the Erdos-Rado theorem asserts that K contains a homogeneous set S of 

cardinality ,/ : this means that cp is constant when restricted to pairs of elements of 

S . Thus K contains a set S with IS I = "'+ such that either S or -S is 

well-ordered by the original ordering ~ , and so K contains a strictly increasing 

sequence of length "'+ . This is a contradiction of (i). 

5.3. THEOREM. Let K be an ordered field such that K* is normable. Then : 

(i) I Kl ~ 2c; 

Proof. 

(ii) (GCH) IKI ~ ~2 . 

(i) By 5.1, 1r Kl ~ c, and so, by 5.2(ii), IKI ~ 2c. 

~ 
(ii) With GCH , c = ~1 and 2 1 = ~2 . 

Thus we have obtained a necessary condition on K for K* to be normable. 

Before turning to a sufficient condition, I wish to raise another open question. 

Let (S, ~) be a totally ordered set. The weight of S , w(S) , is the minimum 

cardinal of an order-dense subset of S . 

5.4. QUESTION. Let K be an ordered field such that K* is normable. Is 

w(K) = c? 

It does not follow from the fact that 1rK1 = c that w(K) = c (see [10]). If 

w(K) = c , then certainly this implies that I K I ~ 2c . 

The sufficient condition for the algebra K* to be normable is a consquence of 

a very deep theorem of Esterle ([14, 5.3(i)]). I will make further remarks about this 

theorem after 6.15 below. 
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5.5. THEOREM. (Esterle) Let K be an ordered field such that I K I = ~1 . Then K* 

is normable. 

It should be said that, as stated, the above theorem may be a little misleading: 

necessarily each real field has cardinality at least c , and so the hypotheses of the 

above theorem are vacuous unless CH holds. 

Let K be an ordered field, and assume that GCH holds. Then we know 

whether or not K* is normable in every case except where I K I = ~2 and 

IrK I = ~1 ; if I K I > ~2 or if I r K I > ~1 , then K is not normable, if I K I < ~2 , 

then K is normable, and the case where I r K I < ~1 and I K I = ~2 does not arise. 

However, it is not entirely obvious that the case where I K I = ~2 and 

IrK I = ~1 arises. In particular we ask whether or not it arises in the case where K 

has the form KP for some non-maximal, prime ideal P in some C(n) . 

6. AN EXAMPLE. 

In this section I shall give a construction of a field K of formal power series 

with I K I = ~2 and IrK I = ~1 (with GCH). First I require some standard notions 

about ordered sets. 

6.1. DEFINITION. Let (S, :S) be a totally ordered set. Then S is: 

(i) an a1-set if each non-empty subset of S has a countable coinitial and 

cofinal subset; 

(ii) a /Jcset if S = U Sv, where {S) is an increasing chain of 

a1-subsets; 

(iii) an TJ1-set if, for each pair {S1,S2} of countable subsets of S such that 

s1 < s2 whenever s1 E S1 and s2 E S2 , there exists s E S with 

s1 < s < s2 for all s1 E S1 and s2 E S2 ; 
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(iv) a semi-ry1-set if, for each strictly increasing sequence (sn) and each 

strictly decreasing sequence ( t ) in S such that s < t (n E IN) , n n n 

there eJdsts s E S with s < s < t (n E IN) . 
n n 

6.2. EXAMPLE. Let S be the set of all sequences o: = ( o:~ : r < w1) of length w1 

such that o:~ E {0,1} ( r < w1), and let Q be the set of elements a of S such that 

{ r < w1:a~ = 1} has a largest element. 

If a and j3 are distinct elements of S , then there exists a minimum ordinal 

u such that acr :f- !3cr : set a -< j3 if acr = 0 and !3cr = 1 , and set a 5 j3 if a-< j3 or if 

a = j3 . Then -< is a total order on S , called the lexicographic order. 

