
15 The Halfspace Theorem and The Maximum Prin
ciple at Infinity 

By Jorge and Meeks' theorem, we know that if we stand at infinity to view a complete 
minimal surface of finite total curvature, it looks like several planes passing through 
origin, 

We will further discuss the image of such a surface. The basic theorem in this section 
is the Halfspace Theorem due to Hoffman and Meeks [32], its proof is surprisingly simple. 

Theorem 15.1 (Halfspace Theorem) A connected, proper, possibly branched, non
planar complete minimal surface Af in R 3 is not contained in a halfspace. 

Proof. Suppose the theorem is false. 
Define Ht := { (x1, x2, x3) I X3 2:: t}, Pt = 8Ht, t E R. By a translation and rotation, 

we may assume that M c H 0 . LetT:= sup{t I M C Ht}· If p E MnPr, then Pr is the 
tangent plane TPM. By Corollary 4.5, M must be on both sides of Pr, contradicting 
the fact that M C Hr-€) any E > 0. Hence M n Pr = 0. By a translation, we may 
assume that T = 0. 

Let lv1< be the downward translation of M, then ME 11 P0 # (/J for any E > 0. Let 
c = cl be the half-catenoid {(xl, X2, x3) I xi+ X~ = cosh2(x3), X3 < 0}. By choosing 
E > 0 small enough, we may insure that ME n cl = 0 and ME n Dl = 0, where Dl is 
the unit-disk in P0 . Specifically, let cl > 0 be the distance from M to the disk of radius 
R = cosh(l) > 1. Outside the cylinder over DR, C1 lies below the plane P_1 . We will 
choose E < ~ min{l, d} small enough so that M, n C1 = 0 and MEn P0 # 0. 

Denote by Ct the homothetic shrinking of C1 by t, 0 < t :s; 1. Observing that 
Ct converges smoothly, away from 0, to P0 - {0} we may conclude from the previous 
paragraph that Ct n ME # 0 for t sufficiently small, that Ct n ME lies outside the cylinder 
over D 1 for all t, and that Ct n ME = 0 for t close to 1. 

Let 8 = {t I Ct n ME i= 0} and T = lubS. We claim that T E S, i.e., Cr n ME# 0, 
thus T < 1. 

If T is an isolated point of S, we are done. If not, we can find an increasing sequence 
tn ---+ T, with to > T /2, such that there exist points Pn E cl with tnPn E Ctn n ME. If 
Pn = (xn, Yn, Zn), we must have tnZn 2: -c: which implies Zn 2: -E/tn 2:: -2c:/T. This 
means that Pn lies on the bounded closed subset Xr := {(x1, x2, x3) E C1 I x3 2: -2e/T} 
and must therefore possess a convergent subsequence. If {Pj} is that subsequence and 
Pj ---+Po E C1, then tjpj E Ct1 n Me- Since Xr is compact and M is proper, {tjpj} 
must have a convergent subsequence in M,, still denoted by { tjpj }, and by continuity, 
Tpo E Cr n ME. This proves that Cr n ME i= 0. 

Since the boundary of Cr lies inside D 1 C P0 , and that disk is disjoint from ME, 
Tp0 must be an interior point of Cr. Moreover, the fact that T < 1 and Ct n ME = (/J 

for t > T means that Cr meets ME at Tp0 , but lies locally on one side of ME near 
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Tp0 . We conclude that Me and Cr are tangent to each other at Tp0 but stay on one 
side to each other near Tp0 . By Theorem 4.4 (which is also called maximum principle 
for minimal surface) we know that ME and Cr coincide near Tp0 . By Theorem 4.2, 
ME = Cr. A catenoid, however, is not contained in any halfspace. This gives the 
desired contradiction. D 

Corollary 15.2 Let X : M Y R 3 be an embedded, nonplanar, complete minimal 
surface of finite total curvature. Then M has at least two annular ends. 

Proof. By Theorem 11.5, X is proper. If M has only one end, then by Theorem 11.8, 
X ( M) is a graph outside a large ball and is a catenoid or flat end. Hence 
X(M) is contained in a halfspace, which forces X(M) to be a D 

Remark 15.3 Theorem 15.1 is a of maximum principle at infinity. In [45], a 
version of maximum principle at infinity is proved, which states that if two embedded 
minimal surfaces with boundary and finite total curvature do not 
they are a positive distance apart. In [50] a stronger maximum principle at infinity 
it is called the maxzmum at infinity) in flat three-manifolds is proved, 
which says: 

If two properly immersed minimal with boundaries in a three-
manifold are they stay a bounded distance 

The main tool in the proof of this weak maximum principle at is Theorem 
15.1. 

The classical maximum principle 4.6) is one the main tools in the 
of minimal surfaces is used in an essential manner in the proof Theorem 15J). 

of and in the use of barriers in the Pl.ateau 
that there 

are ~--'"~u;cnv versions maxin1um for surfaces ~with variable mean curvature. 
Hildebrandt [24], where some the of this 1s discussed. 

As an easy exercise we give a version of maximum at infinity. 

Proposition 15.4 Let 1\11 C H be a proper, minimal with 
where H is a Then the distance8 satisfy 

The proof is as an exercise. Note that we only need prove that 

d(M, 8H) 2: d(8M, 8H). 

Proof. Translating M we will get a point p E int(Mc) n 8H, and 

principle, we have a contradiction. 

the maximum 

D 
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Remark 15.5 Theorem 15.1 says that two proper, complete, connected minimal sur
faces must intersect each other if one of them is a plane. We call Theorem 15.1 the 
Halfspace Theorem. In fact, there is a stronger version, called the Strong Halfspace 
Theorem. It says that the conclusion of Theorem 15.1 is true without the assumption 
that one of the surfaces is a plane. A sketch of its proof is as follows: If the Strong 
Halfspace Theorem is false, then M1 n M2 = 0. Let N be the flat three-manifold with 
M1 and M2 as boundary. The corollary of Theorem 8 in [52] says that there is a plane 
contained in N, thus we can apply the Halfspace Theorem. The proof of the existence of 
a plane in N involves the general Douglas-Plateau problem which is beyond our course. 

Theorem 15.1 is essentially a three-dimensional theorem. In Rn, n > 3, it is false. 
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