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Fl.,OW OF HYPERSURFACES BY CURVATURE FUNCTIONS 

Ben Andrews 

This seminar concerns a class of flow equations for immersed hypersurfaces, 

modelled on the well-known m<"~n curvature flow. The flows in this class share much 

of the qualitative behaviour of the mean curvature flow, but are in general fully 

nonlinear; this compiicates some parts of their analysis. Other calculations are clarified 

by the general setting. I will present some results on the behaviour of convex 

hypersurfaces under these flows, which extend work on specific flows by Huisken 

(Hul), Tso (Tl) and Chow (Cl-2). Also new is a Harnack inequality for solutions of 

very general flows; this generalises results of Hamilton (Hal) and Chow (C3). Flows 

of this kind have some applications in geometry; for such purposes the mean curvature 

flow is not always the best candidate - I will describe an exampl.e which applies to 

manifolds of non-negative sectional curvature. 

In these flows, the evolution of a hypersurface is prescribed in terms of the 

speed of motion perpendicular to the surface at each point: Suppose the hypersurface is 

given at time t by the image of an immersion q;1 from a compact n-dimensi.onal 

manifold ilf into a Riemannian (n+l)-dimensional manifold N. Then the flow is 

determined by an equation of the form: 

(l) ft~Pix) = F(x,t)v(x,t) 

which is required to hold at each point x in M and each positive time t; v(x,t) is a 

unit normal to the hypersurface qJjl\,f) at the point q;[..x), and F is a function which 

prescribes the normal speed. 
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In general, some conditions must be imposed on the function F: 

Condition 1: 

is a function of the principal curvatures 

,.1\.2 , ... An of cp/M) at Cf!/X). This ensures that the speed is 

given by a second order partial differential operator acting on the 

surface, and depends only on the local geometry of the hypersurface. 

Condition 2: 

F is an increasing function of the principal curvatures: 

aF > o i = 1,2, ... ,n. · 
J).i ' 

This condition ensures that the flow is parabolic. 

Some further conditions are required for specific purposes; these will be discussed as 

arise. 

For compact initial surfaces, the mean curvature flow will always produce a 

singularity in finite time; it is not known in general what kinds of singularities can 

appear (see the papers of Huisken and Ecker in this volume). The special case of 

locally convex initial surfaces (that is, surfaces with second fundamental form definite 

everywhere) is more completely understood (see example 1). For present purposes I 

will consider only this case; to begin with I will also restrict attention to the case where 

N is the (n+l)-dimensional Euclidean space, and n > L To fix definitions, convex 

surfaces have inward-pointing normal v, and positive definite second fundamental 

form. 
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Several examples of flows of the form (1) have been considered previously: 

Example 1: 
n 

Mean Curvature F1ow (F= H = l:.A;). 
i""l 

The main result for the convex case is that of Huisken (Hul) which 

shows that any convex initial hypersurface is contracted to a point in 

finite time, and that the hypersurfaces become spherical as the final 

time is approached - in other words, a unique smooth solution to the 

flow (1) exists for some finite timeT; the hypersurfaces converge to 

a single point as this time is approached, and a suitable rescaling of the 

hypersurfaces gives convergence to a sphere at the final time. 

Example2: Gauss Curvature Flows ( F = Ka = ( Il Ai) a ' a > 
l=l 

Tso (Tl) initially considered the case a= 1, and showed that any 

strictly convex initial surface contracts to a point in finite time. Chow 

(Cl) extended this result to other a, and showed in the particular 

case a= X that the surfaces are asymptotically spherical, as for the 

mean curvature flow, It remains an open question vvhether this is true 

for other powers a. 

Example3: Flow by the Square Root of Scalar Curvature 

Chow (C2) considered this flow, and was able to show that convex 

surfaces contract to a point and become spherical, provided they 

satisfy a certain curvature pinching condition. 
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Example4: Expansion Flows. 

These are flows with rather different behaviour from the other 

examples discussed above. The speeds F satisfy conditions 1 and 2, 

and are also required to be homogeneous of degree -1 in the principal 

curvatures. Such flows have been considered by Urbas (Ul) and 

Huisken (Hu3), who showed (under some simple additional 

assumptions on the speed F) that convex initial surfaces are 

expanded to infinite radius in infinite time, and become spherical in the 

process. This conclusion holds also for star-shaped initial surfaces, 

as has been shown by Gerhardt (Gl) and Urbas (U2). 

I will describe some results which include examples 1- 3, in a generality similar 

to the treatment of example 4. For these purposes there are a variety of conditions 

which will be used to control the speed F: 

Condition 3: Homogeneity in the principal curvatures: 

Condition 4: Concavity in the principal curvatures: 

(4) (Hess(F))(~,S) :S 0, for all vectors S· 

Note that (3) and (4) are satisfied in-examples 1-3; other examples which satisfy these 

conditions are the symmetric means (F= H7 = (!;.;)\for r :S 1, and the mth root 
••I 

of them1h symmetric product (F= ~~7 = c;~:~r\,- .. A;m)\ form= l, ... ,n. 
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Condition 5: A;=O => F=O, i= l, ... ,n. 

This is satisfied for example by H, for r<O and K 11n, but not ~~~~ form< n. 

Condition 6: 

is a concave function of the 

principal curvatures. 

