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Abstract We discuss some recent work on numerical generation of conformal maps and 

minimal surfaces. Much of this work is joint with Gerd Dziuk. Some of the material on 

unstable minimal surfaces was developed subsequent to the Workshop. 

L CONFORMAL MAPS 

1.1 General Considerations 

Suppose D and Q are simply connected bounded domains in R 2 with C 1 boundaries. Let 

(1) :F= {u = (u1,uz): D ·-+ Q ju E W1'2(D)nC0(aD), uiavis a weakly 

monotone orientation preserving map onto an} 

For fixed Pb P2, P3 E aD and qb q2, q3 E an having the same orientation, let 

(2) :F.= {u E :F I u(p;) = q; fori= 1,2,3}. 

It is well known that there is a unique u E :F. which is conformal. 

For u E :F let <71(x) and <7z(x) be the signed singular values of the map Du(x). Thus 

Du(x)=SoO 

where 0 is a rotation and Sis a symmetric map with eigenvalues <71(x) and 0"2 (x). The 

failure of u to be conformal at x is measured by the quantity 

(3) 
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det L = L 11 L 22 - L21L12 are invariant under orthonormal transformations. Using this, we 

see that the expression in (3) equals 

(4) (ou1 _ ou2) 2 + (ou 1 + ou 2 )
2 

\ox oy . oy ox 

Note that this expression equals zero iff the Cauchy Riemann equations are satisfied iff u 

is conformaL Note also that ( 4) can be written in the form 

(5) I
' J ou - ou 1

2 

ox oy, ' 

where J is rotation by 1r /2. Vve again see this is a natural measure of the failure of u to 

be conformal. 

we observe that any of (3), (5) can be written in the form 

(6) - 2 ( oul OUz - oul OUz \ 
ox a11 oy ox J ' 

\ . / 

where the second term is the signed Jacobian of the map u. 

Motivated by all this we define the conformal energy of u to be 

Ec(u) = ~ 
2 

(
r f?ui _ ouz \) 2 + (ou1 + ou2 \ 2 

ox oy oy fJx ) 

(7) = ~;; J 1 ou _ 8ul 2 

2 D 1 ox oy I 
= ~j {(8u1). 2 + (au1 )

2 + (ou2 ')
2 + (au2 )

2
) _ f (au1au 2 _ ou1au2 \ 

2 D \ fJx fJy ax ay } D OX ay fJy ax ) 
= Ev(u) -rnr, 

where E D(u) is the Dirichlet energy of u and rnr is the area of n. 

Remark. The above can all be generalised in a straightforward way to the case of arbitrary 

metrics on D and n. 
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1.2 Numerical Conformal Maps 

We now turn to the question of finding a numerical approximation to the unique conformal 

map u E :F*. In caseD or fl is a disc, and the standard metric is used in each case, there is 

an extensive literature involving integral transform techniques, see [Tr]. One usually finds 

the boundary map directly by these techniques and then extends this map to all of D by 

finding a numerical approximation to the unique harmonic extension. 

A second approach is as follows. It is well known that the unique eonformal map in :F* is 

eharaeterised by minimising the Diriehlet energy. Let Dh be a triangulation of D of grid 

"size" h, and suppose that p1 ,pz,P3 are boundary nodes. Let 

(8) :F; = {v : D h -+ fl j v is linear on each face of D h, 

v{boundary nodes} can, 

v is order preserving on {boundary nodes}, 

v(p;) = qi for i = 1,2,3} 

One can extend v to a map on all of D by first orthogonally projeeting D \ Dh onto oDh. 

It is shown in [T1,2] that if uh minimises Ev in the class :F:, then uh -+ u in W 1 •2(D) n 

C0 ( oD), where u is the unique conforrnal map in :F*. More general results are obtained 

there in the context of minimal surfaces in R 3 • See :also [W] and the later discussion in 

Section 2. 

Both these methods have their disadvantages. The integral transform methods only apply 

in ease either D and fl is a disc, although this ean be avoided in principle by a two step 

process. Moreover, they only apply to the standard metric on D or fl, although they eould 

presumably be generalised in some cases. Finally, they do not generalise to the case of 

non-simply connected domains. 

The second method is not partieularly robust. For example, eonsider the problem of finding 
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a conformal map from the unit disc to the region bounded by the clover leaf curve 

(9) g(t) = ((1 + pcos 3t) cost, (1 + pcos 3t) sin t). 

Let PI, P2, P3 on the unit circle and q1, q2, q3 on the clover leaf be given by t = 1r /3, 1r, 57r /3. 