The set Q was introduced by Sierpinsld. Note that, for a= ( o:~) E Q , a~ = 0 

for all but countably many values of r , and so one may think of Q as the analogue 

of Q 11 one cardinal higher". The following result is proved in [18, Chapter 13]. 

6.3. PROPOSITION. The set (Q, ~) is a totally ordered fJcrJ1-set of 

cardinality c . 

6.4. DEFINITION. Let S be a totally ordered set. Then 

J'(IR,S) = {f E IRS: supp f is well ordered} , 

J'( diR,S) = { f E ~(IR,S) : supp f is countable} . 

Here, for f E IR5 , supp f = {s E S: f(s) :f- 0} . Since supp(f-g) c supp f U supp g 

(f,g E IRS) , J'(IR,S) and J'(l)(IR,S) are subgroups of IR8; indeed, they are real linear 

spaces, and hence divisible groups. For f E ~(IR,S) with f =f 0 , set v(f) = inf supp f , 

and set f > 0 if f(v(f)) > 0 in IR. Then (J'(IR,S),:S) is a totally ordered group, and 

f N g in J'(lR,S) if and only if v(f) = v(g) . Thus we can identify S as the value set of 

J(IR,S) and of J'( 1) (IR,S) , and v with the archimedean valuation on each of these 

groups. 
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6.5. DEFINITION. Let ( G,~) be a totally ordered group. Then G is : 

(i) an a1-group if (G,~) is an acset; 

(ii) a {31-group if G = U Gv, where {G) is an increasing chain of 

a 1-subgroups; 

(iii) an T)1-group if (G,~) is an TJ1-set. 

Part (i) of the following theorem is [1, 2.2] and part (ii) is [13, 2.3b]. 

6.6. PROPOSITION. Let S be a totally ordered set. 

(i) If S is an TJ1-set, then ~(IR,S) and ~(l)(IR,S) are both TJ1-groups. 

(ii) If S is a {31-set, then ~(l)(IR,S) is a {31-group. 

6.7. DEFINITION. Set G = ~( 1 )(1R,Q) . 

6.8. PROPOSITION. The set G is a totally ordered, divisible, {31-TJcgroup, and 

IGI =c. 

6.9. DEFINITION. Let G be a totally ordered group. For f,g E ~(IR,G) , set 

One checks that the sum in (13) is a finite sum, and then it is easy to verify 

that * is a commutative, associative product, that ~(IR,G) is a real algebra, and that 

~(l)(IR,G) is a subalgebra of ~(IR,G). 

The algebra ~(IR,G) is the formal power series algebra over G; it was 

introduced by Hahn in 1907 ([19]). See [17], for example. 

We write X8 for the characteristic function of { s} for s E G . Then 

X8 E ~(IR,G) and X8 * xt = xs+t (s,t E G) . One can think of a typical element of 

~ (IR,S) as having the form ~{a X8 : s E G}, where {a} c IR ; the formula for the 
s s 

product is consistent with this symbolism. 
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For example, J(IR,7l) is the set of Laurent series of the form 

00 

I a xn, where 
n 

n=n 
0 

n0 E 7l and (an) c 1R . This algebra is also denoted by IR( (X)) ; it is the quotient field 

of IR[[X]] , the algebra of formal power series in one indeterminate over IR . 

Part (i) of the following theorem is a slight extension of a classical result of 

Hahn ( [17, page 137]), and part (ii) is [1, 3.2]. A real field K is real- closed if its 

complexification K([=T) is algebraically closed. 

6.10. PROPOSITION. Let G be a totally ordered group. 

(i) J(IR,G) and J(l)(IR,G) are totally ordered real fields, with value 

gmups G. 

(ii) If G is a divisible group, then J(IR,G) and J(l)(IR,G) are real-closed 

fields. 

6.11. DEFINITION. Let (K,:s;) be an ordered field. Then K is : 

(i) an a:c field if (K,:s:) is an a 1-set; 

(ii) a !31-field if K = U Kv, where {K) is an increasing chain of 

acreal-subfields; 

(iii) a (semi)-'f/1-field if (K,:s:) is a (semi)-1]1-set. 

