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SINGULARITY FORMATION IN GEOMETRIC EVOLUTION EQUATIONS 

Gerhard Huisken 

In recent years major progress was made on the global behaviour of geometric evolution 

equations, in particular the harmonic map heatflow, the Ricci flow and the mean curvature 

flow. Longtime existence and regularity could be shown in a number of important cases. 

On the other hand, it became clear that in general singularities do occur in finite time, 

and an understanding of their structure should be crucial both for further development in 

the theory of these equations and for possible applications. In this article we will point out 

some of the strong analogies in the equations mentioned above and show in the case of the 

mean curvature flow how rescaling techniques can be used to understand the asymptotic 

behaviour of many singularities. We emphasize techniques applicable in all the equations 

under consideration and mention some open problems. 

1. The Equations 

A first major success for the heat equation method was established by Eells and Sampson 

[ES] in 1964. They considered a smooth map u0 : (Mm, g)--+ (Nn, h) between two compact 

Riemannian manifolds and solved the evolution equation 

(1) 

d 
dt u(p, t) = -\i'E(u)(p, t) 

u(p,O) = uo(p), 
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where 

E(u) = JM IDu!~,hdfl 

is the Dirichlet energy of the mapping u. Stationary points of E are harmonic maps and. 

Eells and Sampson were able to show that the harmonic map heatfiow (1) has a smooth 

solution for all times which converges to a harmonic map in the same homotopy class 

as uo provided (Nn, h) has nonpositive sectional curvature. This result has since been 

extended in various directions, see e.g. [J], but more recently it became clear that in 

general singularities will occur in finite time. 

Technically, this loss of regularity is due to the evolution equation for 1Dul2 

(2) 
· ~ 1Dul2 = 6uiDui2 - 2ID2 ul2 - RicfiD;u" Diu" 

+ Riem~p"Y8D;u" DjuP D;u"Y Dju8 , 

where the fourth order gradient term can cause finite time blowup if the sectional curvature 

ofM is positive. 

More recently Struwe [St2,St3] obtained an estimate on the size of the singular set and 

proved homogeneous behaviour of solutions near singularities under very general assump

tions. A crucial ingredient in this result was Moser's Harnack inequality and a monotonicity 

formula for the weighted energy function 

Here k > 0 is a suitably chosen backward heatkernel on Nn. We will demonstrate the use 

of a monotonicity formula for the case of mean curvature flow in section 2. 



Given a compact Riemannian manifold Mn with metric g0 , Hamilton proposed in 1982 

[Hal] to study the equation 

(3) 
d 

where is the Ricci curvature of the evolving metric and r = § Rdp is the average of its 

scalar curvature. Hamilton proved that on a three-manifold with positive Ricci curvature 

equation has a smooth solution for all time which converges to a constant curvature 

metric on M as t --+ oo, thus classifying all compact three-manifolds of positive Ricci 

curvature. Since then many other global regularity and existence results were proved, 

compare [Ha2,Ha3,Hu4,Ch], but in general solutions of (3) may develop singularities in 

finite time. A typical example consists of two S3 's which are connected by a long thin 

tube of type x R. It is a major open problem to understand the structure of such 

singularities with the ultimate goal of extending the evolution in a weak form for all time. 

Analytically, the singular behaviour is reflected in the evolutio:r:equation derived from (3) 

for the scalar curvature 

(4) dd R = D.R + 2jRicj2 - ~r R, 
t n 

where the quadratic term in the curvature is responsible for finite time blowup. The full 

Riemann curvature tensor satisfies a similar, but more complicated evolution equation, 

compare [Hal]. Since the evolution equation in this case is not derived from an energy 

functional, no monotonicity result analogous to the harmonic :map case was established so 

far. However, progress on local regularity properties of the flow was made by Hamilton 

[Ha2] in establishing a Harnack inequality and by Shi [Shj who derived interior estimates 

for the curvature and its derivatives. 
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The third example of a geometric evolution equation concerns smooth imm~rsions 