Let Dh be the hexagonal triangulation of the unit disc with nl levels where h = 1/nl, 

as shown in Figure 1. In attempting to minimise Ev, uh will often take a configuration 

similar to that shown in Figure 2. Thus the Dirichlet energy is minimised by decreasing 

the area of the image of uh. See further discussion in the following section. 

One can avoid this problem by adding a penalty term corresponding to the area "defect". 

This is in fact equivalent to the following approach for an appropriate choice of penalty 

term. However, the simple addition of a penalty term is not natural in the more general 

situation of minimal surfaces as discussed in Section 2. 

1.3 A New Numerical Technique for Finding Conformal Maps 

An alternative approach to the previous two methods is to minimise the Conformal Energy 

directly, rather than the Dirichlet Energy. Clearly Ec( u) ;::: 0, and Ec( u) = 0 iff u is 

conformal. Thus minimisers of Ec( u) are conformal. 

On the other hand we note from (6), c.£.(7), that 

(10) 

where A( uh) = j!lhj is the signed area ofthe image of Dh. It is clear then from (10) that uh 

will attempt to minimise Ev(uh) by decreasing j!lhj. This explains the fact noted before 

that if one tries to minimise the Dirichlet energy one often observes that the images of the 

boundary nodes slide around an and the image surface tends to degenerate. 

In Figures 2 and 3 we indicate the difference between minimising the Dirichlet energy 

and minimising the conformal energy in two particular cases for the clover leaf curve. 
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The conformal energy approach gives much more satisfactory results. The minimisation 

procedure used is outlined in the following section. 

Remark. It is straightforward to extend this approach to the case of arbitrary metrics. 

In particular one can use the method to find a conformal map from a domain in R2 to a 

surface in R3 with the induced metric. 

We note that in case Q is the unit disc with the standard metric, a related approach is 

taken in [CA] where the Cauchy Riemann equations are solved directly by a finite difference 

scheme. 

In the next Proposition we justify the approach of minimising conformal energy, making 

essential use of a result from [T2] where a similar result is established for the Dirichlet 

energy approach. 

Theorem 1" If u h E :F~' is the conformal minimiser obtained as above, then u h -+ u in 

W 1 •2 (D) n C 0 (8D) ash-+ oo, where u is conformaL 

Proof. Fix Xo E n. Then 

lilhl = ·[. (x- xo) · dt::; di8Hhl::; dl8i11, 
Jan" 

where tis the unit tangent vector to anh and dis the diameter ·of H. Thus lith I is bounded 

independently of h (this is not immediately obvious because 

by uh). 

may be "multiply covered" 

It follows from (10) that Ev(uh) is bounded independently of h. Moreover {uh} is bounded 

uniformly in L 00 by the discrete maximum principle. On passing to a subsequence it follows 

that uh -~ tt weakly in W 1 •2(D) for some u E :F*. From [T2, Lemma 6] one has moreover 

that -+ u uniformly in C 0 (8D). It then follows that li1 11 1-+ !ill. 
Thus 
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___, u uniformly in C 0 (i3D) it follows from the 

appropriate version of Poincare's inequality that uh ___, u in W 1 •2(D). 

Moreover 

Ev(u) :S: liminf Ev(uh) 

= liminf(Ec(uh) + A(uh)) 

=If!\, 

since jfihj ___, Jf!\ by the above and Ec( uh) -+ 0 by the following proposition. 

From (7) it follows that Ev(u) = Jnj and u is conformal. Finally, since there is a unique 

conformal u E the original sequence (rather than just a subsequence) converges to u. 

Q.E.D. 

The proof of [T2, Lemma 6] uses the Courant-Lebesgue Lemma, and so does not give 

better than logarithmic type convergence. We hope to address the more subtle question 

of order h convergence in the W1•2 (D) norm in a subsequent paper. 

None-the-less, a more natural notion of the failure of uh to be conformal, rather than 

Jlu -u"llw,,2, is Ec(u- uh) = Ec(uh), and in this sense one has order h2 convergence. 

Proposition 2. With notation as before, 

for some constant c independent of h. 

