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TOEPLITZ OPERATORS ON FOCK SPACES 

Jan Janas 

l IN-TRODUCTION 

This work gives a brief exposition of recent progress made in the 

theory of Toeplitz operators in Bargmann-Segal (Fock) space. Such operators 

have been studied in several papers of Berezin in the early seventies [3], [4] 

and also in [8]. Substantial advances in understanding their properties have 

been made in recent years due to the works of Berger and Coburn [5], [6]. 

Other related results are contained in [9], [10]. Despite the fact that there 

is a natural equivalence between Toeplitz operators in Fock space and pseudo-

different operators in J~ 2 (iF/'), their study requires some specific methods. 

One of such methods, introduced in [3], is based on the idea of Berezin 

symbol of operators acting in the Fock space. This method has been 

successfully employed in [6] and [9]. Topics such as the theory of Toeplitz 

forms over Fock spaces developed in [12}, and attempts to generalize the 

theory for Fock space over general Hilbert space [2], [11] are related, but 

we shall not discuss them here. This brief report almost certainly misses 

other works on Toeplitz operators of which we are not aware (done 

mainly by physicists). 

The paper is divided into three parts. The first part introduces the 

Segal-Bargrr:ann-Fock space H2 (p) and its relation to L2 (IR"), Toeplitz 
, 

operators in H-(~), and the Berezin symbol of operators acting in 

The second part deals with bounded Toeplitz operators. The third pare 

is devoted to unbounded Toeplitz operators in H 2 (~). 

The material of this wo~k is based mainly on the following pa~0~s 

[5] r [6] f [7] r [8] r [9] 1 [lO]" 

I ryou2d like to thank ti1e organisers of the Confe1·ence 110pe.r:1. rcrs in 
l1nalysis" held at NacquaJ~ie Unir/el'"Sit}r,., Septeml:er 25-27( for al.zc,-,.._,in;;r J:Ie to 
present this rlc,rk at tlle Conference .. 
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Throughout the paper we use the following notation. For z = (z 1 , •••• zn), 

w (w , ... ,w) in (n- the space of n complex variables we write: 
1 n 

z = (z , ... ,z ), where z. is the usual conjugate in(, lzl 2 = iz. i 2 + ••• +1zni 2 , 
1 n J ~ 

and zw = z w + .•• +z w. Fork 
1 1 n n 

lk! = k + ..• +k ' z k 
1 n 

a eN n and if f is a function on l[n we denote Da:f 

2_ THE PRELIMINARIES 

Let ~ be the Gaussian measure on (n given by 
2 

-n e-,lz 1'72 
d~ = (21!) dV 

where dV is the Euclidean volume on (n 
2n 

IR 

If 

Denote by H2 (~) the closed subspace of L 2 (~) (the wsquare integrable 

functions in l[n) of all entire functions. This space has been introduced by 

I.E. Segal and employed by V. Bargmann in [1]. H 2 (~) has the reproducing kernel 

e (z) = ezJ2 , 
a 

so that for feH2 (~), f(a) = (f,e ), where(.,.) is the usual scalar 
a 

product in L 2 (~). 

An orthonormal basis in H2 (g) consists of the functions 

( 1) f k ( z) = (2 I k I k !] --;,; z \ k E !'t . 

It follows that the set W of polynomials in the zj is a dense subspace in 

H 2 (~). Similarly as for 1 2 (~), the multiplicativity of d~(z) implies a 

natural isometry 

H2 { u) - 2 ( ) ,.., JV; 2 { ) ,.. - H tLI-\ ® ... ~)H 1[,~1 , 

where ~1 stands for ~he Gaussian measure on (. 

Following Bargmann note that the map 

'\: hk---4 fk 
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where h (x) = 
k 

is the orthonormal bas:s of 

Hermite functions in L 2 (~), establishes a natural isometry of L2 (m) and H2 
) . 

Moreover can be written in integral form as: 

(2) 

Hence the mapping A= ® ... {g) -\ induces isometry from ;/ ) onto 

2 H lvl and it is given as an explicit integral kernel operator. Moreover, 

the mapping A carries the creatwn operator fx 1- ,fL .J, in L2 ([Rn) into a 
l oXj 

simple operator in H2 (v), namely 

(3) 

where "" is the operator of multiplication by the co-ordinate function z. 
J 

The third part of this paper contains an extension (due to Gu1lleminl 

of (3) for general pseudo-differential operators in L 2 (~n). 

The appearance of Toeplitz operators T is therefore quite natural in 

this context. 

