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MONOTONE OPERATORS AND OBSTACLE PROBLEMS 

J.H. Michael 

L INTRODUCTION 

Let Q be a bounded open set in Rn and let 1/J be a continuous function on oft 
(the boundary of f2 ). Consider first of all the following problem .. 

Does there exist a continuous function u on the closure fi of fl , agreeing with 1p 

on an , C 11 on n and satisfying the non-linear partial differential equation 

(1) 
n a :z= axa;(x, Du(x))- u(x),Du(x)) = 0 

·i=l ~ 

for X E n . The a; and b are given functions. 

If the a; and b are sufficiently srnooth and s<disfy an ellipticity condition as well 

as certain growth conditions and if an is sufficiently smooth, then such a function u 

is known to exist. One way of proving this is to use fixed theory. 

When such a function u exists and ¢ is a suitably smooth function, vanishing on 

an ' then repeated integration and integration by parts gives 

f( 
i=l Jo 

u,Du) ~¢> dx + l b(x,u,Du)¢>dx = 0. 
O"Ti ln 

Equation (2) still makes sense when the a;, b and u are less smooth. u is called a 

weak solution when (2) holds for all ¢l. 

When showing that a weak solution exists (under appropriate conditions on a; , b 

and an), fixed point theory does not seem to work. But a valuable tool is provided by 

the them·y of monotone and pseudo-monotone operators. This theory is based on the 

following two results in Rn . 

The Brouwer fixed point theorem. 

(B) If K is a compact convex, non-empty subset of Rn and x E Rn ~ K, then there 

1s a y E K , such that 

(u-y)·(y-x);2:0 

for all u E K . 
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The theory of monotone operators was begun by George Minty in 1962 and since 

then has been considerably developed and expanded into the theory of pseudo- monotone 

operators. The theory is fairly easily developed from (A) and (B) but applying it to 

problems like (2) requires quite a lot of hard work. It was not easy, however, to develop 

the theory in such a way that it could be applied extensively. 

The theory has such wider applications than to problems like (2). If we put 

(3) 

where the infimum is taken over the set E of all Sobolev functions on Q , agreeing with 

'lj! on an in a suitable way and if we assume that E I 0 , then it is well-known that 

there exists a u E E , such that 

(4) 

and that 

[ IDu(xWdx = 01 Jn 

(5) 
n ()2 

L:l.u(x) = O;i.e. La ~(x) = 0 
X· 

i=1 z 

for x E Q. 

Now let fJ be a function defined on a non-empty subset F of Q. Put 

(6) f3 = inf i IDv(xWdx, 

where now the infimum is taken over the set E* of all Sobolev functions v , agreeing 

with zP on an in a suitable way and such that 

(7) v(x) ~ B(x) 

for all. x E F' (except for certain exceptional values of x , which will be specified later). 

This is a simple example of an obstacle problem. If one assumes that E* I ¢; , 

then one can show that there exists a u E E* , with 

(8) IDu(x) = (3. 
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But in this case, u does not satisfy an equation, not even weakly. An elementary 

argument shows that 

(9) 

for all Sobolev functions ¢ on f! with ¢ = 0 on 8!"! (i.e. ¢> E Wl'2 (f!)) and with 

(10) ¢>(x) 2 B(x)- u(x) 

for all x E F (excluding the exceptional values). 

(9) is a simple example of a variational inequality. Variational inequalities can 

come from many sources other than obstacle problems. 

2. GENERAL OBSTACLE PROBLEMS 

Let a and 1 be real numbers, such that a > 1 and sup{ a - 1, 1} < 1 < a . Let 

a; and b be functions on n X R X Rn ' which satisfy the following conditions. 

(i) Each a; and b is a Caratheodory function; i.e., for almost all X E n' a;(x, ·, ·) 

and b(x,·,·) are continuous on R x Rn, while for all z E Rand p ERn, a;(·,z,p) 

and b(.' z, p) are measurable on n . 

