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POWER-BOUNDED ELEMENTS IN A BANACH ALGEBRA 

AND A THEOREM OF GELFAND 

G.R. Allan 

L INTRODUCTION 

Most of the unattributed results in §§1-4 are joint work with T.J. Ransford; a fully 

detailed account, including results not given here, is in [2]. 

Let A be a (complex) unital Banach algebra and let x E A. We say that: 

(i) xis power-bounded (pb) if and only if there is K > 0 such that llxnll :S I< for 

all n 2: 0; 

(ii) x is doubly power-bounded ( dpb) if and only if x is invertible and there is 

J( > 0 such that llxn II :S I< for all n E Z. 

We remark that we may always renorm with an equivalent unital algebra norm so 

that J( = 1. 

From the spectral radius formula: if xis pb then Spx <;;; ~ = {z E C: lzl :S 1}; if 

x is dpb then Sp x <;;; T = {z E C: lzl = 1}. 

We shall give a very simple proof of the following result of Katznelson and Tzafriri 

[10]. 

THEOREM L (Katznelson & Tzafriri) Let A be a complex unital Banach algebra and 

let x E A be pb. Then llxn(l- x)ll-> 0 as n---+ oo if (and only if) (Spx) n T <;;; {1}. 

Remarkso (i) The if' is trivial. 

(ii) If ( Sp x) n T = 0, then xn ---+ 0, since TA ( x) < 1, so the only case of interest 

is that in which (Spx) n T = {1}. 
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(iii) In [10] the result is phrased in terms of operators; we have given an equivalent 

Banach-algebra statement since that is better suited to our method of proof. 

(iv) The special case of Theorem 1 in which Spx = {1} was already proved by 

J. Esterle [5, Theorem 9.1]. Our proof of the general case is much influenced by Esterle's 

proof. 

(v) Some other kinds of generalization of Theorem 1 are contained in [1] and [2). 

Our starting point is an early result of LM. Gelfand [6]. 

THEOREM 2. (Gelfand) With A as before let x E A be dpb and let Spx = {1}. Then 

x=l. 

Remark. Theorem 2 may be very easily deduced from Theorem 1, since if x E A 

with Spx = {1} and if [[xnl[ :5 K (n E Z), then for all n;?: 1, 

[[x- 111 = [[x-n.xn(.T- 1)[1 

:5 [[x-"[[.[[xn(x- 1)[1 

< - 1)11 __, 0 as n __, oo, 

by Theorem 1; hence x = 1. 

However, our purpose here is to give a direct proof of Theorem 2 and then show 

how to deduce Theorem 1 from Theorem 2. 

Proof. Vvrite x = 1 +r, so that Sp r = {0}. Set y =Log (1 +r) = 2:~1 ( -1)k-lrk jk, 

so we have Spy = and x = eY. We define F( z) = ezy ( z E C); then F is an entire 

A-valued function of exponential type. Since = 0, F has minimal exponential 

type: Le. for every E > 0, there is a constant C( E) > 0 such that 

IIF(z)[l :5 C(E)e<lzl (z E C). 
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For every n E Z, 

IIF(n)ll::; sup llxnll < oo, 
nEZ 

by the assumed double-power-boundedness of Xo This is already sufficient to prove 

that F is constant (by [4, (10.2.1)]). However, in the present case, we may use a more 

elementary argument since for every t E R 

IIF(t)IJ = lle([t]+{t})yll 

::; (sup llxnll) ( sup IIF(t)!l) < oo . 
nEZ o::;t::;l 

Thus F is bounded on Rand is therefore constant by a Phragmen-Lindelof argument 

In particular F(l) = F(O), Le. x = 1 and the proof is complete. 

Remark. In the above proof, we have freely applied to a holomorphic A-valued 

function, theorems proved classically for complex-functions. This is justified, of 

course, by the usual functional-analytic device of considering A o F for an arbitrary 

continuous linear functional A on A and using the Hahn-Banach theorem. 

2. DEDUCTION OF THEOREM 1 FROM THEOREM 2 

The most important point of this paper is the following lemma that relates power-

boundedness to double-power-boundedness. 

LEMMA. Let (A; 11·11) be a commutative, unital Banach algebra and let x E A be such 

that llxll = = 1. Then there is a commutative Banach algebra B = B(x) with 

norm II · liB and a unital homomorphism 1r : A ~, B such that: 

(ii) 1r( x) is invertible in B and 
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Proof. Remark first that \lxnll = r A(xn) = 1 for all n 2:: 1. Define a semi-norm p 

on A by setting p(y) = limn-oo jjxnyjj (yEA); since jjxn+lyjj :::;; jjxnyjj for all n, p 1s 

well-algebra semi-norm on alsop(l)=l andp(xy)=p(y) (yEA). 