Now we define the Toeplitz operator T r with a general symbol 'V. Let 

? 
Hz (JJ) p ; L- (J.d ---;;. be the orthogonal projection onto 2 

H ()1). For a measurable 

function'# on ([11 such that the set of all fEH 2 (p) for which >/rfeL\_,) :s 

dense in H2 1vl. we define the Toeplitz operator by 

(4) T'itf=P(yr.f). 

This operator is in general unbounded in H2 ()1). For essent:ally 

bounded '{r, it is obviously bounded and IT 1 ~ It~ . In the third par of 
\{r oo 

this work we shall consider other possible definitions of unbounded Toepl1tz 

operators. 

Now recall the definition of the Berezin Symbol of an operator A in 

[3 J " Let k (z) = 
a 

of A, for every a E 1[ ? 

exp 
lZC< l- ·-

2 
Suppose that k ED (A) 

ex 
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The function 

(5} ]~ (et) 

is called the Berezin symbol of A. 

Note that for the Toeplitz operator T~ one can compute ~ explicitly 
~ - •/t 

i ' '2 l z-o:.] 

! ;f·(z) e 2 dV (z _i. 

Hence the Berezin symbol of Tt is also the solution of the heat 

eq:uation on at the time t = ~ with initial values t. General properties 

of the Berezin symbol of arbitrary operators can be found in [3]. 

3_ BOUNDED TOEPLITZ OPERATORS 

In this part of the paper some results are presented concerning bounded 

Toeplitz operators ln ' \ \j.l,. They are 0hosen here to illustrate the usefulness 

of the Berezin symbol in the study of Toeplitz operators in H2 (p). 

For brevity we denot.'2· 7 _ by -~ 
1' -

and th1s should not cause confusion :ater~ 

For a function 1 on and qEf!':, ~e1e denote by \f(q•) the function z--? o/{c;:z). 

We start with a result which gives a sufficient condition for a function ~ 

to define bounded T in (J-1.) [ 9] . 

If is bounded then T is bounded and 
¥" 

ii~ 
00 

Conversely, if m is bounded then .) is bounded on en. 

The proof of this Proposition is based on the Sch11r test for the 

integral operator denotes the operator· of multiplication 

by ~· 

For positive ~ the above result can be stated shortly: 

is bounch.cd iff ·) is bounded. We do not formulate results concerning 

compactness of T~ or when T C (the Schatten -v.Neumann class). They 
p 

are also expressed in terms of the behaviour if ~(q.) at infinity, see [9]. 
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Instead we turn to the question for which symbols f, g, T 5 
r 9 

is 

compact . For the classical Toeplitz operators in the unit disc the dDOVe 

difference lS compactt provided that for g is continuous. In our c.: 1 l1~exr 

the answer 1s much ~o~e difficult and has been found by Berger an6 (.)~urn 

It is also given in terms of the behaviour of ~at infinjty. 

First, however, recall their definition of ESV space 

ESV = {f E L'"(;r:"), lim sup !f(z)-f(w) i=Ol 
R.~.xx: l z -'\"/ ! < 1 

] z 1 > R 

For example exp( z EESV. 

Now for f and g such that ii! 2 and 1~1 are bounded and continuous we 

have· [6] ~ 

Fer f and g· as abovr-2 T T - T 
f g 

~';.1 
if- fi-(z)----"0 or g (,:; ESV and 

izl~ 

compact lf { EESV and 

#"~2 
ig - g l (z)---~0 

\zl~) 

This result shows that one can obtain a symbol calculus of Toenl1tz 

operators modulo the ideal of compact operators, provided their symbols behave 

properly at infinity. The main ideas of the proof of the Theorem is note 

that 

(a) lim 0.- for iiiENr w·here f(:n)~ 
i Z ! --7o·.) 

(b) r<mJ is Lipchitz continuous with modulus of continuity convergiiig 

to 0 as m ----?· 0(1 r 

(c) If K(·) is a uniformly bounded weakly measureable, compact opera 
r 

valued function and p is a finite positive measure then IK(z)dp(2' 
J 

is also compact~ 

The proof also relies on the relationship between the Berezin sy~jol of 

operators and an averaging operation over a representation of thE 
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Heisenberg group. Bargmann defined in [2] the following mapping of ~ 

1nto unitary operators in (~) 

---> ~T 

Applying the identities 

w 
.a+b 

T Re za 1 
) 

* one can check that the rnappings a ·---?> 14 and a --p \·I are strongly continuous .. 
a_ ~-

For a bounded operator A on (u) one defines an averaging opera ion by 

The relation between A and A is given by [6] . 