The following result is a small variation of results in [18]. For details, see 

[8,§ 3.5], which is available on request. 

6.12. PROPOSITION. Let n be a compact space, and let P be a non-maximal, 

prime ideal in C(n) . Then: 

(i) KP is a real-closed field; 

(ii) KP is a semi-rye field; 

(iii) KP is an r;1-field if and only if K/\ {0} does not contain a strictly 

decreasing, coinitial sequence. 
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In particular, each ultrapower 'J{K,/11 is a real-closed, 171-field. Thus, since we 

hope eventually to have examples of fields K of the form KP with ~K I = ~2 and 

IrK I = ~ 1 , we should restrict ourselves to real-closed, 171-fields. 

6.13. THEOREM. 

(i) 

(ii) 

~(l)(IR,G) is a totally ordered, real-closed, fJc111-jield of cardinality c. 

~1 
~(IR, G) is a totally ordered, 1·eal- closed, 711- field of cardinality 2 

Proof. All of this theorem follows easily from earlier results, save perhaps for the 

~1 ~1 
claim that I K I = 2 , where K = ~(IR,G) : we just prove that I K I ?: 2 

For u < w1 , {ja is the sequence in Q with 1 in the O"th position and 0 

elsewhere. Then (ocr : O" < w1) is a strictly decreasing sequence in Q . Now set 

/Ja = Xs - X5 ( fJ < w1) · 
1 <1+1 

Then S = {JJa : u < w1} is a strictly increasing sequence of length w1 in G . Each 

s ~o Nl 
f E IR5 belongs to K , and so I K I ?: IIR I = ( 2 ) = 2 

We have now obtained the example requested at the end of §5. 

6.14. EXAMPLE. Set K = ~(IR,G) = ~(IR, ~(l)(IR,Q)) . Then K is a totally ordered, 

Nl ~o 
real-closed, 11cfield with I K I = 2 and IrK I = 2 

Of course, with GCH , I K I = ~2 and IrK I = i-< 1 . 

Let me conclude this section by discussing the field ~(l)(IR,G) . A strengthened 

form of Theorem 5.5 holds; this important theorem was given by Esterle in [15], and a 

detailed proof is given in [8]. 
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6.15. THEOREM. 

(i) The set of infinitesimals in the field J(l)(!R,G) is normable. 

(ii) Let K be any real- closed, totally ordered, (31- field. Then there is an 

isotonic isomorphism from K into J(l)(IR,G) , and so K* is normable. 

To deduce Theorem 5.5 from this theorem, we proceed as follows. Let K be 

an ordered field with I K I = ~'\ . Then K has a real-closure : there is a real-closed, 

ordered field L and an isotonic embedding of K into L such that each element 

a E L is a root of some p E K[X] . Thus I L I = N1 . This implies fairly easily that L 

is a (31-field. By 6.15(ii) , L* is normable. The importance of Esterle's theorem 6.15 

is that it holds in the theory ZFC, whereas 5.5 is vacuous unless CH holds. 

The following well-known result is rather straightforward (it is essentially [9, 

1.13]). 

Let p E ,mi\IN . Then we set 

Ap = C((JIN)/Jp, 

and we write Kp for the quotient field of Ap. Thus Kp has the form 'Rw/li, where 

l1 is a free ultrafilter on w . 

6.16. PROPOSITION. Suppose that Ap is normable for some p E (31N\IN . Then there 

is a discontinuous homomorphism from C(n) into some Banach algebra for each 

infinite, compact space n . 

Thus, combining 6.15 and 6.16, we obtain the following result. 

