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I INTRODUCTION 

The aim of these lectures is to give an introduction to the theory of linear 
second order elliptic and parabolic partial differential equations. A partial 
differential equation of order k is an equation involving an unknown function 
u of two or more variables and its derivatives up to order k: 

(1.1) F(x,u,Du,···,Dku) =0. 

Here x denotes the independent variables which typically vary over some do
main in a Euclidean space IRn with n 2:: 2. Equation (1.1) is said to be linear 
if the left hand side of (1.1) is an affine function of u and its derivatives. Thus 
a general linear second order partial differential equation can be written in the 
form 

n n 

(1.2) Lu = L aii(x)D;jU + L bi(x)D;u + c(x)u = f(x). 
i,j=l i=l 

Here are some important examples of second order linear equations. 
Laplace's equation 

(1.3) 

Poisson's equation 
(1.4) 

Heat equation 

(1.5) 

Wave equation 

(1.6) 

n 

.6.u = LD;;u = 0. 
i=l 

.6.u = f(x). 

fJu 
- = .6.u. 
fJt 

39 



In the last two examples the independent variables are the spatial variable 
x and the time t; the Laplacian is taken with respect to the spatial variables 
only. We can also consider inhomogeneous heat and wave equations which are 
obtained by adding a function of x and t to the right hand sides of (1.5) and 
(1.6). We may also wish to consider these equations with lower order terms, 
or with D. replaced by a more general operator of the form (1.2). 

These are the most fundamental second order linear partial differential 
equations. They occur in mathematical physics and in various branches of 
mathematics. Equations (1.3) and (1.4) typically describe an equilibrium sit
uation, while equations (1.5) and (1.6) describe diffusion and oscillatory phe
nomena respectively, as their names suggest. Notice also that any solution 
of (1.3) is automatically a time independent solution of (1.5) and (1.6). This 
suggests that that the theory for the heat and wave equations should be a 
generalization of the theory for Laplace's equation. 

It turns out that the behaviour of equation (1.2) is determined primarily 
by the highest order or principal part of the equation. We make the following 
definitions. Equation (1.2) is said to be elliptic at a point x if the matrix 
[aij(x)] is positive definite, i.e., 

n 

(1.7) L; aij(x)~i~j > 0 for all ~ E IRn, ~ oj 0. 
i,j=l 

Equation (1.2) is said to be elliptic in a region n c IRn if it is elliptic at each 
point of n. 

The terminology comes from the two variable theory, in which a linear 
second order equation such as (1.2) is classified as being elliptic, hyperbolic or 
parabolic at a point x according to whether the matrix [ aij ( x)] has two nonzero 
eigenvalues of the same sign, of opposite signs, or one zero and one nonzero 
eigenvalue. Of course, in higher dimensions there are more possibilities. 

Equations (1.3) and (1.4) are clearly elliptic everywhere, while equations 
(1.5) and (1.6) are not elliptic. However, they are elliptic in the spatial di
rections (the meaning of this should be clear). In this sense equation ( 1 
is closer to being elliptic than (1.6), since it is only first order in the time 
direction, and can in fact be regarded as a degenerate elliptic equation, while 
(1.6) is second order with respect to the time variable, and is fundamentally 
different. An equation of the form 

au ~ .. ~. 
at= .L...J a'1 (x,t)Diju+ L...Jb'(x,t)Diu+c(x,t)u+ 

~,J=l 'l=l 

(1.8) 

is said to be parabolic at ( x, t) if 

(1.9) 
n 

L; aij(x, t)~i~j > 0 for all e E IRn, e # 0. 
i,j=l 
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It is said to be parabolic on a region Q C lRn X 1R if it is parabolic at each 
(x, t) E Q. Thus the heat equation (1.5) is an example of a parabolic equation. 
The wave equation is an example of another class of equations, hyperbolic 

equations, which can be defined analogously to parabolic equations. 
To conclude this introduction we give a brief outline of the topics we will 