Ft : J\1n -+ R n+t of hypersurfaces in Euclidean space which move in direction of their 

mean curvature vector. That is, the immersions Ft = F(-, t) satisfy the evolution equation 

(5) 

d 
dt F(p, t) = -H(p, t)v(p, t) p E Mn, t > 0 

F(p,O) = Fo(p), 

where Hand v are the mean curvature and unit normal on Mt = Ft(Mn) respectively. As 

before this is a nonlinear parabolic system of equations and it is well known that a solution 

will at least exist for short time under reasonable assumptions on the initial data. Also, 

a number of global existence results have been obtained. For example, it was shown that 

compact convex surfaces contract smoothly to a round point in finite time [GH,Hul], that 

closed embedded curves in R 2 become convex [Grl] and entire graphs over Rn exist for 

all time [EHl]. 

But again, it is clear that singularities, in particular pinching can occur in finite time, the 

standard example consisting of two large spheres connected by a long, thin tube. Another 

example of a singularity arises from a curve with winding number two in the plane, where 

a small loop pinches off fortning a cusp, compare [A3]. This singular behaviour is again 

reflected in the evolution equation for the curvature, e.g. the square of the norm of the 

second fundamental form IA.I2 , computed in [Hul], 

(6) 

Notice that the equation for the extrinsic curvature term IAI2 here has the same scaling 

behaviour as the equation for 1Dul2 in (2) for the harmonic map heatflow and the equation 
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for the intrinsic curvature in ( 4) for the Ricci flow. It is not surprising therefore that the 

behaviour of solutions near singularities exhibits strong analogies for all three equations. In 

particular, it appears that solutions in many situations tend to be asymptotically selfsimilar 

when approaching a singularity. We will now show for the special case of mean curvature 

flow how rescaling techniques can be used to prove this selfsimilar behaviour for a large 

number of cases. 

2. Behaviour of Singularities for the Mean Curvature Flow 

We assume in this section that A1n is compact without boundary and F1 satisfies equation 

(5). It is well known, see [Hul], that the mean curvature flow can only become singular in 

finite time if the curvature becomes infinite.· Thus, assuming that the singularity occurs 

at timeT at the origin let us assume that there is p0 E Mn such that F(p0 , t) __, 0 and 

IAI2 (po, t) -+ oo as t -+ T. In view of equation (6) we have that the quantity U =max IAI2 
M, 

satisfies the inequality ftU ::; 2U2 • It is then easy to see that U must blow up at least like 

(T- t)-1 , i.e. 

(7) 

It is much more difficult to determine an upper bound for the blowup rate near a singularity. 

It proves to be useful to distinguish two classes of singularities, depending on whether the 

blowup is as in (7) or higher. We refer to a type 1 singularity if we have 

2 Co 
max JAI $ -(T ) M, -t 

(8) 

for some constant C0 , otherwise we call it a type 2 singularity. It is known that spheres, 

convex surfaces, cylinders and rotational symmetric shrinking necks in R 3 are of type 1, 
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see [Hul,Hu2] whereas shrinking loops forming a cusp are of type 2, see [A3]. In [A3] 

Angenant proves that a shrinking approaches a seHtranslating solution of the mean 

curvature flow after rescaling, i.e. a curve which moves under translation without changing 

its shape. Apart from this result very little is known of the general behaviour of type 2 

singularities. 

In the following we will concentrate on the case of type 1 singularities. In this case we 

rescale the flow by setting 

(9) F(p, s) = (2(T- t))-"ir F(p, s = -~·log(T-
2 

such that the new time variables tends to infinity as t --< T. The rescaled position vector 

then satisfies the equation 

d - - -
dtF=-Hv+F. 

In view of (8) the rescaled surfaces il.r. .ff'(-, s )(A1n) have bounded curvature and one 

can then prove estimates for all higher derivatives of the second fundamental form, see e.g. 

[Hu2] or [EH2]: 

(10) \fm ~ 1. 