Let N = p-1 (0); then N is an ideal and p is constant on each coset of N. Let 

B 0 = A/ N and let 1r0 : A --> B0 be the quotient homomorphism. There is then a 

well-defined unital algebra-norm ll·llo on Bo given by ll7ro(Y)IIo = p(y) (yEA). 

For all.;; E Bo we have llello = llc7ro(x)lio and so, settingS= {7ro(x)n: n 2:: 0}, Sis 

a multiplicative semi-group in B 0 consisting of non-zero-divisors. We may then form the 

algebra B 1 of all 'fractions' with denominators inS, 

Because of the property that llello = lle7ro(x)ilo (e E Bo), we may simply norm B1 

by setting lle/1r0 (x)nll 1 = llello (c E B 0 , n E z+). Then (B1 ; II · 11 1 ) is a unital 

normed algebra and the mapping e H> e/1 is an isometric embedding of B 0 -t B 1 ; we 

regard B 0 as a subalgebra of B 1 via this embedding. Then 1r0 (x) is a unit of B1 and 

and let 1r : A-t B be the composition of 1r0 :A-t B1 and the isometric embedding of 

B 1 in its completion B. Evidently (i) and (ii) are satisfied. 

Also, since n( x) is dpb in B we have Sp B( 1r( x)) ~ T; but also, since 1r is a unital 

homomorphism, SpB(n(x)) ~ SpAXo Thus SpB(7r(x)) ~(SpA X) n T and (iii) is proved. 

Remarks. Instead of the construction with fractions, we could (and, in (2], did) 

appeal to a more general extension result of Arens [3]. 

(ii) If SpA(x) ~ ,6.- which is certainly the case for the conditions of Theorem 1 

-it is easy to show that is already invertible just in the completion of (Bo; ll·llo), 

and we may take (B; ll·lls) to be that completion, without any extension by fractions. 



5 

P:roof of Theorem L In fact we may almost as easily deduce the following two-

variable version (see [10, Corollary 9]): Write D = {(.\, 

THEOREM 3. Let A be a commutative ·unital Banach algebra and let a, b E A. Suppose 

that boih a and b are Then 

- b)jj--+ 0 as n--+ oo 

if (and only if) SpA(a, b) n T 2 ~D. 

Remarks. (i) the 'only if' part is trivial- consider any character on A; 

(ii) to deduce Theorem 1 from Theorem 3 we just take a= x, b = 1 (clearly, 

in Theorem 1, we may suppose A commutative considering the closed subalgebra 

generated x.) 

Proof of Theorem 3. ·we may assume that SpA(a, b) n T 2 =/= 0, since otherwise 

r A (a b) < 1 so that -? 0 and the conclusion would follow 

Let x = ab; then x is and nT 2 

renorming, we may assume that llall = llbll = 1; in that case 1 = r(x) ~ llxll ~ 

llall·libll = 1, so also llxll = L 

VVe now form 1r : A -+ B = as in the above Lemma. If x is any character 

on B then X o 1r is a character on A, so that 

hypothesis. Thus 

il '1. -11. I B -~~ I! = IB 

b) n T 2 ~ D, by 

il -1 
II- ' 
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and similarly 117r(b)'7r(a)-1 il 8 = 1. Hence, by Gelfand's Theorem 2, 1r(a)1r(b)-1 = 1r(1) 

so 1r(a) = 1r(b), 1r(a- b)= 0 so ii(ab)n(a- b)ii -t 0 as n -t oo, by (i) of the Lemma. 

This completes the proof. 

3. POWER-DOMINATION 

In [2] we considered a generalization of the notion of power-boundedness for which 

the term power-domination was coined. 

Specifically, let p. = (p,( n)) n~o be a sequence of positive real numbers such that 

p,( n + 1) / p,( n) -t 1 as n -t oo. We say that the element x of a Banach algebra A is 

. power-dominated by p. if and only if llxnll ~ Cp,(n) (n 2:: 0), where C is a positive 

constant. We observe (see [2 (2.1)]) that x may be power-dominated by such a p. if and 

only if r A ( x) S 1. 

A very similar result to the Lemma of §2 may then be proved and, from Theorem 2 

we may then, for example, deduce: 

THEOREM 4. Let A, I' be as above, let x E A be power-dominated by I' and let 

(SpAx) n T ~ {1}. Then p,(n)-1 ilxn(1- x)ll-t 0 as n -too. 

For the details of this, and some more general results, in which SpAx may intersect 

Tin an arbitrary closed set, we refer to [2]. 

4. REMARKS ON HILLE'S EXTENSION OF GELFAND'S THEOREM 

In [8] (see also [9]), Hille gave the following extension of Theorem 2; it may be 

proved in just the way that we have given for Theorem 2. 
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THEOREM 5. (Hille) Let A be a unital Banach algebra and let x E A with Spx = {1}. 