cover. In Sections 2 and 3 we will present the classical theory for the Laplace 
and Poisson equations. The basic problem we will discuss for equations (1.3) 
and (1.4) is the Dirichlet problem: given a bounded (or possibly unbounded) 
domain n in lRn' that is, a connected open set in lRn, find a function u which 
satisfies the differential equation in n and is equal to a given function ¢ on 
art. The kinds of questions we might ask are the following. 
(i) Does there exist a solution to the Dirichlet problem? 
(ii) If so, is it unique? 
(iii) How does the solution depend on the given functions f and ¢? If these 
functions and the boundary afl have a certain degree of smoothness, does the 
solution u inherit some smoothness? If so, how much? 
(iv) Are there explicit formulae for the solution in terms of the data? 

We will answer these questions using only very simple tools---essentially 
only calculus. 

In the next two sections we will discuss general linear second order elliptic 
equations from two points of view. In Section 4 we will describe the more 
classical Schauder theory, which is essentially a generalization of the the results 
of Sections 2 and 3. In Section 5 we will describe a more modern functional 
analytic approach. In the final section we will describe how the elliptic theory 
can be extended to the more complicated parabolic setting. 

Finally, some remarks about references. The standard reference for the 
theory of second order elliptic equations is [GT]; in particular, Chapters 2 to 
8 contain all the material we will describe in the first four lectures (and much 
more as well). Expositions of various parts of the elliptic theory can also be 
found in [E] (Sections 2.2 and 6), [F] (Chapters 2 and 6), [J] (Chapters 4 and 6) 
and [S]. Some references for the theory of parabolic equations are [E] (Sections 
2.3 and 7.1), [F] (Chapter 4), [Fr], [J] (Chapter 7), [LSU] and [S] (Lecture 10). 
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2 LAPLACE'S EQUATION 

In this section we will develop some of the theory for Laplace's equation 

(2.1) flu= 0, 

and its inhomogeneous counterpart Poisson's equation 

(2.2) flu= f. 

Results for these special cases are fundamental for the development of the 
theory of more general elliptic equations. 

Let n be a domain in 1R n. We denote the set of real valued continuous 
functions on n by C0 (D). The set of functions in C0 (D) having a continuous 
extension to the closure of n, D, is denoted by C0 (D). For any positive integer 
k we denote by Ck(D) the set of functions which are k times continuously 
differentiable on n. We denote by Ck(fi) the set of functions in Ck(D) all of 
whose derivatives of order s; k have continuous extensions to D. The spaces 
C00 (!1) and C00 (0) are defined in the obvious way. 

The spaces Ck(f!), k < oo, are Banach spaces with norm given by 

(2.3) 
k 

llulb(n) = lulk;O = L sup sup IDilul. 
j=O lfli=J 0 

Here (3 = ({31 , · · · , f3n) denotes a multi-index with each {3; a nonnegative integer, 
1(31 _ "n (3· d Dil _ al~"lu 

- L.,i=l " an U - Bi"lx1 ···BI"nxn. 

A function u E C2 (D) is said to be harmonic (subharmonic, superharmonic) 
in n if at each point of n we have 

(2.4) flu= 0 (:::: 0, s; 0). 

We now want to derive some properties of harmonic functions. First we 
recall the divergence theorem in IRn. If n is a bounded domain in IRn with C 1 

boundary an (weaker conditions on an suffice) and outer unit normal v l then 
for any vectorfield wE [C1 (D)]n we have 

(2.5) f div w dx = f w · v ds 
lo lao 

where ds denotes the (n- I)-dimensional area. element on an. In particular, 
if u E C 2 (D), we may take w = Du in (2.5) to obtain 

(2.6) f D.u dx = f Du. v ds = { aau ds. 
lo lao lao v 
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If in addition v E C 2 (D), then we may take w = vDu in (2.5) to obtain Green's 
first identity 

(2.7) f v!J.u dx + f Du · Dv dx = f v ~u ds. 
J[l J[l J [)[) uv 

Interchanging u and v in (2.7) and subtracting, we obtain Green's second 
identity 

(2.8) 

We can now prove the following mean value inequalities. 

