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Our aim here is to describe some recent results and conjectures concerning the 

equations of prescribed m-th mean curvature 

(1) H [u] = g(x) 
m 

on domains n c !Rn . Here H [u] is defined by 
m 

(2) H [u] = S (x;1, ... ,x; ) 
m m n 

for any integer m such that 1 ~ m~ n, where x;1, ... ,x;n are the principal curvatures, 

relative to the upward normal, of the graph of the function u . The left hand side of 

( 1) is therefore a function of Du and D2u , so ( 1) is a nonlinear second order 

equation. The cases m = 1 , m = 2 and m = n correspond to the mean, scalar and 

Gauss curvatures respectively. The mean and Gauss curvature equations have been 

studied intensively and are quite well understood. The remaining cases are not as well 

understood, but results for the extreme cases m = 1 and m = n give some indication 

of what one may expect in the general case. 

Except for the case m = 1 , equation (1) is not elliptic on all functions 

u E C2(n) . However, Caffarelli, Nirenberg and Spruck [3], [4] and Ivochkina [9] have 

shown that (1) is elliptic for functions u E C2(n) such that at each point of n the 

vector of principal curvatures of the graph of u belongs to the convex cone r = rn 
m m 

which is the component containing the positive cone r = {..\ E IRn: ..\. > 0 If i} of the + l 

set in IRn on which S is positive. For such solutions to exist we must obviously 
m 

assume that g is positive in n . We shall call such u admissible. If the vector of 
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principal curvatures of the graph of u belongs to r 'then (1) is degenerate elliptic, 
m 

and for such u to exist we must assume that g is nonnegative. Analogously, we 

shall say that a C2 domain n c IRn is m-admissible for some integer m with 

0:::; m:::; n- 1 if at each point of 00 the vector 0\, ... ,kn-l) of principal curvatures 

of 00 relative to the inner normal belongs to the cone rn-l . We define 
m 

r~-1 = IRn-1 . 

It is shown in [3], [9] that 

(3) r = r c r J. c .... c r 1 + n n-
{.A E !Rn: :E.A. > 0} . 

1 

Alternative characterizations of the cones r are also known (see [9], [13]), but we 
m 

shall not be concerned with these. It is also known that S l/m is concave on r 
m m 

(see [3], [9]). Consequently H [u]l/m is a concave function of D2u if u is 
rn 

admissible, and as a result of the well known global second derivative Holder estimates 

for fully nonlinear uniformly elliptic equations proved in [6], [14], the solvability of the 

Dirichlet problem 

H [u] = g(x) in n , 
rn 

(4) 

u = rp on &n 

is reduced to the derivation of a priori estimates for admissible solutions of ( 4) and 

their first and second derivatives on fi . In the mean curvature case the necessary 

solution and global gradient estimates were found by Serrin [22], Bakel'man [1] and 

Giaquinta [5]. A number of mathematicians also derived interior gradient bounds, 

leading to the solvability of the Dirichlet problem with less regular boundary data (see 

[6]). In the Gauss curvature case one cannot generally solve the Dirichlet problem 

directly, for reasons which we shall mention later, so one needs to first solve suitable 

approximating Mange-Ampere equations. Many authors contributed to various 

aspects of this procedure (see for example [2], [8], [18], [19], [27]), with results 

specifically for the equation of prescribed Gauss curvature being obtained by Lions 

[18], Ivochkina [8] and Trudinger and Urbas [27]. 
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In the last few years progress has been made on the Dirichlet problem (4) for 

the intermediate cases as well. Caffarelli, Nirenberg and Spruck [4] and Ivochkina 

[10], [11] independently solved the Dirichlet problem ( 4) on sufficiently smooth, 

uniformly convex domains with constant boundary data. More recently there have 

been two important developments pertaining to the Dirichlet problem ( 4). The first of 

these is the derivation by Ivochkina [12] of global second derivative bounds for 

admissible solutions of (4) in the case 1 < m < n, g E d'1(0) is positive, 

cp E C3>1(0) and an E d1>1 is In-admissible. Some curvature condition is of course 

necessary for the solvability of the Dirichlet problem (4) for arbitrary smooth 

boundary data. 

