21 The Cone Lemma

Let X_{c} be the cone in \mathbf{R}^{3} defined by the equation

$$
x_{1}^{2}+x_{2}^{2}=\left(x_{3} / c\right)^{2}, \quad c \neq 0 .
$$

The complement of X_{c} consists of three components, two of which are convex. We label the third region W_{c} and note that W_{c} contains $P^{0}-\{0\}$, where $P^{t}=\left\{x_{3}=t\right\}$ for $t \in \mathbf{R}$. Suppose $M \subset W_{c}$ is a noncompact, properly immersed minimal annulus with compact boundary.

Note that as $c \rightarrow 0, X_{c}-\{0\}$ collapses to a double covering of $P^{0}-\{0\}$. Note also that any horizontal plane or vertical catenoid is eventually disjoint from any X_{c}, hence eventually contained in W_{c}, no matter how small c is (by "eventually" we mean "outside of a compact set"). Since any embedded complete minimal annular end of finite total curvature is asymptotic to a plane or a catenoid (a graph with logarithmic growth), it follows that, after suitable rotation, such an end is eventually contained in any W_{c}. By Jorge and Meeks' theorem, Theorem 12.1, it is easy to see that a minimally immersed end of finite total curvature with a horizontal limit tangent plane is also eventually contained in every X_{c}. The Cone Lemma [29] shows that this property implies that the annular end must have finite total curvature if it is proper. Hence after a rotation if necessary, a proper minimal annular end has finite total curvature if and only if it is eventually contained in every X_{c}.

Let $A:=\{z \in \mathbf{C}|1 \leq|z|<\infty\}$.
Theorem 21.1 (The Cone Lemma) Let $X: A \hookrightarrow \mathbf{R}^{3}$ be a properly immersed minimal annulus with compact boundary. If $M:=X(A)$ is eventually contained in W_{c} for a sufficiently small c, then X has finite total curvature.

In order to prove the Cone Lemma we need to introduce the concept of foliation.
Definition 21.2 Let M be a C^{∞} manifold of dimension 3. A $C^{k}, 1 \leq k \leq \infty$, foliation of M is a set of leaves $\left\{\mathcal{L}_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ in M that satisfies the following conditions:

1. $\left\{\mathcal{L}_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ is a collection of disjoint 2-submanifolds.
2. $\bigcup_{\alpha \in \mathcal{A}} \mathcal{L}_{\alpha}=M$.
3. For all points $p \in M$ there exists a neighbourhood U of M and class C^{k} coordinate system $\left(x_{1}, x_{2}, x_{3}\right)$ of U such that $\mathcal{L}_{\alpha} \cap U$ is empty or is the solution of $x_{3}=$ constant in U.

Before proving Theorem 21.1, we will state a fact about the catenoid. Let C be the unit circle in P^{0} centred at $(0,0)$. Let C_{h} be the translate of C in the plane P^{h}. There is an $h_{2}>0$ such that for $0<h<h_{2}$ there are two catenoids bounded by C_{-h} and C_{h}; one is stable and the other is unstable. While the $C_{-h_{2}}$ and $C_{h_{2}}$ bound only one
catenoid. When $h>h_{2}$, there is no catenoid bounded by C_{-h} and C_{h}. It is known that $h_{2} \cong 0.6627435$. For more details, see for example [60], §515.

As we will see later, by Schffman's second theorem, Theorem 29.2, any minimal annulus bounded by C_{-h} and C_{h} must be a catenoid. Thus there is no minimal annulus bounded by C_{-h} and C_{h} when $h>h_{2}$.

We describe a technical result that will be used in the proof of the Cone Lemma. Let γ_{t} be the circle of radius t in P^{0}, centred at the origin. Let C_{t}^{ϵ} be the stable catenoid whose boundary circles consists of the vertical translates of γ_{t} by $(0,0, \pm \epsilon)$. Let Δ_{ϵ} be the solid torus bounded by subsets of $C_{2}^{\epsilon}, C_{4}^{\epsilon}, P^{\epsilon}$, and $P^{-\epsilon}$. Note that $\partial \Delta_{\epsilon}$ consists of two planar annuli and the two catenoids C_{2}^{ϵ} and C_{4}^{ϵ}. Let $K^{0} \subset P^{0}$ be the annulus bounded by γ_{2} and γ_{4}. Let δ be any smooth Jordan curve in K^{0} that is homotopic to γ_{2} in K^{0}.

Proposition 21.3 For $\epsilon>0$ sufficiently small, Δ_{ϵ} can be foliated by compact minimal annuli $A_{t}, 2 \leq t \leq 4$, with the following properties:

1. $A_{t}=C_{t}^{\epsilon}$, for t sufficiently close to 2 or to 4;
2. Each A_{t} meets P^{0} orthogonally;
3. A_{3} meets P^{0} in a smooth Jordan curve that converges to δ, in the C^{0}-norm, as $\epsilon \rightarrow 0$.
4. By selecting suitable δ, the foliation of Δ_{ϵ} satisfies the following: for any $q \in$ $P^{0}-\{0\},|q|>4$, and any line l through q, we may rotate Δ_{ϵ} around the x_{3}-axis so that $\overline{0 q}$ intersects $\alpha_{3}^{0}=A_{3} \cap P^{0}$ in a point p, where $T_{p} A_{3} \cap P^{0}$ is a line parallel to l.