Theorem 2.1 Let u E C2(f!) satisfy !J.u = 0 (2 0, :::; 0) in D. Then for any 
ball B = BR(Y) CC !1 we have 

(2.9) 

(2.10) 

u(y) 

u(y) 

1 in <, > uds, ( __ ) nwnRn-1 BB 

(:::;, 2) lRn { udx. 
Wn jB 

Remark Here Wn denotes the measure of the unit ball in IRn and B cc n 
means that 13 c n. 
Proof of Theorem 2.1 Let p E (0, R) and apply the identity (2.6) to the 
ball BP = BP(y) to obtain 

f ~u ds = f !J.udx = (2,:S)O. 
JaBp uv }Bp 

Introducing radial and angular coordinates r = lx- y I and w = ( x - y) / r, and 
writing u( x) = u(y + rw ), we see that 

l au 
· --;.:;-(Y + pw) ds 

BBp ur 

1 au 
Pn-1 --;.:;-(Y + pw) dw 

lwl=1 ur 

pn- 1 ~ { u(y + pw) dw 
up Jlwl=l 

pn-1~ (/-n { U ds) ap i&Bp 

It follows that for any p E (0, R), 

pl-n { u ds = (:S, 2)Rl-n { u ds. 
J&Bp laBR 
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The relation (2.9) follows from this since 

limp1-n { uds = nwnu(y). 
p-+D J8Bp 

The solid mean value inequalities (2.10) follow from (2.9) by integrating with 
respect to p from 0 to R. 

The mean value inequalities have a number of useful consequences. The 
first of these is the strong maximum principle for subharmonic functions and 
the strong minimum principle for superharmonic functions. 

Theorem 2.2 Let u E C2 (!1) satisfy b.u 2': 0 (~ 0) in n, and suppose there 
is a point y E n such that u(y) = SUPo u (info u). Then u is constant. Con
sequently, a harmonic function cannot assume an interior maximum or mini
mum unless it is constant. 

Proof Suppose u is subharmonic in n, and let M = SUPo u and nM = {X E 
!1: u(x) = M}. By assumption f!M is not empty, and since u is continuous, 
nM is closed relative to n. Now let z be any point of nM and apply the 
mean value inequality (2.10) to the subharmonic function u- M in a ball 
B = BR(z) CC h. We obtain 

0 = u( z) - M ~ 1Rn { ( u - M) dx ~ 0 , 
Wn jB 

which implies that u = M in B. Thus f!M is also open relative to n, and 
therefore nM = n. The result for superharmonic functions follows by replacing 
u by -u. 

From the strong maximum and minimum principles we immediately obtain 
the following weak maximum and minimum principles. 

Theorem 2.3 Let u E C2 (!1) n C0 (0) satisfy b.u 2': 0 (~ 0) 
domain n. Then 
(2.11) supu = supu 

!1 8!1 
(inf u = inf u). 

!1 8!1 

Consequently, if u is harmonic, then 

(2.12) inf u < u(x) < sup u 1or x E f! . 
8!1 - - 8!1 J' 

in a bounded 

A consequence of this is the following uniqueness result for the Dirichlet 
problem for Poisson's equation on bounded domains. 

Theorem 2.4 Let u, v E C2(!1) n C0 (0) satisfy b.u = b.v inn, u = v on an, 
where n is a bounded domain. Then u = v inn. 
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Proof Let w = u- v. Then t:.w = 0 in n and w = 0 on an, so by the 
previous theorem w = 0 in n. 
Remarks (i) The conclusions of Theorems 2.3 and 2.4 are generally false if 
n is unbounded. It is easy to construct counterexamples on a halfspace. 

(ii) By Theorem 2.3 we also see that if u, v, w are harmonic, subharmonic 
and superharmonic functions in a bounded domain n which agree on an, then 

v~u~w m n. 
This explains the terms "subharmonic" and "super harmonic". 