6.17. THEOREM. Assume that there is a free ultrafilter l1 on w such that IRw/li is 

a (31- field. Then there is a discontinuous homomorphism from C( n) into some 

Banach algebra for each infinite, compact space ft . 
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With CH, IIRw/lll = ~1 for each ultrafilter ll on w, and so IRw/ll is a 

!31-field. Thus, with CH, there is discontinuous homomorphism from C(n) for each 

infinite, compact space n. But can we have IRw/ll as a t3cfield without CH being 

true? In this direction, we have a result of Dow ([111): if CH be false, then there 

exists a free ultrafilter ll on w such that IRw/ll is not a }11-field. Also, under the 

hypothesis MA + -.CH , there is no free ultrafilter ll on w such that IRw /ll is a 

}11-field ([9, Corollary 6.28]). (Here MA is Martin's Axiom: see [9, Chapter 5].) 

It is certainly not the case that it is a theorem of .ZFC that there is a 

discontinuous homomorphism from C(n) for each infinite compact space n . Indeed 

it is a theorem of Woodin from 1978 that there is a model of ZFC + MA (in which 

CH is necessarily false) such that every homomorphism from C(n) into a Banach 

algebra is automatically continuous for each compact space n . This theorem is the 

main result of the book [9]; the notion of a model of ZFC , and the interpretation of 

the existence of models in terms of the independence of certain results, is fully 

explained in that book. Thus we have known for 10 years that the existence of 

discontinuous homomorphisms from the algebras C(n) is independent of the theory 

ZFC. 

Nevertheless, it has been an important open question for some time whether or 

not CH is a necessary hypothesis for the existence of discontinuous homomorphisms 

from the algebras C(n) . I am grateful to Hugh Woodin for his permission to 

announce the following recent theorem of his at this meeting. 

6.18. THEOREM. (Woodin) There exists a model of ZFC in which: 

(i) CH is false; 

(ii) IRw/ll is a }11-field for some free ultrafilter ll on w; 

(iii) there is an isotonic isomorphism from IRw/ll into ~( 1 )(1R,G) . 

By combining Woodin's theorem 6.18 with Esterle's theorem 6.15, we obtain 

the following theorem. 
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6.19. THEOREM. There is a model of ZFC in which CH is false and in which 

there is a discontinuous homomorphism from C(n) into a Banach algebra for each 

infinite, compact space n . 

Thus the question of existence of discontinuous homomorphisms from the 

algebras C(U) is also independent of the theory ZFC + ·CH. Whether or not there 

is a model of ZFC + MA + ·CH in which these discontinuous homomorphisms exist 

is an interesting, and probably very deep, open problem; you will see that to find such 

homomorphisms would require quite new methods. 

7. EXPONENTIATION ON ORDERED FIELDS 

Let P be a non-maximal, prime ideal in an algebra C(U) . I said at the end of 

§5 that the question of the normability of the algebra KP * = Mp/P was resolved in 

every case save (with GCH) where I KP I = t{2 and IrK I = t{1 . In §6, I exhibited a 
p 

totally ordered, real-closed, 771-field K such that I K I = t{2 and IrK I = t{1 . 

However, we do not know that this field has the form KP for some P . In this 

section, I shall show that in fact the field K is not of the form KP : to do this, of 

course, we shall describe a property that all fields KP possess, but which K does not 

have. 

7.1. DEFINITION. Let K be an ordered field. A strong interval of K+ is a subset 

I of K+ such that 

(i) if a E I and b E K with 0 :::; b :::; a , then b E I ; 

(ii) if a E I , then 2a E I ; 

(iii) lEI. 

It follows that, if I is a strong interval in K+ , then K#+ c I , and that, if 

a, b E I, then a + b E I . 
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7.2. DEFINITION. Let K be an ordered field, and let I be a strong interval of 

K+ . Then an exponentiation on I is a map exp: I -1 K such that: 

(i) exp(a +b)= (expa)(exp b) (a,b E I); 

(ii) expO= 1, expl = el; 

(iii) exp a < exp b whenever a, b E I with a < b ; 

(iv) foreach cEK with c2:l,thereexists aEI with expa=c. 

It follows from (i)- (iii) that exp(al) = eal (a E IR), that 

exp(K#) c K#+\K* , and that exp(I\K#) c K#+\K# . The main effect of condition 

(iv) is to ensure that exp(I\K#) = K+\K# and that I :f K#+ . 