The second important contribution was made by Trudinger [23], [24], [25], [26] 

who established precise necessary conditions on the function g for the existence of an 

admissible solution of (1), and in addition, obtained a priori estimates for u and Du 

on 0 for admissible solutions of the Dirichlet problem (4), as well as for solutions of 

more general curvature equations. Coupled with a suitable regularization procedure 

this led to a proof of the existence and uniqueness of Lipschitz continuous generalized 

solutions (in a sense to be explained below) of the Dirichlet problem under natural 

geometrical restrictions on the domain and under relatively weak regularity 

hypotheses on the data. Ivochkina [11] also proved solution and gradient estimates for 

admissible solutions of ( 4), but her hypotheses are stronger than those of Trudinger 

[24], [26]. The combination of the results of Trudinger and Ivochkina in the case 

m < n, and those of Trudinger and Urbas [27] in the case m = n , leads to the 

following existence theorem for classical solutions of the Dirichlet problem ( 4). 

THEOREM L a) Assume l :::; m < n and let n be a C3•1 bounded domain in IRn 

with In-admissible boundary .. Let g E c1•1(0) be positive on n and assume that the 

conditions are satisfied: 

(i) There is a constant x > 0 such that for every set E c n with C2 

(rn-1)-·admissible boundary BE we have 
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(5) JEg ~ !.=.x.J H (8E] 
m 8E m-1 

where Hm_1 [ 8E] denotes the m-1 curvature of 8E (we take H0 = 1) . 

(ii) At any point of an we have 

(6) S (k1, ... ,k 1 ,0) ~ g 
m n-

where k1, ... ,kn_1 are the principal curvatures of an relative to the inner normal. 

Then for any <p E c3•1(fi) the Dirichlet problem (4) has a unique admissible solution 

u E c2(fi). 

b) If m = n, n is a d•1 uniformly convex domain in IRn, g E d•1(n) n c0•1(fi) 

is positive in n and conditions i) and ii) are satisfied, then for any <p E d•1(fi) the 

Dirichlet problem (4) has a unique admissible solution u E C2(n) n C0•1(fi) . 

In the mean curvature case it suffices to assume the weaker regularity 

hypotheses an , <p E C2•a for some a > 0 and g E C0•1(fi) (see (6], Theorem 16.10). 

The Gauss curvature case is somewhat anomalous, and we shall explain the reasons for 

this shortly. 

Condition (i) is used to prove an a priori bound for the solution u. In fact, 

the results of Trudinger (24], (26] show that the condition 

(7) 

for any set E c n with C2 (m-1)-admissible boundary 8E, with strict inequality 

unless E = n , is necessary for the existence of an admissible solution u E C2(n) of 

(1) on a bounded domain n c IRn , while the stronger condition (i) is necessary for the 

existence of an admissible solution u E C2(n) n C0•1(fi) . This is proved explicitly in 

the case u = 0 on an in (24], while the general case follows from this and the 
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existence results of [25]. In the mean curvature case condition (i) reduces to the well 

known condition (see [5]) 

(8) r g < (1-x)ln-l(8E) 
JE 

for any set E c n with 8E E C2 , where ln-l is the n-1 dimensional Hausdorff 

measure, while in the Gauss curvature case it reduces to the simple inequality 

(9) I g :s (1-x)w , n n 

where w is the measure of the unit ball in IRn . 
n 

Condition (ii) is used to prove a boundary gradient estimate. In the case m=l 

it reduces to the well known condition of Serrin [22] and Bakel'man [1]. In the Gauss 

curvature case it reduces to the condition 

(10) g = 0 on an 

Vvhich makes the equation degenerate on an . This condition is necessary if we wish 

to solve the Dirichlet problem for arbitrary smooth boundary data (see [27], [30]). 

Ivochkina [8] has shown that if II'PII 2 _ and 
c (n) 

g are small enough, barriers may 

be constructed in the Gauss curvature case without assuming ( 10 ). If g is positive on 

sl and oft, \0 E , we then obtain a solution u E C2(fi) . In general, however, the 

degeneracy condition (10) precludes us from obtaining global d,l or higher estimates 

in the Gauss curvature case, and for this reason the regularity hypotheses on the 

boundary data may be weakened to ::~n E Cl,l 
UH, \0 in this case. If 

1/n - cl l(n\ d g t ' H, an cp = 0, we have u E (see [27]), but in general this degree 

of global regularity is not known for nonconstant boundary data, even under stronger 

regularity hypotheses. However, some recent work of Krylov [15], where he establishes 

the analogous assertions for equations involving symmetric functions of the eigenvalues 

of the Hessian of u , suggests that this will be the case. 
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As mentioned above, Trudinger [25] has proved the existence of Lipschitz 

continuous generalized solutions of (4) under the conditions of Theorem 1, but with 

the weaker regularity hypotheses 8n E C2 , g E C0' 1(fi) and t.p E ci,l or even 

cp E C0 , in which case the solutions are only locally Lipschitz continuous. 