We will see later that harmonic functions are smooth, in fact, analytic. 
Assuming this for the moment, we can obtain estimates for their derivatives 
from the mean value equality. If u is harmonic on n, then so is each component 
of the gradient Du, so for any ball B = BR(Y) CC fl we have 

Du(y) = - 1- { Dudx = - 1- { uvds, 
WnRn JB WnRn J&B 

and hence, letting R--+ dist (y, afl), 
n 

[Du(y)[ ~ d' ( afl) sup [u[. 
1St y, 0 

By successive application of this result we obtain the following. 

Theorem 2.5 Let u be harmonic in fl. Then for any fl' cc n and any 
multi-index a we have 

(2.13) ( n[a[ ) lad 
s~p [D 01 u[ ~ dist (fl', afl) s~p [u[. 

From Theorem 2.5 and the Arzela-Ascoli theorem we see that harmonic 
functions have a strong compactness property. 

Theorem 2.6 Any bounded sequence of harmonic functions on a domain fl 
contains a subsequence which converges uniformly on compact subsets of n to 
a harmonic function. 

Another important consequence of the mean value property of harmonic 
functions is the Harnack inequality. It tells us that the values of a nonnegative 
harmonic function u are comparable on any compact subset of the domain on 
which u is defined. The strong maximum principle is a special case of this. 

Theorem 2. 7 Let u be a nonnegative harmonic function in a domain n. Then 
for any bounded subdomain fl' CC [l there is a constant C depending only on 
n, [l and [l' such that 
(2.14) sup u ~ C inf u . 

0' (!' 

45 



Proof Let y E D and choose R > 0 so that B4R(Y) C D. Then for any two 
points x1 , x 2 E BR(Y) we have, by the mean value inequality, 

Consequently 
(2.15) sup u ::::; 3n inf u . 

BR(Y) BR(Y) 

Now let D' cc n and choose Xt, x2 E D' so that u(xl) = supfl/ u, u(x2) = 
inffl/ u. We can join Xt and x2 by an arc r such that dist (f' aD) > 4R for 
some positive R. By the Heine-Borel Theorem f can be covered by a finite 
number of balls { Bi }_7=1 (with N depending only on n, n and D') of radius R, 
such that B1 = BR(x1 ), BN = BR(x 2 ), and Bj nBj+l # 0 for j = 1, · · ·, N -1. 
Using the estimate (2.15) in each ball Bj, we obtain 

u(xt) ::::; sup u < 3n in£ U 
B, B, 

< 3n in£ u 
B1nB2 

< 3n sup u 
B1nB2 

< 3n sup u 
B2 

< 32n inf u. 
B2 

Continuing in the obvious way we finally obtain 

Hence the estimate (2.14) holds with C = 3nN. 
\file now turn to the existence of harmonic functions. A simple computation 

shows that the only spherically symmetric harmonic function, up to additive 
and multiplicative constants, is given by 

(2.16) { 
1 lxl2-n 

f(x) = f(lxl) = 1(2- n)wn 

-log lxl 
27r 

if n > 2 

if n = 2. 

r is called the fundamental solution of Laplace's equation. 
Now let u E C2 (D) and y E D. We want to use Green's second identity 

(2.8) with v(x) = f(x- y). Since f(x- y) has a singularity at x = y we 
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cannot use (2.8) directly. Instead we replace n by n- Bp where Bp = Bp(y) 
for sufficiently small p. From (2.8) we then obtain, since r is harmonic in 
n-Bp, 

1 In ( au ar) fa ( au ar) (2.17) r~udx= r-f) -u-f) ds+ r-f) -u-f) ds. 
n-Bp an v v aBp v v 

We have 

and 

[ u ar ds = 
laBp fJv 

= 

Jr(p) faBp ~~ dsJ 

< nWnPn-1 r(p) sup IDul -+ 0 as p -+ 0 
Bp 

-r'(p) f uds 
laBp 

----1--:-1 f u ds -+ -u(y) as p -+ 0 . 
nwnpn- laBp 

Consequently, letting p-+ 0 in (2.17) we obtain Green's representation formula 

(2.18) u(y) = [ (u ar (x- y)- r(x- y) fJu) ds 
lao. fJv fJv 

+in f( X - y )~u dx , y E n. 