Proof. The equality follows from (5) and the fact that u is conformaL The inequality 

follows from the fact that if vh is the piecewise linear approximation to u which agrees 

with u at the nodes of Dh, then it is straightforward to show that Ec( vh) ::; ch2. Q.E.D. 
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Remark In many applications it is not natural to specify three points Pl,pz,P3 and their 

images q1 , q2 , q3 • Moreover, different choices of normalising points will lead to significant 

differences in Ec( u h) for the minimiser u h E 

Thus let Fh be defined as in (8), but without the requirement that v(p;) = q;. While 

the absolute minimium of Ec(v) in Fh is taken by the constant maps, in numerical min­

imisation procedures one will usually obtain a local minimum uh near some non-trivial 

conformal map u (assuming one begins the minimisation procedure with some reasonable 

initial map uo). This is not surprising in light of the proof of Proposition 2 where it was 

noted that the piecewise linear approximation to a conformal map u had conformal en­

ergy at most ch2 • On the other hand, minimising the Dirichlet energy in Fh will quite 

often actually give a constant map. The contrast is usually even more striking than that 

shown by the examples in Figures 2 and 3, where the images of three points are specified. 

The difference between the two approaches can again be understood qualitatively by the 

presence of the area term in (10). 

In practice, it is better to begin the conformal minimisation procedure in the class Fh, 

but when the procedure begins to converge, the rate of convergence can then be improved 

by fixing the images of three of the boundary nodes. 

Alternatively, 'one can norn.1aiise 

at the identity, as discussed in Section 2. 

1.4 Outline of Numerical Algorithm 

Fix 1 : S 1 -+ 8D. For v E let { ,xn I i = 1, ... ,M} and {r(ti) I i = 1, ... ,N} be 

the images under v of the interior and boundary nodes respectively of Dh. 

Thus we define 

E(xL ... ,xlt, xi, ... , xJw,ti, ... ,tN)(= E(x, t)) = Ec(v) 
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We want to minimise E in R 2M+N, subject to the constraint 

(11) 

It is straightforward to compute E(x, t) and grad E(x, t) (note that both these expressions 

will depend on the map 'Y), and one can then use various minimisation packages. In 

practice it is not necessary to impose the constraint (11 ), as it will normally be 

automatically maintained. We used the LBFGS minimisation package of Nocedal [No], 

[LN]. 

2. MINIMAL SURFACES 

2.1 General Considerations 

Suppose r is a C1 imbedded curve in R3 . Let D be the unit disc in R2 . Then we say u is 

a conformally parametrised minimal surface with boundary r if 

u I iJD is a monotone para.metrisation of r' 

6u=0, 

1°11
1 =If}}!_ I Ux • u, .. = 0. ax I ay ' -

This is the stationarity condition for the variational problem of minimising J D 1Dul2 in the 

class 

(12) :F = {u D ~, R 3 j u E W 1' 2 (D) n C0 (8D), uir is a weakly 

monotone parametrisation of r}. 

Let 

(13) :F* = {u E :F I u(p;) = q; fori= 1,2,3}. 
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Let 

(14) :F: = { v Dh-+ R 3 lv is linear on each face of Dh, 

v {boundary nodes} c r' 

v is order preserving on {boundary nodes}, 

v(p;) = q; for i = 1,2,3} 

For u E :F we define the conformal energy (analogously to (7)) by 

(15) 111 ou 8u' 2 
Ec(u) =- J(u)---

2 v ax oy 
= ~ fv jDul 2'-1/~c(u) 
= Ev(u) -lu(D)1, 

where J( u) is rotation through 1r /2 in the oriented tangent plane to the image of u (as­

suming sufficient smoothness of u), Jac(u) is the Jacobian of the map u (i.e. the square 

root of the sum of the squares of the 2 x 2 minors of the 2 x 3 matrix Du), Ev(u) is the 

Dirichlet energy of u, and iu(D)I is the area of the image of u. 

Notice Ec(u) ~ 0 and Ec(u) = 0 if u is a conformal map. Moreover, u is a conformally 

parametrised minimal surface iff u is harmonic and Ec( u) = 0. 

If we attempt to obtain minimal surfaces by minimising E v( u) in the class :F!:, we quickly 

run into the same problem as occurred in the case of conformal maps; that of points sliding 

around the boundary and the surface "pulling away" from the boundary as in Figure 2. 

On the other hand it is no longer satisfactory to minimise Ec( u ). The problem here is 

thai there is a conformal parametrisation of any smooth surface, and thus no canonical 

candidate for the conformal energy minimiser in :F*. 

In the smooth case one might attempt to proceed as follows. Beginning with some initial 

map v0 which minimises the Dirichlet energy subject to its own boundary values, find a 
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conformal u 0 with the same image" Let v 1 be the Dirichlet minimiser having the same 

boundary values as u 0 and find a conformal u 1 with the same image as v1 • Proceeding in 

this way we obtain a sequence { u 1J which has monotonely nonincreasing Dirichlet energy. 