Nonnegative g with gl/m E C0' 1(i1) are also permitted. It is of some interest 

therefore to know whether these solutions are smooth in the interior of n if 

g E cl>1(n) is positive. Before addressing this question, let us recall the definition of 

a generalized solution of (1) in the sense of [25]. 

Definition. A function u E C0(n) is said to be a generalized or viscosity subsolution 

(supersolution) of (1) if for any admissible function cp E C2(n) and any local 

maximum (minimum) x0 E n of u - t.p we have 

u is said to be a generalized or viscosity solution if it is both a generalized or 

viscosity subsolution and supersolution. 

This definition is the one used in [32] and it differs slightly from the one of [25] 

in that in the subsolution case, all cp E C2(n) are allowed as comparison functions in 

[25]. However the two notions are equivalent, at least for positive g. Perhaps the 

most important point to observe is that any c2 admissible solution is a generalized 

solution, and conversely, any generalized solution of (1) which is of class C2 is 

admissible (see [25], [32]). Thus the notion of ellipticity is implicit in the definition. 

It is also not difficult to verify that this notion of generalized solution is stable with 

respect to uniform convergence. Furthermore, Trudinger [25] has proved comparison 

principles which imply the uniqueness of generalized solutions of ( 4) if g is positive. 

Let us now return to the question of regularity for generalized solutions. We 

have recently proved the following negative result (see [32]). 

THEOREM 2. For any integers m , n such that 3 ~ m ~ n and any positive 
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function g E C00("B1) , where B1 is the open unit ball in IRn, there exist an c > 0 and 

a generalized solution u E C0' 1(B ) of ( 1) such that u does not belong to d,a:(B ) 
f f 

for any a: > 1 -2/m. 

The proof of Theorem 2 uses a result of Pogorelov [19], which asserts that for 

m ?: 3 the function 

(11) 

is a convex generalized solution of the equation 

(12) 

in a small ball Bm c IRm , where /3 = 2-2/m. Evidently w E d,l-2/m(Bm ) . If we 
"o Eo 

now set v = A w for a large positive constant A , and extend v to be constant in the 

coordinate directions, we see that 

H [v] ?: g in B 
m f 

in the generalized sense for sufficiently small f. > 0 . Furthermore, the function 

solves 

in the generalized sense, and 

[. 
m 2]. 1-1/m 

= 2A L x 
k=2 k 

in B 
t 

with equality on 

E B f : x2 = """ = xm = 0} . By a suitable approximation argument we may nmv find 

a generalized solution u E C0'1(B ) of 
£ 

u v on oB 
0 £ 
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and by the comparison principle for generalized solutions we have 

Since equality holds on {x E B : x2 = ... = x = 0} , it follows that u cannot be of 
f m 

class cl,a(Bf) for any a> 1-2/m. 

In [32] we have also proved similar assertions for equations of the form 

(13) F (D2u) = g(x,u,Du) , 
m 

where F (D2u) is the m-th elementary symmetric function of the eigenvalues of 
m 

It should be noted that the technique of Theorem 2 can be used to construct 

singular solutions of (1) whenever we can find convex functions u1 and u2 on some 

ball Bm c IRm such that 
f 

in B~ in the generalized sense, and u1 2': u2 in B~ with equality holding on a 

nonempty set E c Bm on which 
( 

and u2 fail to be of class d,l . Thus, for 

example, it is clear that we may construct generalized solutions of ( 1) for m 2': 3 

which are at best of class cl;l/S . We simply observe, by setting m = 3 in (11), that 

is a convex generalized solution of an equation 

in B3 c 1R3 for t:0 > 0 small enough. Letting 
Eo 
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we see that w solves 

in Bm in the generalized sense. We now proceed as before, with w replaced by w 
fo 

- - 2 ' 2 2/3 l ~ 2 and v0 by v0(x)- 2A(x2 + x3) + 2 i xk. 
k=4 

lN e also note that we cannot obtain singular solutions of ( 1) in the case m = 2 

using the technique of Theorem 2, because any generalized solution of 

(14) g(x,u,Du) 

in a domain n c rR2 is of class c 2,a: if g is positive and of class co,a: for some 

a: E (0,1) (see Sabitov [20] and Schulz [21]). 