A function F on IR+ is locally Lipschitz if, for each k E IN , there exists a > 0 

such that 

is bounded. 

{ IF(s)-F(t)l: s,t E [O,k], s :f t] 
ls-t I a 

Now let n be a compact space, and let P be a non-maximal, prime ideal in 

C(n) . If f,g E C(n)+ with f-g E P and if F is locally Lipschitz, then 

Fof- Fog E P. For take n E IN and ME IR+ with IF(s)- F(t)l :S Mls-tll/n for 

s,t E f(n) u g(n) . Then 

I (Fof)(x) - (Fog)(x) In :S Mn I f(x) - g(x) I (x E n) ' 

and so IFof- Fogln :S Mnlf- gl in C(!l). Since P is absolutely convex, 

Fof- Fog E P . Thus, if F is locally Lipschitz, we can define F on AP + as follows: 

for a E AP +,take f E C(nt with 1rp(f) =a, and set F(a) = 7rp(Fof). Then F{a) 

is well defined. 

For example, take F(t) = et (t E IR+) . Then F is locally Lipschitz, and it is 

easily checked that the map a H F(a) = ea, AP + -1 AP , satisfies (i) - (iii) of Definition 

7.2. We now wish to extend the domain of F so that (iv) also holds. We fix a 

particular function G , namely 
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lexp [ -!] 
G(t) = 

0 (t = 0) 0 

Then G is locally Lipschitz, and so G(a) is defined for a E AP + . We set 

JG ={a E A/: G(a) = 0}, 

IG ={a E KP +\(0): a-1 ~ JG} U {0} 

= {b-1 : bE Kp+\JG} U {0}. 

(The prime ideal P is a z-ideal if f E P whenever f E C(fl) and 

:£1(0) = g-1(0) for some g E P. If P is a z-ideal, then JG = {0} and IG = K/, 

and this is the case to bear in mind. However, there are prime ideals in C(fl) which 

are not z-ideals.) 

It is easy to check that IG is a strong interval of K+ . 

7.3. DEFINITION. Let G and IG be as above. Set 

I claim that exp : a H exp a is an exponentiation on IG . 

Let me check a special case of 7.2(i). Tal(e a,b E IG \Ap + . We must verify 

that 

(14) 

Take f,g E C(nt with 1rp(f) = a-1 and 1rp(g) = b-1 , set X= :£1(0) U g-1(0), and 

set 
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1 
f(x)g(x} (x E !1\X) , 

f(x) + g(x) 
h(x) = 

0 (x E X) . 

Then hE C(n)+ 0 Set c = ?TP(h). Since (f + g)h = fg in C(fl), (a- 1 + b- 1)c = a-1b -l 

in AP,andso (a+b)c=l and c=(a+br1 . Since 

Goh = (Gaf)(Gog), and so (14) follows. 

Other cases of 7.2(i) , and 7.2(ii) and (iii) are trivial or are checked similarly. 

We finally verify that 7.2(iv) holds. Take c E KP with c ~ 1. If c E AP, 

then there exists a E AP with ea = c, and so we may suppose that c E KP +\Ap. Set 

b=c-1 EKP*+\{O}:werequire aEA/\Ja with G(a)=b.Take gEC(nt with 

1rp(g) = b ; we may suppose that I g I fl < 1 0 Let H : [0,1) -1IR+ be such that 

(GaH)(t) = t (t E [0,1)). Then Hag E C(fl): set a= ?TP(Hog). (We cannot say that 

a= H(b) in AP because H is not a locally Liptschitz function.) Then 

G(a) = 1rp( Go Hog) = ?TP(g) = b , as required. 

We have obtained the following result. 