Suppose that 

Then x = 1. 

Remark. The 'o( n) condition' may not be replaced by '0( n )'-consider x = ( ~ ~) 
in the algebra 1\!I2 (C). 

However, a straightforward attempt to extend the Katznelson-Tzafriri result in 

this way does not succeed. A number of rather strong counter-examples are given in 

§4 of [2]. We do not, however, know whether the additional restriction that Spx = {1} 

would save the situation; i.e. we ask: 

Question. Let A be a (commutative) unital Banach algebra and let x E A with 

Spx = {1}. Suppose that Jlxnll = o(n) as n--+ oo. Does it follows that x = 1? 

5. COMMUTATIVE RADICAL BANACH ALGEBRAS 

Let R be a commutative radical Banach algebra and let A = R+ be its unitization. 

We say that x E R is quasi-power-bounded ( qpb) if and only if 1 + x is pb in A. 

We collect some elementary properties in the following theorem. For x E R we write 

x 1 ::::: (1 + x)-1 - 1, the 'quasi~inverse' of x. 

THEOREM 6. Let R be a non-zero, commutative radical Banach algebra and let Q 

be its set of qpb elements. Then: 

(i) Q is convex and 0 E Q; 

(ii) if x, y E Q then x o y = x + y + xy E Q; 

(iii) if 0 -=j:. X E Q, then x 1 tj_ Q; 

(iv) Q does not include any neighbourhood of 0. 
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Proof. (i) Evidently 0 E Q, since 1 is trivially ph. Let x, y E Q and let a = 1 + x, 

b = 1 +y; then for some K > 0, iianJI:::; K, JlbnJI:::; K (n ~ 0). Let 0 < t < 1; then 

1 + (tx + (1- t)y) = ta + (1- t)b and for n ~ 1, 

ii(ta + (1- t)btii:::; t (~)tk(1- t)n-kiiakil·iibn-kii 
k=O 

:::;K2. 

Hence tx + (1- t)y E Q, so that Q is convex. 

(ii) If x, y E Q then (1 + x)(1 + y) = 1 + x + y + xy is ph, so that x + y + xy is 

qpb. 

(iii) Suppose that x, x' both belong to Q. 

Then (1 + x) and (1 + x)-1 are both ph, that is, 1 +xis dpb in A= R+· Since 

SpA(1 + x) = {1} it follows from Gelfand's theorem (Theorem 2) that 1 + x = 1, so 

x = x' = 0. 

(iv) Clearly, given e > 0 there exists S > 0 such that llxll < S implies Jlx'JI < e. 

Hence if Q contained a neighbourhood of 0 there would be some non-zero x E Q such 

that also x' E Q, contrary to (iii). This concludes the proof. 

We now consider some elementary consequences of Theorem 1; in fact we use only 

Esterle's special case of that result ([5, Theorem 9.1]). 

THEOREM 7. With the notation of Theorem 6, let 0-::/= x E Q. Then 

(i) x(1+x)n--+0 (n--+oo); 

(ii) x belongs to the closed linear span of { xk : k ~ 2} -so, in particular, x E Rx 

and x has finite closed descent; 

(iii) {1 - (1 + x )n : n ~ 1} is a bounded approximate identity for Rx; 

(iv) Rx = {y E R: y(1 + x)n--+ 0 (n--+ oo)}. 



9 

Proof. (i) Since 1 +xis pb and SpA(1 + x) = {1}, it follows from Theorem 1 that 

x(1 + x)n---+ 0. (ii), (iii) and (iv) now follow almost immediately. 

We shall now give some examples to show that both cases Q = (0) and Q -/= (0) 

may occur. 

Example 1. Some commutative radical Banach algebras with Q-/= (0). 

Let A( D.) be the usual disc algebra and let M = {f E A(ll) : f(1) = 0}; remark 

that M is a maximal ideal and is the dosed ideal generated by z -1, where 'z' denotes 

the co-ordinate function in A(ll). It is well known that, for real t > 0, the ideal, 

It = M exp (t(z + 1)/(z- 1)) , 

is a closed ideal of A(ll), that M is the only maximal ideal of A(ll), that contains It, 

and that It-/= M, since z- 1 rf. It. (See e.g. Hoffman [7].) 

Let Rt = M/It; then Rt is a non-zero commutative radical Banach algebra whose 

unitization is A(ll)/ft. Let 7rt : A(ll) ---+ (Rt)+ be the quotient map and set x = 

1rt(z- 1). Then x =f. 0 and 1 + x = 7rt(z), which is certainly pb, since z is pb in A(ll). 

