8 Some Applications of the Enneper-Weierstrass Rep-
resentation

Given a minimal surface X : M — R? and its Enneper-Weierstrass representation, fix a
simply connected open set U C M. Fixing py € U we can define a family of isometric
minimal surfaces associated to Xy : U — R?, 0 < 0 < 27, by

Xo(p) = Re® /p(wl, way w3) +C, peU, (8.35)

Po

where the w;’s are the 1-forms in the Enneper-Weierstrass representation of X and C
is a constant vector. The Enneper-Weierstrass data for Xy are g5 = g and ng = 7.
When 6 = 7/2, X/, is called the conjugate surface of X.

Let I C R be an interval and r : I — U be a geodesic such that X o r is a plane
curve. Then we know that r must be a curvature line, thus by our criterion in the
previous section,

d(gor)nor € R.

Since X and X,/, are isometric, r is also a geodesic of X, /,. Moreover,
d(grj207)0r 20T = id(gor)nor € iR,

and hence r is an asymptotic line of X, /. Since the space curve X, or is both a
geodesic and an asymptotic line of X, /5, it must be a straight line segment on X/, (in
fact, the normal and geodesic curvatures of X, sor are both zero, and so its curvature is
zero everywhere). Since X and X/, are conjugate to each other (up to sign), we have

Proposition 8.1 Xor is a plane geodesic (straight line segment) if and only iof X, p0r
is a straight line segment (a plane geodesic).

In fact, we have more information whenever we have a plane geodesic or a straight
line segment on X. Namely, the surface X must have some symmetry.

Theorem 8.2 (Reflection and Rotation Theorems) If a plane geodesic which is
not a straight line segment lies on a minimal surface, then reflection in the plane of the
geodesic is a congruence of the minimal surface.

If a straight line segment lies on a minimal surface, then 180°-rotation around the
straight line is a a congruence of the minimal surface.

Proof. Let X or be a plane geodesic but not a straight line segment on X. By a
rotation in R® we can assume that Xor is in the zz-plane. Since Xor is a geodesic and
is not a straight line segment, the Gauss map N of X along r must be in the zz-plane.
Thus g = 7oN is real along r. Select a point r(¢) such that ¢’(r(to)) # 0; then in a
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simply connected neighbourhood U of r(¢), w = g(z) is a well defined coordinate of
M. We can use the representation (6.27) and consider the holomorphic mapping on U,

P

(GHG: G =G = | (w1, wa, ws) +C,

Po
where py = r(to) and C € C? is a constant complex vector. Remember that our surface
X = RG and Xr/» = —SG. By Proposition 8.1, Xy p0r is a straight line segment.
Since the Gauss map of X/, is the same as that of X, the Gauss map of X/, is in the
xz-plane along 7, so the straight line segment X, ,or is parallel to the y-axis. Thus
3Glor and IG3or are constants. By adjusting C we may assume that the constants
are zeros. Remember that along r, w € R. Now let U, := {w € U }%w > 0} and
U_:={we U’é}%w < 0}. We can extend G* ;. and G?"U to U by G*(w) = Gi(m),

_’_

+
fori=1,3, w € U_ and w € U,. Since RG%?or = 0, we can extend GQIU to U_ by
+

G?(w) = —G2(w), for w € U_ and @ € U,. Since G is holomorphic, we know that G is
holomorphic and G = G on U. Choose a small disk D ¢ U_ U U, such that D = D,
then ¥ = RG is a minimal surface on D. Since X =Y on D NU_, by the Extension
Theorem (Theorem 4.2), X =Y on D. Looking at the real part, we have for any w € D,

(X (w), X2 (w), X3 (w)) = RG(w) = RG(w) = (X' (@), —-X*®), X*(W)) = X (W),

which is a reflection in the zz-plane. By the Extension Theorem (Theorem 4.2) again,
this reflection is a congruence of X.

Similarly we can prove that if X or is a straight line segment, then the rotation by
180° around Xor is a congruence of X. O

Exercise : Prove that if Xor is a straight line segment, then rotation by 180° around
Xor is a congruence of X.

Finally, we show that each component of the Gauss map IV is an eigenvector of the
Laplace operator Ax. First remember that for a conformal representation of a minimal
surface, Ay = A72A.

Proposition 8.3 The Gauss map N satisfies
AxN =2KN, (8.36)
where K is the Gauss curvature.

Proof. Let g and 1 be the Enneper-Weierstrass data for X. On an isothermal neigh-
bourhood (U, z) we have
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Since g is holomorphic,

0 1 -9'7
1 2 1 _
& 4lg'P(lgl? - 1)
1 -1 _ ZI LU — 2
48,202( l91%) (lg|> +1)3

Using the Cauchy-Riemann equations we have

0 e
= (29,29, 19/ — 1) = (¢, 7', 99)-
Sincce Rg and &g are harmonic,
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(29,289, " = 1) = (0,0,1¢1").
Hence

4 112 2 _ 1 3 ,
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Now by (7.28) and (7.30),
A2 = "4[QII2
(1+1g/%)?
and thus
AN = 2KA®N.
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