Theorems 1 and 2 naturally lead us to ask a number of questions. First, how 

regular must a generalized solution of (1) be on oft in order that u have classical 

regularity in the interior of n , assuming g is positive and sufficiently smooth, say 

g E d-'1(rt) ? Second, what kind of interior regularity results can one obtain without 

assuming any regularity of the solution on oft ? Third, do there exist singular 

solutions in the scalar curvature case? These questions are primarily of interest for 

the cases m :::: 2 , because it is known that in the mean curvature case we have 

classical interior regularity if g E C0' 1(ft) , regardless of the behaviour of u on aft . 

At present we do not have complete answers to these questions, but the Gauss 

curvature case is reasonably well understood. We have the following interior 

regularity theorem in the case m = n (see [31]). 

THEOREM 3. Suppose n is a bounded convex domain in IRn and u E C0(fi) is a 

generalized solution of 

(15) H [u] 
n g(x) in n ' 
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where g E ci•1(f!) is a positive function. If an a~d ulan are of class Cl,a for 

some a > 1-2/n, then U E C2(f!) , and for any n' C C f! we have an estimate 

(16) 

where C depends only on n, a, n, n' , sup I u I , llull 1 a , g and its first and 
n c • (an) 

second derivatives, and the modulus of continuity of u on an . 

Theorem 3 is in fact valid for general Monge-Ampere equations of the form 

(14) with positive g E cl•1(n x IR x IRn) . Furthermore, we do not need to assume 

an, Ulan E ci•a for some a> 1-2/n; any modulus of continuity better than 

c1•1- 2/n suffices. 

Comparing Theorems 1 and 2 it is tempting to make the following conjecture. 

CONJECTURE 1. Let u E C0(ri) be a generalized solution of (1) on a bounded 

domain n C IRn, possibly with an (m-1)-admissible, and assume that g E C1•1(n) is 

positive. If an and ulan are of class ci•a for some a> 1-2/m, then u E C2(n) 

and for any W c c n there is an estimate of the form (16). 

Theorem 3 evidently implies that we cannot construct singular solutions u of 

(1) with ulan of class cl•a for some a > 1-2/m by the method used to prove 

Theorem 2. Of course, this does not exclude the possibility that singularities may 

arise in some other way, but we do not believe that this will be the case. 

The important point in proving the above conjecture is the derivation of an 

estimate such as (16) for smooth solutions; higher estimates then follow from known 

results for uniformly elliptic equations (see [6], [14]), and the result for generalized 

solutions follows by an approximation argument. The interior gradient bounds of 

Korevaar [13], or more precisely, their generalizations proved in [25], imply that 



237 

generalized solutions of (1), with g nonnegative and gl/m E C0' 1(n) , are locally 

Lipschitz continuous. It is not known in general whether any higher regularity holds 

for example if g E d'1(n) is positive. 

We now move on to the question of interior regularity without any hypotheses 

on u 1 . We have recently p.coved the following interior regularity theorem for the 
,an 

equation of prescribed Gauss curvature (see [33]). Recall that the necessary condition 

in this case takes the form 

(17) 

THEOREM 4. Let u be a 

that n0 == {x En: 

that if 

(18) 

then u E and we have 

(19) 

r g < 
J . n 

> B} f- 0 , there is a number 8 = 

- /j , 

> 0 such 

on n, g and fJ • FuTthe?'more 

(20) lim o = 0 . 
640 + 

for any 15 > 0 Uwre is a number I)= B(n,n,g,8) > 0 such that if 

f- 0 , and (19) hoids with C depending only on 

n, g and 15 . Fur·therrnore 

(21) lim 0 0 . 

5-->0+ 
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In (33] we also showed that Theorem 4 cannot be qualitatively improved in the 

sense that if (9) holds for some X > 0 , then there may be singularities near 80. . 

In view of Theorem 4 we make the following conjecture. 