(ii) There exists a constant p. > 0 and such that 

(ll) !a( x, z,p )I ~ P.!PI""-1 + p.lzl1 - 1 + p., 

(12) lb(x,z,p)j ~ p.jpja-1 + p.jzja-1 + f..l 

and 

(13) p · a(x, z,p) + zb(x, z,p) 

for all X E n , z E R and p E Rn . 

(iii) [a(x,z,p)- a(x,z,q)]· (p- q) > 0 for all z E f!, z E Rand p,q ERn 

with p =/= q. 
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Consider the following general obstacle problem. 

Does there exist a u E W 1 '"(n) agreeing with '¢ on an in some way, with 

u(x) :2: B(x) for x E F (excluding the exceptional values) and such that 

(14) 
n { a¢> t; ln a;(x,u(x),b(x)) ax; (x)dx 

+ k b(x,u(x),Du(x))<f>(x)dx :2:0 

for all 1> E W~'"'(n) with 

(15) <f>(x) :2: B(x)- u(x) 

for all x E F (excluding the exceptional values). 

If the inequality (14) comes from a variational problem, then the existence of u; 

can be proved by variational methods as described earlier. If it does not, then under 

certain assumptions on ()' '¢ and an , monotone or pseudo-monotone operators may be 

used. 

First of all, one must decide in what sense the solution is required to be :2: 8 . The 

solution will be a Sobolev function and these are defined almost everywhere, so one is 

tempted to say u( x) :2: 8( x) except for a set of measure zero. This approach would rule 

out an important case, discussed by H. Lewy in 1968. In Lewy's case, n C R 3 , the 

set F is a straight line segment and e is a continuous function on F . Since F has 

measure zero, then for every Sobolev function v , one has v( x) :2: 8( x) for almost all 

X E F. 

In some work done jointly with W.P. Ziemer on obstacle problems, capacity was 

used. In this work, Bessel capacity was used, but it will be easier to explain here, if I 

use Riesz capacity. The Riesz capacity R(E) of a bounded subset E of Rn is defined 

to be 

(16) inf { f(x t'dx, 
}Rn 

where the infimum is taken over all non-negative f E La(Rn) such that 

(17) 
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for all y E E . Capacity is subadditive but not additive. A set of capacity zero is much 

smaller than a set of measure zero. 

For each Sobolev function 

(18) 

g E W 1 •"'(n), it can be shown that 

lim 1 g(e)de 
p-+O+ JBp(x) 

exists, except for a set of capacity zero ( f denotes the integral average). (18) is used 

to extend the domain of definition of each Sobolev function. 

We then require that the solution u of (14) should satisfy u( x) ~ B( x) for quasi-all 

x E F ; i.e. for all x E F except for a set of capacity zero and that (15) should hold for 

quasi-all x E F . It is not difficult to show that a theory based on capacity will include 

the Lewy example. When applying the theory of pseudo-monotone operators to (14), 

one needs the following theorem of Egeroff type, which is proved in [Mi]. 

2.1. THEOREM 

Let r be an open set in Rn and let { Vr} converge strongly to v in W1•"'(r). 

Then there is a subsequence { Vr,} which converges pointwise to v , quasi-everywhere 

on r. 

In [MZ] it is assumed that n satisfies a Wiener criterion at each boundary point 

and that (i), (ii) and (iii) hold. A restriction has to be placed on the obstacle function 

B, particularly when B is unbounded. By using pseudo-monotone operators, it is shown 

that 'there exists a function u E W1~c"'(n), such that 

u(x) ~ B(x)- u(x) 

for quasi-all x E F, (14) holds for every ¢> E W 1•"'(n) which vanishes outside a compact 

subset of n and has 

if>(x) ~ B(x)- u(x) 

for quasi-all x E F and 

lim u(x) = 1/J(x) 
e-x 

for all X E an . 
In [Mi] obstacle problems involving higher order operators are discussed, general 

bounded domains are considered, but the solutions only satisfy the boundary conditions 

in a weak sense. Again, the theory of pseudo-monotone operators is used. 
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