Thus Rt contains a non-zero qpb element. 

Similar (but different) examples may be constructed by starting with A+ (T) in 

place of A( D.) and quotienting out the closure of the ideal 

lt = A+(T)(z- 1)2 exp (t(z + 1)/(z- 1)) . 

To give a class of algebras having no (non-zero) qpb elements we recall that a (com­

muta1cive) radical Banach algebra R is called uniformly radical if and only if [[xn [[ 1 /n --+ 0 

uniformly on the unit ball of R. For example the convolution algebra C* [0, 1] of all con­

tinuous complex-valued functions on [0, 1] with uniform norm, but convolution product, 
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is easily seen to be uniformly radical. By contrast, L 1 [0, 1] is not uniformly radical, as 

follows from the following simple result. 

LEMMA 8. Let R be a commutative, uniformly radical Banach algebra. Then no 

non-zero closed subalgebra of R has a bounded approximate identity. 

Proof. Since, evidently, any closed subalgebra of R is itself uniformly radical, it 

suffices to prove that R has no bounded approximate identity (for R '# (0)). 

Suppose that (e>.)>.EA is a b.a.i. for R, lle>-11 ::; K (>. E A). Then it is a simple 

exercise to see that, for given n ~ 1, the net (e~)>.EA is also a b.a.i., lie~ II::; Kn. Choose 

x E R, llxll = 1 (since R '# (0)). Let n be given; then we may choose >. E A such 

that llxe~- xll ::; t· Hence lie~ II ~ llxe~ll ~ llxll- t = t. But then IIK-1 e>.ll ::; 1 and 

IICK-1e>.)nll 1/n ~ (2K)-1 • Hence, for every n ~ 1, 

sup llxnlll/n ~ (2K)-1 ' 
llxll9 

so that R is not uniformly radical - a contradiction. 

Example 2. If R is any commutative, uniformly radical Banach algebra- for example 

R = C*[O, 1]- then R has no non-zero qpb element. 

For if x E R is qpb then, by Theorem 7(iii), Rx has a bounded approximate 

identity; so by Lemma 8, Rx = (0)- sox= 0 (since x E Rx). 

Our basic problem now is to discover which commutative radical Banach algebras 

contain non-zero qpb elements. (By Theorem 6, if 0 '# x E Q then at least [0, x] ~ Q, so 

that Q is uncountable- and in fact also x 2 +2x, x3 +3x2 +3x, ... belong to Q as well.) 

For example we may ask (with R a non-zero commutative radical Banach algebra): 

1. If R has a b.a.i., does R have some non-zero qpb element? 
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2. Do the algebras L1 [0,1], M*(0,1], L1(R+,w) (with w a radical weight) have 

any non-zero qpb elements. If so, then what are they? 

We mention a few more oddments which help to restrict the search! 

PROPOSITION 9. (i) In any R, if x is a proper nilpotent, then x is not qpb. 

(ii) IfO "If in L 1 (0,1] or in L 1(R+w) and iff is qpb then f can not be a.e. 

non-negative on [0, 8], for any 8 > 0; in particular a(f) = inf(suppf) = 0. 

(iii) If w is a radical weight on z+, then the unique maximal ideal£~ ( w) of £1 ( w) 

has no non-zero qpb element 

Proof. (i) Let 0 "I x E R and suppose that xk+1 = 0, xk # 0 for some k ~ 1. Then 

for n > 2k we have ( ~) < c.: 1 ), (r = 0, ... , k- 1). Now, for n > 2k, 

[j(l + x)n[j = 11[[ ~ (~)xrll 

~ (~) [[xkjj-~ (~) [[xr[j 

~ (k: 1) { ( n- ~ + 1) [[xkjj-~ [jxrjj} 

-+oo asn-+oo. 

Hence (1 + x) is not pb, so x is not qpb. 

(ii) Suppose firstly that 0 # f E L 1 (0, 1] with f(t) ~ 0 on [0,1].Then jj(1+ f)n II ~ 

1 + n ] 0
1 f(t) dt for all n ~ 1, so that f is not qpb. 

The remainder of (ii) is proved by observing that if qpb f (in either £1 (0, 1] or 

L1 (R+,w)) is a.e. non-negative on some [0,8], then by quotienting out the ideal of 

functions vanishing on [0, 8], we obtain an element of L 1 [0, 6] ~ L 1 [0, 1] that is both a.e. 

non-negative and also qpb (since, clearly, the continuous homomorphic image of a qpb 

element is qpb ). But this is then reduced to the case already proved. 
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(iii) Exercise! 

Added in proof. In discussion with J. Esterle, it has been remarked that Theorem 

6(iv) may be improved to give that 0 is an extreme point of Q (using a well-known 

result of Bohnenblust and Karlin). 
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