For harmonic u we obtain the representation 

(2.19) !a ( ar fJu) u(y) = u-(x- y)- r(x- y)- ds' 
an fJv fJv 

yEn. 

Since the integrand is analytic with respect to y, it follows that harmonic 
functions are analytic. 

For any function f E P(n), the integral In r(x- y)f(x) dx is called the 
Newtonian potential of f. 

We can also obtain a slightly more general representation formula. Suppose 
h E C2 (n) n C1 (f!) is harmonic. Then, by Green's second identity (2.8) 

(2.20) - !an ( u ~~ - h ~~) ds = in h~u dx . 

Writing G = r + h and adding (2.18) and (2.20) we obtain the formula 

(2.21) u(y)= lan(u~~(x-y)-G(x-y)~~) ds+ inG(x-y)~udx. 
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If in addition we can choose h so that G = 0 on an, we have 

(2.22) u(y)= [ u 0
0G(x-y)ds+ [ G(x-y)tludx. 

lan v ln 

The function G is called the Green's function of the first kind for n. It is 
unique, by Theorem 2.4. Its existence is equivalent, by the above, to the 
solvability of the Dirichlet problem for Laplace's equation. It is not possible 
to construct the Green's function explicitly except for special domains such as 
the ball. Nevertheless, the representation (2.22) is very useful for studying the 
Dirichlet problem for Poisson's equation. We will return to it later. 

Let BR = BR(O), and for x E BR, x #- 0, let 

R2 
x=~x 

denote its inverse with respect to BR· If x = 0 we take x = oo. It can then be 
verified that the Green's function for BR is given by 

G(x, y) 

(2.23) 

{ f(lx- yl)- r (IYIIx- ill/ R) ' y i= 0 
. f(lxl)- f(R), y = 0 

r ( )lxl 2 + IYI2 - 2x. y)- r ( jr-(lx-II-YI/_R_)2_+_R_2 ---2x_·__,y) 

for all x,y E BR, x #- y. 

Hence if u E C 2 (BR) n C1(BR) is harmonic we have the Poisson integral 
formula 

- (2.24) 

Notice that for y = 0 this reduces to the mean value equality (2.9). It can 
be shown by an approximation argument that this formula remains valid for 
u E C 2 (BR) n C0 (BR) ([GT], Theorem 2.6). An immediate consequence of this 
is the following result on the solvability of the Dirichlet problem for Laplace's 
equation on balls. 

Theorem 2.8 Let </> be a continuous function on oBR. Then the function u 
defined by 

{ 
R2 -lxl2 [ <f>(y)dsy ifx E BR 

u(x) = nwnR laBR lx- Yin 
</>(x) if X E oBR 

(2.25) 

is the unique solution in C2(BR) n C 0 (BR) of the Dirichlet problem tlu = 0 in 

BR, u = </> on oBR. 
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As a consequence of this we see that the mean value property m fact 
characterizes harmonic functions. 

Theorem 2.9 A function u E C0 (n) is harmonic if and only if it satisfies the 
mean value equality 

(2.26) u(y) = 1 f uds 
nwnRn-l laB 

for every ball B = BR(Y) cc n. 

Proof By Theorem 2.8, for any ball B cc n there exists a harmonic function 
h on B such that h = u on aB. The difference w = u - h satisfies the 
mean value property on any ball contained in B, sow satisfies the maximum 
principle, since this was the only property that was used in its proof. Hence 
w = 0 in B, and u is harmonic. 

To prove the existence of solutions of the Dirichlet problem on more general 
domains we need to do more work. There are several approaches which can be 
used. The one which follows most directly from the theory we have developed 
so far is the Perron method. We will describe the main ideas here; details can 
be found in [GT], Section 2.8. 