7.4. THEOREM. Let n be a compact space, and let P be a non-maximal, prime 

ideal in C(fl) . Then there is an exponentiation on a strong interval of KP + . If P is 

a z-ideal, there is an exponentiation on K + itself. p 

On the other hand we have the following theorem. The proof appeals to the 

Continuum Hypothesis, but in fact the result holds as a theorem of ZFC ( [10]). 

7.5. THEOREM. It is not the case that there is an exponentiation on a strong interval 

of J(IR,G) . 
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Proof. (CH) Set K = J(IR,G). To obtain a contradiction, suppose that I is a strong 

interval of K+ and that exp : I -+ K is an exponentiation on I . Then there exists 

f0 E I\K#. Set y0 =- v(f0) and aP = v(y0), so that y0 E G+\{0} and a0 E Q. 
0 Take T < w1 such that a7 = 0 . 

We define a map + a H xo. , Q -1 G . For each p < w1 , fP is the sequence with 

{
1 ( 0" :::; T + p) , 

fp(u) = 
0 ( r + p < u < w1) . 

Then, for each p < w1 , fP E Q and a0 -< fP , and { fP : p < w1} is a well-ordered 

subset of Q. 

For a= ( a7 ) E Q , define x : Q-+ IR by setting 
0. 

xo.(fp) = aP for p < w1 , xo.((J) = 0 otherwise. 

Then supp x is a countable, well ordered subset of Q , and so x E G+ . The map 
0. 0. 

a H xo. , ( Q,~) -+ ( G,:::;) , is isotonic. Since y > 0 in G and v(xo.) ~ a0 = v(y0) , we 

have xo. < y0 in G for each a E Q . 

Now define t : a H xo.- y0 , Q-+ G . Then t is an isotonic map with 

t(Q) c G-\{0}. We identify Q with t(Q), and then we can regard J(IR,Q) as a 

subgroup of K. For each f E J(IR,Qt\{0}, we have v(f) > v(f0), and so f < f0 in 

K . By the definition of a strong interval, f E I , and so J(IR,Q)+ c I and 

J(IR,Q) n K# = {0} . 

Finally we define a map 

1/J: f H- v(expf) , J(IR,Q)+-+ G. 

I claim that 1/J is an injection. For take f,g E J(IR,Q)+ with f < g , say g = f + h , 

where hE I\K#. Since expg = (expf)(exph), we have 1/J(g) = 1/J(f) + 1/J(h) . Since 

exph E exp(I\K#) c K+\K#, v(exph) < 0 and 1/J(h) > 0 in G. Thus 1/J(f) < 1/J(g), 

and so 1/J is an injection. 

However Q contains a well-ordered subset of cardinality ~ 1 , and so 

~1 ~0 
I J(IR,Q) I 2: 2 , whereas I G I = 2 by 6.8. With CH (but not as a theorem of 

~1 ~0 
ZFC!) , 2 > 2 , and so we have reached a contradiction. 
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Thus, from 7.4 and 7.5 , we obtain the following result, proved in ZFC + CH, 

but true as a theorem of ZFC . 

7.6. THEOREM. The real-closed, T)1-field ;y(IR,G) is not of the form KP for any 

prime ideal P in an algebra C(O) . 

8. A SECOND EXAMPLE 

So far we have not found a field K of the form KP such that I K I = ~2 and 

IrK I = l\ . In this final section, I shall give an example of such a field which is an 

ultrapower, and so, in particular, is a field of the form KP. First we have a result 

which enables us to calculate some cardinalities. 

8.1. THEOREM. Let "' be a cardinal, let ?1 be a free ultrafilter on K. , and set 

K = IR"' /?1 . Then 

Proof. Certainly w(K) 2: IrK I . 

We show that w(K) :::; I Q"'/l!l by showing that QK'/ll is order-dense in K . 

Take [f], [g] E K with [f] < [g], and set S = {u < K.: f(cr) < g(u)}. Then S E ?1. 

For each (J E S, choose h(cr) E Q n (f(a), g((J)). Then hE QK./21 and [f] < [h] < [g] 

in K . Thus QK./U is order-dense in K . 