This is satisfied by Hr for r 2 -1, and Hr_1~'~ form = l, ... ,n. 

Condition 7: 

The derivatives ofF with respect to the principal curvatures are 

bounded: 

(5) 

This is not satisfied by K1111 , for example. 

Now I will discuss some general results modelled on the examples above. The 

proofs Df the theorems will be supplied in a forthcoming paper by the author. The 

partial result of example 3 holds under relatively few assumptions: 

Theorem 1: 

Suppose F satisfies the conditions 3.1 - 3.2 , and 6.1 - 6.2. Suppose the 

initial hypersurface M0 is strictly convex and satisfies the pinching condition 

(6) (H) . _ (H) 
supM, F < ml: a' F 
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where~ = {(A.1, •.• ) .. n): A.1 > 0, i = Then there exists a unique smooth 

solution {Mtf to ( 1) fort in some maximal time interval [0, T); the surfaces M1 

converge to a single point as t approaches T; rescaling these surfaces to maintain 

constant surface area gives convergence to a round sphere as the final time is 

approached. 

In certain cases this immediately implies a stronger result: 

Corollary 2: 

If in addition condition 5 holds or n = 2, then equation (6) is trivial, and 

arbitrary strictly convex initial sw:ra<~es contract to points and become spherical in the 

sense of theorem 1. 

The techniques employed here are similar to those devised by Huisken in 

(Hul): the parabolic maximum principle gives some control over the principal 

curvatures of the surfaces M1; a more difficult integral estimate is used to show that the 

principal curvatures must approach each other near any singularity; careful use of 

curvature gradient estimates gives the final control over the singularity, showing 

convergence to a sphere for the rescaled surfaces. The regularity theory for fully 

nonlinear equations developed by Krylov in (Kl) is very important here. 

Partial results can be obtained in certain other cases - analogous to those in 

example 2; these use techniques similar to those ofTso in (Tl) to control the curvature 

in terms of the enclosed volume of the surface; control of the curvature gives control 

over higher derivatives ofthe surface, again using the regularity ofKrylov (Kl). 
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Theorem 3: 

Suppose either: 

(i). F satisfies conditions 1 - 4 and 6, 

or (ii). F = aa, where a > 0 and G satisfies conditions 1 - 5. 

Then for any strictly convex initial surface, the flow ( 1) has a unique smooth solution 

for a finite time interval, and the surfaces are contracted to a point at the end of the time 

interval. 

As is evident from the results of the previous paragraph, many of the flows of 

form (1) have similar qualitative behaviour. It is often convenient to perform 

calculations in tl>Js general setting, since the details of particular flows are avoided. An 

important example is the proof of a parabolic Harnack inequality for these flows. In the 

context of flows of type (1), the Harnack inequalty was first proved by Hamilton 

(Ha2), for the mean curvature flow. Similar inequalities were proved earlier for the 

heat equation by Li and Yau (LY), and for the Ricci flow on a surface by Hamilton 

(Hal). The result gives control. over the mean curvatures at different times and places 

under the flow- for points x1 and x2 in M and positive times t1 < t2 , the inequality 

(7) 
H(x2,t;) 

H(xl'tt) 

is satisfied. Here d,Jxl'x2) is the distance between the points x1 and x2 in Mat time 

t1. This estimate has applications in controlling the types of singularities which can 

occur under the flow. 

Chow (C3) has since proved similar Harnack inequalities for the Gauss 

curvature flows of example 2. 

In both of these cases the Harnack inequality is deduced from a differential 

inequality: In the case of the mean curvature flow, 
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(8) 

holds for any convex solution (here h-1 is the inverse of the second fundamental 

form). 

A differential inequality of this form can be proved for a wide class of flows

In a forthcoming paper by the author, the following result is proved: 

Theorem 4: 

Suppose F = Ga, where a > 0 and G satisfies conditions 1 - 3 and 6. Then 

for any convex solution of ( 1 ), the differential inequality 

(9) 
aF aF 
- > h-1(VF,VF) ---
iJt - (a +l)t 

holds as long as the solution exists. 

This differential inequality can be integrated to give a Harnack inequality of the 

form (7). The general treatment leads to great simplification of the calculation; this will 

be discussed elsewhere. 

I will now describe the application of the flows in a slightly different setting -

the hypersurfaces will now be allowed to reside in any Riemannian (n+l)-manifold N 

with non-negative sectional curvatures, instead of just in Euclidean space. Huisken 

(Hu2) has considered the mean curvature flow in such situations; he achieves 

essentially the same results as before - convex surfaces contract to points and become 

spherical • but requires more than just strict convexity: the surfaces must satisfy a 

further convexity condition which depends on the gradient of the Riemann curvature of 

the background space N. 
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By considering flows other than the mean curvature flow, this result can be 

improved- the extra convexity condition can be removed: 

Theorem 5: 

Suppose F satisfies conditions 1 - 5 and 7. Then any strictly convex initial 

hypersurjace in a non-negatively curved space contracts to a point in finite time under 

the flow ( 1 ), and the hypersurfaces become spherical as they approach the final time. 

This result has some applications to the geometry of non-negatively curved 

spaces; for example, it leads to a new proof of the 114 - pinching sphere theorem, 

following methods of Eschenburg and Gromov (El). This and other applications will 

be discussed elsewhere. 
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