First we extend the definition of subharmonic and superharmonic functions 
in the following way. A function u E C0 (n) is subharmonic in D if for every 
ball B cc n and every function h which is harmonic in B and satisfies u :::; h 
on aB we also have u :::; h in B. This is a natural definition in view of Theorem 
2.9. The definition of superharmonic function can be extended similarly. 

Now let n be bounded and let cjJ be a bounded function on an. A subhar
monic function u E C0 (fl) is called a subfunction relative to cp if it satisfies 
u :::; cjJ on aD. The set of subfunctions is denoted by Sq,. It is not empty since 
any constant function :::; inf cp belongs to Sq,. The set of superfunctions may 
be defined similarly. 

We have the following result ([GT], Theorem 2.12). 

Theorem 2.10 The function u(x) = SUPvES.p v(x) is harmonic inn. 

The function u is called the Perron solution of the Dirichlet problem 

(2.27) D.u = 0 m n' u = cp on an. 

It is a prospective solution of (2.27) in the sense that if (2.27) has a solution 
w E C 2 (n) n C0 (fl), then u = w, since w E Sq, and w 2:: v for all v E Sq,, by 
the maximum principle. 

The definition of the Perron solution gives us no information about its 
boundary behaviour. However, if ¢ is continuous at ~ E an, and if there is a 
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superharmonic function wE C0 (0) such that w > 0 in f!- {0 and w(~) = 0, 
then u is also continuous at ~. For then, for any t: > 0 we can find a positive 
number k such that </>( ~) + t: + kw and </>( 0 - t: - kw are superfunction and 
subfunction respectively relative to </>, and the assertion follows. w is called a 
barrier at ~. We say that a boundary point of a domain is regular if there exists 
a barrier at that point. The existence of barriers is connected to the geometry 
of the domain. For example, in two dimensions a point ~ E an is regular if it 
is the endpoint of a simple arc lying in the exterior of n; the function 

(2.28) 
1 

w = -Re-
logz 

is a (local) barrier. This covers most reasonable two dimensional domains. On 
the other hand, it can be shown that in higher dimensions a domain bounded 
by a surface with a sufficiently sharp inward pointing cusp has a nonregular 
point at the tip of the cusp. Finally, if there is a ball B = BR(Y) such that 
.B n n = { 0 (this is called the exterior sphere condition), then ~ is a regular 
point. A barrier can be constructed from the fundamental solution, namely 

(2.29) { 
R2-n- \x- y\ 2-n for n ~ 3 

w(x) = lx- Yi 
log-R- for n = 2. 

We therefore conclude the following result for the Dirichlet problem. 

Theorem 2.11 Let n be a bounded domain in IRn. The Dirichlet problem 
(2.27) has a unique solution belonging to coo(n) n C0 (0) for arbitrary contin
uous boundary data </> if and only if every boundary point is regular. 

Remark We will see in Sections 4 and 5 that if an and </> are sufficiently 
smooth, then the solution u has more smoothness up to the boundary. In 
particular, if an and</> are coo, then u E Coo(f!). 
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3 THE NEWTONIAN POTENTIAL 

In this section we investigate Poisson's equation 

(3.1) flu= f 

by studying the Newtonian potential of f. Recall from Section 2 that any 
C 2 (D) n C 1 (D) solution of (3.1) has the representation 

(3.2) u(x)= hn(u~~(x-y)-f(x-y)~~) dsy+ for(x-y)f(y)dy. 

The first integrand is smooth as a function of x, so the smoothness of u is 
determined by the last integral. In particular, if u has compact support in D, 
then u is given by the Newtonian potential of f. 