Finally we show that I I ::::: IrK I by giving an injection '¢ : Qh: /21---) r K . 

Let t : Q __, IN be a fixed injection, and let f0 be a fixed infinitely large element of K . 

For f E IRK , set 
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and set 1,b( [f]) = v K( [ 8~) , where v K is the archimedean valuation on K . Then 

¢( [f]) is well-defined on r K . Take [f], [g] E K with [f] ~ [g] , and set 

S = {O" < K: t(f(a-)) < t(g(O"))} and T ={a-< K: t(f/a)) > t (g(O"))}. Then S UTE l! 

because t is an injection, and so either S E l! or T E 11, say S E 11. For each O" E S , 

because l(f(a-)- g(O")) 2:1, and so [8f] > n[8g] for each n E IN. Thus ¢(f)< ¢(g), 

and ¢ is an injection, as required. 

8.2. DEFINITION. Let "' be a cardinal, and let l! be an ultrafilter on K . Then l! 

is uniform if IS I = K for each S E l! . 

Thus, if 11 is a uniform ultrafilter on w1 , the complement of every countable 

subset of w1 is in ll . The following proposition is a special case of a standard result. 

w 
8.3. PROPOSITION. Lei 11 be a uniform ultrafilter on w1 . Then IIR 1 /ZII 2: ~2 . 

Proof. To obtain a contradiction, suppose that { [f ~] : ~ < w1} is an enumeration of 

wl 
IR /Z!. For each ~ < w1 , {f71(~): 71 < 0 is a countable subset of fR, and so there 

exists f( ~) E fR with f( ~) ~ £71( ~) for each 'fJ < ~ . 

For each 'f/ < w1 , we have 

{ ~ < w1 : ~ < 'f/} c { ~ < w1 : f( ()f £17( ~)} , 

and the set on the left has a countable complement. Hence the set on the right 

belongs to l1, and so [f] ~ [fJ . Thus [~ ¢ {[fJ : 17 < w1} , the required contradiction. 
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w 
8.4. THEOREM. ( GCH) Let l1 be a uniform ultrafilter on w1 , and set K = IR 1 /ll. 

Then 

w ~ 
Proof. This follows from 8.1 and 8.3, noting that I K I :<::: IIR 1 1 = 2 1 = ~2 , with 

GCH. 

Thus we would achieve an ultrapower of the form we are considering if we 

w 
could show that there is a uniform ultrafilter lJ on w1 such that I Q 1 /lil = ~ 1 . 

It has been proved by Hugh Woodin that such an ultrafilter exists (using deep 

results that appear in the paper [16], and which in turn are based on earlier results of 

Woodin) but only under a certain "large cardinal'' axiom. A large cardinal axiom is a 

statement that a cardinal with certain properties exists; for example, analysts are 

familiar with the axiom that measurable cardinals exist (see [18, Chapter 12}). The 

large cardinal required for Woodin's theorem is a "huge" cardinal, although he allowed 

himself the remark that "a super-compact cardinal would probably suffice". These 

large cardinal axioms are known to be independent of the theory ZFC + GCH. Thus 

we finally obtain the following result. The theorem is in fact a "relative consistency" 

result, as before (see [9]). 

8.5. THEOREM. Assume that the theory 11 ZFC + GCH + 'there is a huge cardinal'" 

is consistent. Then the theory "ZFC + GCH + 'there is a uniform ultrafilter l1 on 

w1 such that 

w 
where K = fR 1 /l11 11 is also consistent. 

On the other hand, we also know that we cannot prove in ZFC + GCH that 

there is a uniform ultrafilter ll on w1 with the properties stated in the theorem: the 
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consistency of such a theory implies the consistency of a theory with some large 

cardinal axiom. 

Also, in this talk I have not given a construction in ZFC + GCH of a 

non-maximal, prime ideal P in an algebra C(n) such that I KP I = N2 , and 

IrK I = N1 . At the time of writing I do not have such a construction, but one will 
p 

probably emerge soon. 
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