Furthermore, using again assumption (8) one can show that F(p0 , s) remams bounded 

and it is then possible to prove that a subsequence of M, converges to a smooth limiting 

hypersurface 1\l.f00 • 

To understand the structure of lV/00 we will use a monotonicity formula. Let p be a function 
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on R n+ 1 defined by 

1 ( -lx!2 ) 
p(x,t)= (47r(T-t))'~exp 4(T-t) , t < T, 

which is (T- t)! times the backward heatkernel in Rn+l. It then follows from equation 

( 5) that p satisfies the evolution equation 

d ({F,v}H 1 (F,v) 2 ) 
dtp = -b.p + p (T- t) - 4 (T- t)2 

on the hypersurface Mt. Since the area element on Mt changes according to the rule 

ftdf.l = -H2 d11 this implies the monotonicity formula 

(11) 
d (F, v) ( 2 )2 
dt JM, pdf.lt =- JM, p H- 2(T-t5 df.lt· 

This equation is similar to the monotonicity formula for minimal surfaces and states that 

surface area can not concentrate too fast near a singular point. After rescaling and setting 

p(x) = exp ( -tlxl 2 ) equation (11) takes the form 

and the integrand is no longer explicitly depending on time. Since this weighted area 

functional is always nonnegative and bounded at time t = 0, we conclude that 

(12) r= r_ pdfl,. $ c. 
lso JM, 

Hence, in view of the unifonn regularity estimates in (10) every limit surface l\I00 has to 

satisfy the equation 

(13) H=(F,v}. 

This is a second order elliptic equation and it is easy to see that any hypersurface M 0 

satisfying this equation gives rise to a selfsimilar solution of the mean curvature flow by 

setting Mt = (2(T- t))t M0 • So we have shown 
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Theorem 1. A type 1 singularity ofthe mean curvature :Bow is a.gymptotically selfsimilar, 

the surfaces approach a bomotbetically shrinking solution as t ~, T. 

It is an open problem to classify type 2 singularities in a similar way, it may be conjectured 

that type 2 singularities are asymptotically selftranslating. The reader should compare the 

above result vvith the paper [GK] by Giga and Kohn, where a sirflilar method was used 

to understand singularities of certain semilinear heat equations. For the h2xmonic map 

heatflow the behaviour near singularities is quite well understood, compare [St2], whereas 

for the Ricci flow very little is known, mainly because no monotonicity formula has been 

established. 

3. SelfsimHar solutions 

There is a large variety of selfsimilar, contracting solutions of the mean curvature flow as 

described by equation (13). Apart from the obvious examples sn and sn-m X Rm A.bresch 

and Langer [AL] found a discrete two-parameter family of convex immersed curves in 

R 2 which contract under homotheties. Furthermore, it is easy to numerically compute 

a very large variety of closed rotationally symmetric surfaces in R 3 satisfying equation 

(13), including an embedded torus, compare [A4]. It seems impossible at this stage to 

obtain a classification of all solutions to equation (13). However, we can prove a complete 

classification in the class of surfaces having nonnegative mean curvature: 
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Theorem 2. If M<X> is a smooth limiting hypersurface in. Rn+l satisfying (13), with 

nonnegative mean. curvature H ;::: 0, then M<X> is one of the following: 

(i) sn 

(ii) sn-m X Rm 

(iii) r X Rn-l' 

where r is one of the homothetically shrinking curves in R 2 found by Abresch and Langer. 

A proof of Theorem 2. for the compact case can be found in [Hu2], the noncompact case 

will appear elsewhere. Together with Theorem 1 this yields a fairly good description of 

type 1 singularities with nonnegative mean curvature. It is an open problem to show that 

generically these are the only singularities that can occur for embedded surfaces moving 

by mean curvature. Also, it would be very desirable to have a higher order approximation 

near singularities, i.e. estimates describing the rate of convergence toward the limiting 

hypersurface J.\f00 • This would open a possibility for extending the flow in a unique and 

controlled way beyond such singularities. 
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