If f E CQ'(D) (i.e., f is smooth and has compact support in D), then its 
Newtonian potential 

(3.3) w(x)= for(x-y)f(y)dy. 

belongs to c=(n), as can be seen by writing 

w(x) r f(x- y)f(y) dy = r r(x- y)f(y) dy Jn }ffin 

r r(z)f(x-z)dz. 
}ffin 

More generally, it is reasonable to expect the second derivatives of w to have 
the same smoothness as f, since, roughly speaking, solving (3.1) essentially 
amounts to integrating f twice. However, flu is only the trace of the second 
derivative matrix and some cancellation can occur. In fact, there are examples 
showing that u need not have any C2 solution iff is only continuous. In this 
sense the spaces Ck(D) are not well suited to the study of partial differential 
equations. As it turns out, we do indeed gain two derivatives if we measure 
differentiability in the right kinds of spaces. There are two main kinds of 
spaces which are appropriate for this, Holder spaces and Sobolev spaces. In 
this section we will use Holder spaces; Sobolev spaces will be introduced in 
Section 5. 

Let n be a bounded domain in IRn, let k be a nonnegative integer and 
a E (0, 1]. The global Holder space Ck•"(D) is defined to be the set of all 
functions in Ck(D) for which the quantity 

(3.4) [D k ] _ ID,6u(x)- D,6u(y)l 
u a;O - sup I I"' 

x,yEO X- y 
l,6l=k 
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is finite. In this case we say that the k-th order derivatives of u are Holder 
continuous on n with exponent a. We define a norm on Ck·"'(D) by 

(3.5) 

where 
k 

!uko = L sup IDju!. 
j=O 0 

(3.6) 

Ck·"'(D) is a nonreflexive, nonseparable Banach space. The inclusion Ck',a' (D) c 
ck,a(n), k' +a'> k+a, is true for domains with sufficiently smooth boundary, 
but is not true in general. 

The local Holder space Ck•"'(D) is defined to be the set offunctions in Ck(D) 
whose derivatives of order k are Holder continuous with exponent a on any 
compact subset of D. We denote by C~·"'(D) the set of functions in Ck·"'(D) 
having compact support in n. 

It is convenient to introduce nondimensional norms on the spaces Ck(f!) 
and Ck,cx(fi). Setting d = diamD, we define 

(3.7) 

and 
(3.8) 

k 

!ui~;O = L dj sup !Djul 
j=O 0 

The main results of this section are the following interior and boundary 
estimates ([GT], Theorems 4.6 and 4.1 

Theorem 3.1 Let u E C'2 (D), f E C'0·"'(D), a E (0, 1), satisfy lJ,u = f 
in a domain D in IRn. Then u E C2·"(fl) and any two concentric balls 
Bl = BR(xo), Bz = BzR(xo) cc n we have 

(3.9) 

In the following theorem let B 1 and B 2 be conc~ntric balls as above centred 
at a point Xo E {xn = 0}, let Bj = Bj n {xn > 0} for j = 1,2, and let 
T = Bz n {xn = 

Theorem 3.2 Let u E C 2(Bi) n C0 (13t), f E C0""(Bi), a E (0, 1), satisfy 
lJ,u = f in Bi, u = 0 on T. Then u E C 2·"'(Bt) and 

(3.10) 
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To prove these results it suffices to establish the corresponding assertions 
for the Newtonian potential off, since u differs from w by a harmonic function 
h, for which the required estimate (in the interior case) follows from Theorem 
2.5. In the case of Theorem 3.2 we can reduce to a similar situation as in 
Theorem 3.1 by some extension and reflection procedures. Proving the result 
for w is simply a matter of computation. The singularity of f prevents us 
from differentiating directly under the integal, so we proceed by considering 
a modified function w< obtained by replacing f(x- y) in equation (3.3) by 
ry(ix- yl/c)f(x- y) for a smooth function 1] such that 0 ::; 17 ::; 1, 17 = 0 
for t ::; 1 and 17 = 1 for t 2 2, and letting E --+ 0. Assuming without loss of 
generality that an is smooth enough for the divergence theorem to hold, we 
find that 
(3.11) Diw(x)= fonir(x-y)f(y)dy, i=1,···,n, 

and 

(3.12) DijW( X) k Dijf(x- y)(f(y)- f(x)) dy 

-f(x) { Dif(x-y)vi(y)dsy, i,j=l,···,n. 
lao 

The Holder continuity of D 2w follows from (3.12) after some messy but straight
forward computation. 