CONJECTURE 2. Let n be a C2 bounded domain in IRn , possibly with 

00 (m-1)-admissible, and let g E d•1(fi) be a positive function such that (7) holds for 

any set E c n with C2 (m-1)-admissible boundary, with strict inequality if E f. n 
and equality if E = n . Then for any W c c n there exist two positive numbers i 

and M such that if u is a generalized solution of (1) on ni, we have 

(22) 

The estimate (22) has been proved by Giusti (7] in the case m = 1 . In fact, 

Giusti proves an estimate for , I Du I rather than I D2u I , but ( 22) then follows by 

virtue of elliptic regularity theory [6], Lemma 17.16, since in this case the equation is 

uniformly elliptic once the gradient is bounded. Of course, for the case m = 1 this 

result is not so interesting as far as regularity theory is concerned. Nevertheless, it 

provides a reason for believing that analogous results are true for the other cases. 

Let us now make some remarks about the case m = 2 . If m = n = 2 , we are 

dealing with the two dimensional prescribed Gauss curvature equation 

in n c IR2 which, as we have already observed, has no singular solutions if g is 

positive and of class Co,a for some a > 0 . We have also observed that the 

technique of Theorem 2 cannot be used to construct singular solutions of (1) if 

2 = m < n . This leads us to make the following conjecture. 

CONJECTURE 3. If u is a bounded generalized solution of (1) in the case 

2 = m < n and g E d•1(n) is positive, then u E C2(n) , and for any W c c n there 

is an estimate of the form (16). 
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Most of the previous results have been concerned with the interior regularity of 

generalized solutions of ( 1). We would like to conclude by mentioning a recent result 

concerning the boundary regularity of solutions of the equation of prescribed Gauss 

curvature (see [34] ). 

THEOREM 5. Let n be a bounded domain in IRn with a relatively open, connected, 

uniformly convex, C2' 1 portion f = 8f1, n BR(O) , where 0 E 8!l. Suppose that 
0 

u E C2( n) is a convex solution of the equation of prescribed Gauss curvature ( 15) 

where g E C 1' 1(fi) satisfies 

(23) 

and 

for some positive constants tt0 , and tt2 , and assume that 

(25) iDul = oo on r . 

Then there is a number p > 0 , depending only on n , R0 , r , 110 , 111 , and 112 , such 

that the following ar·e true: 

lu(x)- u(y) I ::5 C lx-yi 1/ 2 
1 

where C1 depends only on n , R0 , r , tt0 , tt1 , and 

(ii) graph u 1-- is a C2' 01 hype·rsurface for any 01 E (0,1) and the unit normal 
.rtnBP 

vector field to graph u , v = (Du ' -l) , satisfies 

~ 1+ I Du 1 2 

(27) < c 
2 
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where C2 depends only on n , R0 , r, J.Lo , J.L1 , J.L2 and a • 

(iii) uj- is of class d,a for any a E (0,1) and we have 
rnBP 

(28) 

where C3 depends only on n , R0 , r , J.Lo , J.L1 , J.L2 , a and in£ u . 
n 

If r and g are more regular, then we get correspondingly better regularity 

assertions in (ii) and (iii). 

The boundary condition (25) may seem unusual, but in fact it arises quite 

naturally if we attempt to solve the Dirichlet problem for (15) assuming condition (9) 

but not condition (10). In this case it is not generally possible to satisfy the Dirichlet 

boundary condition everywhere on an (see [27], [30]), but as shown in [29], there is a 

convex solution u which satisfies it in a certain optimal sense. At points at which it 

is not satisfied in the classical sense, we have I Du I = oo , provided g E L n( n) . 

The boundary condition (25) also arises in the extremal case 

(29) I g = w . n n 

In this case it is shown in [28], [30] that if n is a uniformly convex domain, then 

there is a generalized solution u of (15) which is unique up to additive constants. 

Furthermore, if g E C2( n) n L n( n) is positive, then I Du I = 00 everywhere on an 
and u E C2(fl) . 

Similar phenomena occur for the prescribed mean curvature equation when 

either of conditions i) or ii) of Theorem 1 is not satisfied (see [5], [7]), and in fact, 

boundary regularity results for the mean curvature equation which are completely 

analogous to Theorem 5 have been proved by Lin [16], [17]. We expect that similar 

assertions will prove to be true for the other curvature equations. 
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