
8 Some Applications of the Enneper-Weierstrass Rep­
resentation 

Given a minimal surface X: M '-+ R 3 and its Enneper-Weierstrass representation, fix a 
simply connected open set U C M. Fixing p0 E U we can define a family of isometric 
minimal surfaces associated to Xe : U ---+ R 3 , 0 ::; () < 21r, by 

p E U, (8.35) 

where the w;'s are the 1-forms in the Enneper-Weierstrass representation of X and C 
is a constant vector. The Enneper-Weierstrass data for Xe are g0 = g and rJe = eierJ. 
When () = 1r /2, X1r ;2 is called the conjugate surface of X. 

Let I c R be an interval and T : I ---+ U be a geodesic such that X o r is a plane 
curve. Then we know that T must be a curvature line, thus by our criterion in the 
previous section, 

d(gor)ryor E R. 

Since X and X1r; 2 are isometric, r is also a geodesic of X1r;2 . Moreover, 

d(g1r; 2 or )TJ1r;2 or = id(gor )ryor E iR, 

and hence r is an asymptotic line of X1r;2 . Since the space curve X1r; 2 or is both a 
geodesic and an asymptotic line of Xn; 2 , it must be a straight line segment on X1r; 2 (in 
fact, the normal and geodesic curvatures of X1r; 2or are both zero, and so its curvature is 
zero everywhere). Since X and X1r;2 are conjugate to each other (up to sign), we have 

Proposition 8.1 X or is a plane geodesic (straight line segment) if and only if X1r; 2 or 
is a straight line segment (a plane geodesic). 

In fact, we have more information whenever we have a plane geodesic or a straight 
line segment on X. Namely, the surface X must have some symmetry. 

Theorem 8.2 (Reflection and Rotation Theorems) If a plane geodesic which is 
not a straight line segment lies on a minimal surface, then reflection in the plane of the 
geodesic is a congruence of the minimal s·urface. 

If a straight line segment lies on a minimal surface, then 180° -rotation around the 
straight line is a a congruence of the minimal surface. 

Proof. Let X o r be a plane geodesic but not a straight line segment on X. By a 
rotation in R 3 we can assume that X or is in the xz-plane. Since X or is a geodesic and 
is not a straight line segment, the Gauss map N of X along r must be in the xz-plane. 
Thus g = ToN is real along T. Select a point r ( t0 ) such that g' ( r ( t 0)) =1- 0; then in a 
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simply connected neighbourhood U of r(t0 ), w = g(z) is a well defined coordinate of 
·· M. We can use the representation (6.27) and consider the holomorphic mapping on U, 

1 2 3 1p (G , G , G)= G := (w1, w2, w3) + C, 
Po 

where p0 = r(t0 ) and C E C3 is a constant complex vector. Remember that our surface 
X = RG and X1r;2 = -:SG. By Proposition 8.1, X,,;2 or is a straight line segment. 
Since the Gauss map of X1r; 2 is the same as that of X, the Gauss map of X1r; 2 is in the 
xz-plane along r, so the straight line segment X1r;2 or is parallel to they-axis. Thus 
:SG1 or and :SG3 or are constants. By adjusting C we may assume that the constants 
are zeros. Remember that along r, w E R. Now let U+ := {w E U I Rw 2:: 0} and 

U_ := { w E U I Rw ::S: 0}. We can extend G1 1 and G3 1 to U by (Ji(w) = Qi(w), 
u+ u+ 

fori = 1, 3, w E U_ and w E U+. Since RG2 or = 0, we can extend G2 1 to U_ by 
u+ 

G2 (w) = -G2 (w), for wE u_ and wE u+. Since G is holomorphic, we know that G is 
holomorphic and G = G on U. Choose a small disk D C U _ U U + such that D = D, 
then Y = RG is a minimal surface on D. Since X = Y on D n U _, by the Extension 
Theorem (Theorem 4.2), X= Yon D. Looking at the real part, we have for any wED, 

(X1 (w), X 2 (w), X 3 (w)) = RG(w) = RG(w) = (X1 (w), -X2 (w), X 3 (w)) = X(w), 

which is a reflection in the xz-plane. By the Extension Theorem (Theorem 4.2) again, 
this reflection is a congruence of X. 

Similarly we can prove that if X or is a straight line segment, then the rotation by 
180° around X or is a congruence of X. D 

Exercise : Prove that if X or is a straight line segment, then rotation by 180° around 
X or is a congruence of X. 

Finally, we show that each component of the Gauss map N is an eigenvector of the 
Laplace operator l::,x. First remember that for a conformal representation of a minimal 
surface, l::,x = A - 2 !::,. 

Proposition 8.3 The Gauss map N satisfies 

l::,xN = 2KN, (8.36) 

where K is the Gauss curvature. 

Proof. Let g and rJ be the Enneper-Weierstrass data for X. On an isothermal neigh­
bourhood (U, z) we have 

L::,N = 4 a:;zN = 4 a:~ [ 1 +1lgl2 ( 2Rg, 2:Sg, lgl2- 1)] 
[4a:;z(1 + lgl 2)-1] (2Rg,2:Sg, lgl 2 -1) + 4(1 + lgl2)-1 a:~ (2Rg,2:Sg, lgl2 -1) 

+8R { [ :z (1 + lgl2)-1] ~ ( 2Rg, 2:Sg, lgl 2 - 1)}. 

30 



Since g is holomorphic, 
a ( 12)-1 -g'?J 
az 1 + fg = (1 + fgl 2)2' 

4~(1 + fgf2)-l = 4fg'l2(lgl 2
- 1) 0 

azaz (fgf2 + 1)3 

Using the Cauchy-Riemann equations we have 

:z ( 2!Rg, 28g, fgl 2 - 1) = (g', ig', gg'). 

Sincce 'Rg and 8g are harmonic, 

Hence 

and thus 

D 
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