This should converge to a local Dirichlet minimiser. Implementing a version of this in the 

discrete case is indeed possible, and avoids the problem of the surface pulling away from 

the boundary, but convergence is very slow and not accurate. See [R] for a related idea. 

A much more satisfactory approach is to work in the class of boundary maps; cJO the 

Douglas approach and the Morse theory approach to the Plateau problem in [Co] and [St]. 

Let 

(16) M = { u {)D ~ r I u E W 1 ' 2(8D), tl is a weakly monotone 

parametrisation of r}. 

Each u E )\,1 has a unique harmonic extension to a map u defined over D. Write Ec( u) 

for Then Ec( u) 2:: 0 and Ec( u) = 0 iff u is a conformally parametrised minimal 

surface. Thus u minimises Ec( u) in ./111 iff u is a minimal surface, and all minimal surfaces 

are obtained in this way. 

Thus minimising Ec( u) in JA has the very significant advantage of giving the unstable 

minimal surfaces as well as the local minimisers. 

A natural numerical procedure is to define 

(17) Jvt! = { v : 8Dh ~ R3 lv is linear on each edge of 8D\ 

v{boundary nodes} c r, 

v is order preserving on {boundary nodes}, 

v(p;) = q; for i = 1,2,3}. 

Each v E A-1: has a unique discrete harmonic extension to a map v defined over Dh 

(obtained by minimising the Dirichlet energy in F!: with boundary values v ). Write Ec( v) 
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for Ec( v). If v minimises Ec( v) in M:, then v will approximate a (possibly unstable) 

minimal surface. We discuss convergence questions elsewhere. 

2.2 Outline of Numerical Algorithm 

Fix a parametrisation 7 : S 1 -t r. For v E M: let X = { (XL X;' X D I i = 1' ... ' M} and 

y = { (y[, , yf) I i = 1, ... , N} be the images under v of the interior and boundary nodes 

respectively of .Dh. Lett= (t1, ... , tN) be determined by Yi = 7(t;) fori= 1, ... , N. Note 

that v and v are uniquely determined by t, and conversely. 

Next define 

(18) E(t) := Ec(v) = Ec(v) 

= ED(v)- A(v) 

-· E ( 1 3 1 3) -. D xl, ... ,xM,YI,···,YN 

=: ED(x(t), y(t))- A(x(t), y(t)) 

The problem is to minimise E(t) in RN, subject to the constraint 

(19) 

In order to minimise E(.) we need to be able to compute E(t) and grad E( t) fvr arbitrary 

tERN. 

To compute E(t) first find v (by solving the Dirichlet problem) and then compute E(t) = 

Ec(v). 

To compute grad E(t) we proceed as follows. 



151 

First note from (18) that 

(20) 
aE aEv ox 8Ev oy 8A ox 8A oy 
~ = -.-,.--+---- --:----
i:Jt ax at ay at ax at oy at 

8E D fJy fJA fJx 8A oy 
= ay at - ax at -- oy at ' 

since 8EDI8x = 0 from the Dirichlet minimising properties of v. 

The quantities 8EDifJy, 8AI8x, 8AI8y and 8yl8t can all be readily computed (the last 

equals 

(21) 

We find ox lot by differentiating 8EDI8x = 0 vvith respect tot to obtain 

82ED ox 
---
8x8x ot 

82Ev oy 
- 8x8y 8t · 

Since 82 ED/ ox ox is positive definite and 82 ED I 8x8y and 8y I 8t are computable, one can 

solve for 8xl8t. 

( The computational requirements for solving (21) can be shortened considerably as 

follows. Note that ED is quadratic in X and y and so the matrices cPEv/8x8x and 

82EDI8x8y are independent oft. Let e"' range over the 3N basis vectors for R3 N and let 

za be given by 

(22) 

The z 01 are independent of t and can be computed and stored at the beginning of the 

minimisation procedure (further simplifications can be achieved by using the symmetries 

of ED)· 

The solutions to (21) are then given by 

(23) 

For each a there are only three non-zero terms in the above sum. ) 

The minimisation procedure is now clear. Begin with some initial t 0 and use a minimisation 

package to compute ti+l from ti, E(ti), grad EW) and perhaps information from earlier 
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steps. We used the LBFGS procedure ofNocedal [No], [LN]. The (discrete) minimal surface 

is the solution of the (discrete) Dirichlet problem corresponding to the terminating value 

of ti. 