For any bounded operator A on (,u) ·we have 

A 

1F"ROO·F 
···----·-·-··-··· ·-···"'' 

By the definition o:f ~~ we have 

2 

Hence 

A and so A 

The iast implication depends on the fact that the Berezin symbol determines 

the operator uniquely i.e i(.) E 0 lmplleS that B = 0 n 

concJ.ude this section witl1 the following recent restllt of Gautrin 

The set of bounded Toeplitz operators is dense in the operator norm 

topology in the space of all bounded operators on (M) a 

this result depends on the technique of tensor product 

nuciear· spaces (the space of entire functions of exponential type)~ 
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Other resu:ts on bounded Toeplitz operators in 

tbei.r spectral properties) are also contained i.n [6J, [9]. 

4_ UNBOUNDED TOEPLITZ OPERATORS 

In this section we slightly change the measure u (for technica~ ceasons), 

It follows that the reproducing kernel 

e z) = e zc( and k 
f. (z) "' z 

K 

Not much lS known about unbounded Toeplitz operators. We present here 

only a few results taken from [10]. 

It turns out that even the definition of unbounded Toeplitz operators 

in is not unique. Namely we may associate, for a given measurable the 

following three operators in (M) 

(a) 

(b) 

(c) 

( z) /vr(a)f(a) e 

J 
( 0') f 

provided the integral exists and belongs to 

of z~ 

h+r r h.::: 

Put h~ 

(p), as a function 

Note that Indeedr suppose that 

h + r 

r 
2 

it follcr\.'?'S r_ 0 

i 
(t-tl and 1 r- 0 ~ Hence 

and is orthogonal to Since i.s dense i.n 

h. ,_ 

The next result given below more or less explains the natural 

of the definitions of S and 

Let E denote the linea.l- 3pan of ;2 2 ;Z E 
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If PcD(T i (:::esDect. EcD(T).l and T = TJ,:.!P (respect.T 1 = T,,,IE) '/!. • . ;: f ' 

* then T S_ (respect, T1 * = 
¥' 

, where t denotes the bar of t. 

The proof follows by d1rect but careful checking of the definitions 

\10~ . 

The relationship between the above operators explains the next 

For any measurable , we have 

(iii If t is entire and P c D(T,) then 
'F 

However 
3 

for t(z) = Re z (m = 1) we have the strict inclusion 

T~ ~ In the case of the u~1it disc Toeplitz operators with a bounded 

holontorphic sy~bol ~ are bounded. and Since there are no nontrivial 

bounded entire functions the problem of computing 
Vr 

is much more complicated. 

Nevertheless we have ~10 

Let ~ be an entire function for which 1s densely defined. 

Suppo.sF:- that for any hE D there exists "~ ·; 0 such that 

(+) 



* then IT = IT 
t 

Let y(z) 

where pk 

~ > 0. 
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k=l 

One can check that t satisfies (+) with any 

Naturally the next question is when is Tt with a real symbol t 

selfadjoint (or essentially selfadjoint)? This is not true even for simple 

functions like t 0= Rez 3 ,in which case Tt is not selfadjoint. Note however, 

that Tt with real valued t commutes with the natural conjugation 

c: L 2 ()l) ~ L 2 ()l) given by Cf(z) = f(z). Hence such Tt must have ec~ual 

deficiency indices. We don't consider here pther examples of positive results 

about selfadjointness. The interested reader is referred to [10]. 

There are also many questions concerning the spectral properties of 

unbounded Toeplitz operators. For example for which symbol t is the r~solvent 

R (II, T t) compact. 

Here is a class of symbols with this property. 

PROPOSITION 4-4 

If Tt is closed, densely defined and there exists c?. 0 such that 

(E) Re(Ttf,f) ?. cjjgrad f !12 , f e D(Tt), 

where !!grad f Ji2 

i=l 

then R(II,Tt) is compact. 
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The last result holds for arbitrary closed operator A satisfying the 

assumption (E) i.e. put A in the place of T~. 

We conclude this brief report by recalling the equivalence of PSDO 

(pseudodifferential operators) and Toeplitz operators, see [8]. 

Let 

[A (X,D) f] (x) = (2TI) -n 
w 

be the PSDO in L2 1ntJ with the symbol (A(p,q) : iR2 n__, I[. This is the Weyl 

method of quantization. 

Suppose that the operator A- 1 1 (X,D) A is a Toeplitz operator with a 
w 

symbol r. Then, by a result of Guillemin [8, p.187] we have the following 

relation between~(.) and A(.,.) 

-b./> 
A(x,y) = e - >,ir(x+iy) , 

ll 

where Ll L X + iy 

i=l 

Therefore in order to represent a given PSDO with its Veyl symbol A(.,.) 

as a Toeplitz operator we have to solve the equation 

!),!2 
t = e ' A , 

which is, in general, not possible. 

This explains why it is not efficient, in general, to transfer the 

results found in the theory of PSDO to the theory of Toeplitz operators 
, 

in H- ()1) • 
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