16 The Convex Hull of a Minimal Surface

Recall that the convex hull $H(E)$ of a set $E \subset \mathbb{R}^{n}$ is defined as

$$
H(E)=\bigcap_{E \subset \mathbf{H}} \mathbf{H}
$$

where \mathbf{H} is a halfspace in \mathbf{R}^{n}. Of course, if E is not contained in any halfspace, then $H(E)=\mathbf{R}^{n}=\bigcap_{\emptyset} \mathbf{H}$.

We want to study the convex hull of a minimal surface.
Let M be conformally a bounded plane domain and $X: M \hookrightarrow \mathbb{R}^{3}$ be a minimal surface such that X is continuous on \bar{M}. If $\partial M \neq \emptyset$, then a simple application of the maximum principle for harmonic functions shows that $X(M) \subset H(X(\partial M))$, where $H(X(\partial M))$ is the convex hull of $X(\partial M)$.
Exercise : Prove this fact.
Now using the the Halfspace Theorem, we can prove more.
Theorem 16.1 ([32]) Suppose that $M \subset \mathbf{R}^{3}$ is a proper, complete, connected minimal surface in \mathbf{R}^{3}, whose boundary ∂M, which may be empty, is a compact set. Then exactly one of the following holds:

1. $H(M)=\mathbb{R}^{3}$;
2. $H(M)$ is a halfspace;
3. $H(M)$ is a closed slab between two parallel planes;
4. $H(M)$ is a plane;
5. $H(M)$ is a compact convex set. This case occurs precisely when M is compact.

Furthermore, ∂M has nonempty intersection with each boundary component of $H(M)$.

Remark 16.2 We note that all of these cases are possible. For 1 and 2; examples are the catenoid and half-catenoid. For 3 we could take any of the examples in theorem 14.8 and consider the portion of these surfaces in the slab $\left|x_{3}\right| \leq 1$. This surface is bounded by two Jordan curves. For 4 we have a plane and 5 is the case for any compact example.

Proof of Theorem 16.1. Suppose now that cases 1,4 and 5 do not occur. To prove that case 2 or case 3 must occur we need show that if H_{1} and H_{2} are distinct smallest halfspaces containing M, then $P_{1}=\partial H_{1}$ and $P_{2}=\partial H_{2}$ are parallel planes. Suppose now that P_{1} and P_{2} are not parallel planes. We shall derive a contradiction.

The interior of M cannot have a point in common with $P_{1} \cup P_{2}$. (If it did then the maximum principle for minimal surface (see Theorem 4.4 and Remark 4.6) implies it
would have to lie entirely on one plane or the other, contradicting the assumption that 4 does not hold. Let $C=H_{1} \cap H_{2}$.

After a rotation, if necessary, we may assume that \dot{C} lies in the halfspace $x_{3} \geq 0$, that the boundary of C is a graph over the $x_{1} x_{2}$-plane and that $P_{1} \cap P_{2}$ is the x_{1}-axis. After (if necessary) a translation of M, parallel to the x_{1}-axis, ∂M lies in the halfspace $x_{1} \leq-1$. (This translation leaves C invariant.) In particular $0 \notin M$, and since M is closed (recall that properness implies that M is closed in \mathbb{R}^{3}), there exists an $s>0$ such that $M \cap B_{s}=\emptyset$, where $B_{s}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid\left(x_{1}-s\right)^{2}+x_{2}^{2}+x_{3}^{2} \leq s^{2}\right\}$. Let $\Gamma_{s}=\partial B_{s} \cap \partial C$. Since Γ_{s} has a 1-1 projection onto a convex plane curve (recall that ∂C is a graph over the $x_{1} x_{2}$-plane), by Theorem 4.1 it is the boundary of a compact minimal surface Δ_{s} that is the graph over a convex set in the $x_{1} x_{2}$-plane. By the convex hull property mentioned in the beginning of this section, $\Delta_{s} \subset B_{s}$, so Δ_{s} is a positive distance from M. Note that $B_{s} \subset\left\{x_{1} \geq 0\right\}$ and $\Delta_{s} \subset C \cap\left\{x_{1} \geq 0\right\}$.

For $t \in[1, \infty)$ consider the surfaces

$$
A_{t}:=\left\{t p \mid p \in \Delta_{s}\right\} .
$$

We note: that each A_{t} is a nonnegative graph inside of $C \cap\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1} \geq 0\right\}$; that each A_{t} is compact; that as $t \rightarrow \infty, A_{t}$ converges to $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in C \mid x_{1}=0\right\}$; and that every point in $\left(C \cap\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}>0\right\}\right)-B_{s}$ lies on some A_{t}. Because $A=A_{1}$ is disjoint from M, it follows from an application of the maximum principle that none of the surfaces A_{t} can meet M (remember that ∂M is a distance at least 1 from any A_{t}, so any possible contact must occur at an interior point). However $\left(B_{s} \cup \cup_{t=1}^{\infty} A_{t}\right) \supset C \cap\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}>0\right\}$. Hence $M \subset H_{3}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1} \leq 0\right\}$.

A similar argument will show that for some large positive integer $k, M \subset H_{4}=$ $\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1} \geq-k\right\}$. Repeating the entire procedure with H_{1} and H_{3} replacing H_{1} and H_{2} will prove that M may also be bounded in the x_{3}-direction and lie in some halfspace $H_{5}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{3} \leq N\right\}$ for N sufficiently large. Therefore $M \subset$ $H_{1} \cap H_{2} \cap H_{3} \cap H_{4} \cap H_{5}$ which is a compact, convex set. This contradicts the assumption that 5 does not hold. This contradiction completes the proof of the main part of the theorem.

The fact that ∂M intersets each boundary component of $H(M)$ follows from Proposition 15.4. This completes the proof.

Exercise : Prove that ∂M intersets each boundary component of $H(M)$.
Remark 16.3 All results in this section are true for minimal surfaces with branch points.

Theorem 16.1 is true for minimal submanifolds in \mathbb{R}^{n}, just replace planes by hyperplanes in the theorem.

Remark 16.4 If $X: M \hookrightarrow \mathbb{R}^{3}$ is a complete minimal surface of finite total curvature, then we know that X is proper. Then by the Halfspace Theorem, Theorem 15.1, $X(M)$
is not contained in any halfspace, and thus $H(X(M))=\mathbb{R}^{3}$. This is a case where we know that $H(X(M))=\mathbf{R}^{3}$. Here properness is necessary, as Rosenberg and Toubiana [73] have constructed complete minimal annuli which are contained in a slab.

Another example where $H(X(M))=\mathbf{R}^{3}$ is a theorem of F . Xavier [85], which says that if $X: M \hookrightarrow \mathbf{R}^{3}$ is a complete minimal surface with bounded Gauss curvature (i.e, there is an $a>0$ such that $K(p)>-a$ for any $p \in M)$, then $H(X(M))=\mathbf{R}^{3}$.