This proposition is proved in [29], its proof involves several facts about solutions to the Douglas-Plateau problem. Since we are not going to discuss this interesting problem in this lecture notes, we will skip the proof. Readers who are interested in the Douglas-Plateau problem can refer to [55], [56], [53] and [54].
Proof of Theorem 21.1. We begin by normalizing the problem.
Let $C(1)$ be the vertical catenoid with waist-circle of radius 1 and denote by C the compact component of $W_{c} \cap C(1)$. Choose $c>0$ small enough so that C is a radial graph and foliate W_{c} by the leaves $\{t \cdot C\}, 0<t<\infty$. For convenience, we write C_{t} for $t \cdot C$.

Claim 1. After a homothetic shrinking of M (but not of the foliation) and a discarding of a compact subset of M :

1. $\partial M \subset C_{1}=C$;
2. $M \subset \bigcup_{1 \leq t<\infty} C_{t}$;
3. $M \cap C_{t}$ consists of a single closed immersed curve for $t \geq 1$.

Proof of Claim 1. Choose T_{0} large enough so that $\partial M=X(\partial A)$ lies in the bounded component of $W_{c}-C_{T_{0}}$. Without loss of generality, we may assume that $C_{T_{0}}$ intersects M transversally. Denote by Z the closure of the unbounded component of $W_{c}-C_{T_{0}}$; that is, $Z=\bigcup_{t \geq T_{0}} C_{t}$. Define $f: Z \rightarrow\left[T_{0}, \infty\right)$ to be the function whose level set at t is C_{t}. Since the C_{t} are minimal surfaces, the maximum principle (Theorem 4.4) implies that $\left.f \circ X\right|_{X^{-1}(Z)}$ has no interior maxima or minima. Moreover, by Theorem 4.4, the intersection of two minimal surfaces in a neighbourhood of a point of tangency consists of j curves, $j \geq 2$, intersecting at that point in equal angles. This implies that $\left.f \circ X\right|_{X^{-1}(Z)}$ has only index-1 critical points with multiplicity equal to $j-1$. Therefore, f may have at most $k-1$ critical points, where k is the first Betti number of $X^{-1}(Z)$, by elementary Morse theory. Consequently, outside of a compact subset of $X^{-1}(Z)$, $\left.f \circ X\right|_{X^{-1}(Z)}$ is free of critical points. This means that there exists a $T_{1}>0$ such that for $t \geq T_{1}, C_{t} \cap M$ consists of a finite number of closed immersed curves. Since M has one end, each $C_{t} \cap M, t>T_{1}$, must consist of a single closed immersed curve. By a similar argument as in the proof of Lemma 11.9 and Theorem 12.1, this time using the maximum principle for minimal surfaces, each $X^{-1}\left(C_{t}\right)$ is a homotopically non-trivial Jordan curve in A and $A^{\prime}=\bigcup_{t>T_{1}} X^{-1}\left(C_{t}\right) \subset A$ is an annulus. Conformally $A^{\prime} \cong A$ since they are both equivalent to the punctured disk.

Discarding the compact subsurface $M \cap\left(\bigcup_{t \leq T_{1}} C_{t}\right)$ we get $X\left(A^{\prime}\right)$. Now rescaling by a factor of T_{1}^{-1}, we satisfy conditions 1,2 , and 3 by denoting $M=X\left(A^{\prime}\right)$.

We will write A^{\prime} as A for convenience.
Because M is properly immersed and projection from W_{c} to $P^{0}-\{0\}$ is also proper, the projection $\Pi \circ X: A \rightarrow P^{0}-\{0\}$ is a proper map.

Claim 2. The mapping Π is a submersion outside of a compact set, provided $c>0$ is sufficiently small.

Before proving Claim 2, we will show that the theorem follows from it. By Theorem 19.2, the Gauss map N of X either takes on all points of $\mathbb{C} \cup\{\infty\}$, except for at most a set of capacity zero, or it has a unique limiting value. In the latter case, X must have finite total curvature as remarked in Remark 19.3. But Claim 2 implies that, outside of some compact set B, the Gauss map of $X: A-X^{-1}(B) \hookrightarrow \mathbf{R}^{3}$ will not take values in the great circle $S^{1} \subset S^{2}$. Since X is proper, $X^{-1}(B)$ is compact. Taking the connected component W in $A-X^{-1}(B)$ which is connected to ∞, we infer that the image $N(W)$ is contained in a hemisphere, so the first case of Theorem 19.2 is precluded. Hence, X has finite total curvature.