In practice the condition (19) is stronger than necessary. One can begin with t 0 subject 

only to the requirement that it induces a map of S 1 to S 1 with winding number one. The 

condition (19) will then hold for all ti with i sufficiently large. See [Ni, Sect 307] and 

(Co, pp 21:3-218] for some theoretical justification of this fact. 

Instead of normalising by fixing the image of three boundary nodes, we normalised by 

staying in the class orthogonal to the tangent space at the identity map to the conformal 

group of the disc, see [St, p 46]. In the smooth case, this is equivalent to restricting to 

maps of the form u = I' o g where g : S1 -+ S 1 and 

(24) 
{2" [21r 

lo g = lo e = 211. 
[2"' [2" 

Jo gcose = Jo gsin{} = 0. 

Equivalently, the Fourier expansion of g is of the form 

00 

(25) g(B) = (} + (an cos nB + bn sin nB). 
.n=2 

2.3 Examples 

The curve r r is given by !'(B) = = (xr(8), y,.(O), Zr(O)) where 

1 
x,.(8) = rcos8- 3r 3 cos38, 

Y (8) = -r sine -- ~r 3 sin 38 
r , 3 ' 

Yr(8) = cos28, 

for 0 :::::: e :::::: 21r. If 1 < r < J3, then r r bounds at least 3 minimal surfaces, of which two are 

area minimising and one (known as Enneper's surface) is unstable. An explicit conformal 

representation is given for the latter by the Wieirstrass representation [Ni, Sect.88]. 
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As a test case we took r = 1.1 aRd began with boundary data corresponding to the function 

g in (25) given by various values of an and bn- The method converged to Enneper's 

surface with an error of approximately 3 decimal places in the L2 norm for 16 levels in 

the triangulation of the unit disc. See Figure 4 for an approximation to Er.neper's surface 

obtained by the present method. 

In Figure 5 we show (a discrete approximation to) the absolute minimiser obtained by 

minimising the Dirichlet energy. For larger values of r this method is not satisfactory due 

to the "pulling away" phenomenon discussed earlier. 

For the initial data considered, the final surface was always Enneper's surface rather than 

one of the absolute minimisers. "We can understand this as follows. The conformal factor 

of the parametrising map ih for the absolute minimiser takes a much larger range of values 

than in the case of '11 2 for Enneper's surface (as we see from Figure's 4 and 5). If u~ and 

il~ are the corresponding discrete maps, then it follows that Ec(u~) >> Ec(uq) > 0 due 

to discretisation error. Since the minimisation package tends to find absolute rather than 

local minima, the method converged to t1~ rather than u~. 

However, for other boundary curves we have found more than one one stationary point for 

the area (or equivalently, Dirichlet) functional. 

In Figure 6 we show a branched minimal immersion. The absolute mm1m1ser has no 

branch points, as is well known by a cut·and·paste argument. The minimal surface shown 

is probably unstable, as is indicated by taking it as initial data and minimising the Dirichlet 

energy. The surface slowly (at first) evolves to an imbedded surface, which eventually "pulls 

away" from the boundary as discussed earlier (due to the large variation in the conformal 

factor over the surface). 
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2.4 Extensions 

We are currently implementing a selective refinement algorithm which will significantly de­

crease the discretisation erroL We are also implementing another minimisation procedure 

which should not favour global over local minima. 

Finally we remark that these methods are capable of significant extensions to related 

problems. We have implemented a preliminary version to obtain minimal surfaces where 

one part of the boundary is taken on a given one dimensional curve, and the remaining part 

of the boundary is normal to a two dimensional surface but otherwise free. The method 

can clearly be generalised to obtain unstable small H-surfaces, c.f. [St]. We anticipate 

that with some further extensions to first obtain unstable solutions to the corresponding 

Dirichlet problem, the method will be able to also compute unstable large H-surfaces. 
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ua.J..,5 u.'""""''"' of Disc with number of levels nl equal to 8, 16. 

1 
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Result of minimising the Dirichlet energy among discrete maps to the 

dover leaf domain with triangulations corresponding to Figure 1. 

Figure 2 
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Result of minimising the conformal energy among discrete maps to the 

clover leaf domain with triangulations corresponding to Figure 1. 

Figure 3 
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Enneper's surface, an unstabie minimal surface. 

Figure 4 
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Area minimising surface with the same boundary as Enneper's surface. 

Figure 5 
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A branched minimal immersion. 

Figure 6 