Proof of Claim 2. In this proof, we will need at several points to restrict the size of $c>0$. At each point, we will continue to assume that $M \subset W_{c}$. Let $\Delta:=\Delta_{\epsilon}$ be the foliated annulus from Proposition 21.3. Reduce the size of c so that the Δ has its top and bottom boundaries disjoint from W_{c}. Let K be the intersection of W_{c} with the vertical cylinder over the disk of radius 4 in P^{0}. Note $\Delta \cap W_{c} \subset K$. Shrink $c>0$ even more if necessary, so that the following is true. If the distance from $q \in K$ to P^{0}
is τ, then the vertical translation of Δ by τ has the property that its top and bottom boundaries are disjoint from W_{c}.

Suppose now that $\Pi: M \rightarrow P^{0}$ is not a submersion outside of any compact set. This is equivalent to the statement that the points on M with vertical tangent plane form an unbounded set. In particular, there is a point $p \in M-K$ whose tangent plane is vertical.

If \hat{p} is the projection of p onto P^{0}, we can assume that $|\hat{p}|>4$. According to Proposition 21.3, we may rotate M about the vertical axis so that the following holds: the line $\overline{0 \hat{p}}$ intersects α_{3} at a point where the tangent line to α_{3} is parallel to $T_{p} M \cap P^{0}$. We perform this rotation of M and shrink M so that \hat{p} actually lies on α_{3}. Since the original M satisfied the conditions of Calim 1, and the foliation $\left\{C_{t} \mid 0<t<\infty\right\}$ is rotationally symmetric, it follows easily that the modified M also satisfies condition 3 of Claim 1. We also discard $M \cap \bigcup_{t<1} C_{t}$. We will refer to this modified surface as M. It is clear that to prove the claim, it is sufficient to prove it for this modified surface.

Vertically translate Δ so that \hat{p} coincides with p, and label this translated torus $\hat{\Delta}$. Also translate the foliation A_{t} of Δ to be a foliation \hat{A}_{t} of $\hat{\Delta}$. Recall that we have chosen $c>0$ small enough so that the top and bottom boundaries of $\hat{\Delta}$ are disjoint from W_{c}. Also recall that for t near 2 and 4 , the leaves of the foliation of $\hat{\Delta}$ are catenoids. Make c smaller, if necessary, to insure that these catenoids are radial graphs.

We will now extend \hat{A}_{t} to be a smooth foliation of a region that contains $\cup_{4 \leq t<\infty} C_{t}$. Let $\hat{A}_{t}=\frac{t}{4} \hat{A}_{4}, t \geq 4$, be the homothetic expansion of \hat{A}_{t}. The boundary $\partial \hat{A}_{2}$ consists of two concentric circles. By making $c>0$ smaller if necessary, we may insure that C is a subset of a stable catenoid \hat{C}, whose boundaries are concentric circles exterior to W_{c} on the parallel planes that contain $\partial \hat{A}_{2}$. We interpolate between $\partial \hat{A}_{2}$ and $\partial \hat{C}$ with a smooth family, each member of which is a pair of circles centred on the vertical axis. The vertical distance between circles in each pair is an increasing function of t, $1 \leq t \leq 2$. Note that each pair of circles bounds a unique stable catenoid. Label that catenoid $\hat{A}_{t}, 1 \leq t \leq 2$. It is evident that this family may be chosen to insure that the resulting foliation $\left\{\hat{A}_{t} \mid 1 \leq t<\infty\right\}$ is smooth. By construction, $M \subset \cup_{1 \leq t<\infty} \hat{A}_{t}$, $\partial M \subset \hat{A}_{1}$, and \hat{A}_{3} is tangent to M at p.

Let h be the smooth function, defined on the union of the leaves \hat{A}_{t}, whose level set at t is \hat{A}_{t}. Restriction of h to M yields a proper function $h \circ X$ on A that satisfies $h \circ X \geq 1$ and is equal to 1 precisely on ∂A. Repeating the argument in the proof of Claim 1 will show that all the critical points of h have index 1 , possibly with multiplicity. However, A is an annulus and $(h \circ X)^{-1}(1)=\partial A$, so by elementary Morse theory, it follows that $h \circ X$ can have no critical points. But \hat{A}_{3} is tangent to M at $p=X(q) \in M$, which shows that q is a critical point of $h \circ X$. This contradiction completes the proof of Claim 2 and also of the theorem.

Remark 21.4 Let X_{c} and W_{c} be as in the Cone Lemma, and M be a proper, connected, complete minimal surface with compact boundary. Then by Theorem 16.1, M is eventually disjoint from X_{c} is equivalent to the fact that M is eventually contained
in W_{c}. Thus suppose that M is a proper, connected, complete minimal surface with compact boundary and finite topology. If after a rotation if necessary, M is eventually disjoint from X_{c}, for some $c>0$ sufficiently small, then M has finite total curvature.