To prove the boundary estimate for w we observe that the representation 
(3.12) holds with n replaced by Hi. In addition, the portion of the boundary 
integral 

(3.13) 

over T is zero if either i or j of= n, so we can proceed exactly as in the interior 
case if i or j of= n. Finally, DnnW can be estimated directly from the equation 
6.w = f once we have estimated DkkW fork= 1, · · ·, n- 1. 

We can extend Theorems 3.1 and 3.2 to obtain the following global Holder 
estimate in balls. 

Theorem 3.3 Let B = BR(x0 ) be a ball in lRn. Let u E C 2(B) n C0 (13), 
f E C0 '"'(B), a E (0, 1), satisfy 6.u =fin B, u = 0 on 8B. Then u E C2'"'(B) 
and we have 
(3.14) 

Proof We may assume that 8B passes through the origin. The inversion 
mapping x r-+ x* = xflxl 2 is a smooth, bicontinuous mapping of lRn- {0} onto 
itself which maps B onto a halfspace B*. Furthermore, the Kelvin transform 
of u, defined by 

(3.15) 
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belongs to C2 (B*) n C0 (B*) and satisfies 

(3.16) lx*l-n- 2~xu(x), x* E B*, x E B, 

lx*l-n- 2 f ( l:**l2 ) x* E B* · 

We now apply Theorem 3.2 to the Kelvin transform v, noting that any point 
of aB may be taken as the origin. 
Remark The term lula;B can be dropped from the right hand side of (3.14), 
since the functions v±(x) = ±K(Ix- x 0 l2 - R2 ) are sub- and supersolution 
respectively of the Dirichlet problem ~u = f in B, u = 0 on aB, if K 2:: 
2~ supB lfl . The maximum principle then implies 

(3.17) 
R2 

sup lui ::=; -sup I fl. 
B 2n B 

We can now obtain the following extension of Theorem 2.9. 

Theorem 3.4 Let f E C 0·"'(B), a E (0, 1), and <jJ E C0 (B). Then the Dirich
let problem 

(3.18) ~u = f in B, u = <P on aB, 

has a unique solution u belonging to C 2·"'(B) n C 0 (B). If <P E C2·"'(B), then u 
belongs to C2"" ( 13). 

Proof Set v = u-w where w is the Newtonian potential of f. Then problem 
(3.18) is equivalent to the problem ~v = 0 in B, v = <jJ- w on aB, which has 
a unique solution belonging to C 2 (B) n C0 (B), by Theorem 2.9. Hence (3.18) 
has a unique solution u belonging to C 2 (B) n C0 (B). The regularity assertions 
follow from Theorems 3.1 and 3.3, the second of these applied to u = u - <P 

rather than to u itself. 
Remarks (i) All the results above require a E (0, 1 ); they are false in the 
cases a = 0 and a = 1. 

(ii) The conclusion of Theorem 3.4 is true not just for balls but for any 
bounded domain with sufficiently smooth boundary ( 80 E C 2 •01 is sufficient). 
The main goal of the next two sections is to prove this result and an analogous 
result for more general second order linear elliptic equations. 
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4 SCHAUDER THEORY 

The aim of this section is to extend the results of the previous sections on Pois
son's equation to general second order linear elliptic equations. We will obtain 
a result analogous to Theorem 3.4 for general linear equations on arbitrary 
bounded domains subject to certain smoothness assumptions. 

We will consider equations of the form 

n n 

(4.1) Lu = :2.: aij(x)DijU + L bi(x)Diu + c(x)u = f(x), 
i,j=l i=l 

with aij aji. Usually we will write (4.1) without the summation signs; 
summation over repeated indices is understood. We will assume that the 
equation is elliptic, i.e., the coefficient matrix [aij(x)] is positive definite at 
each point x. We denote the maximum and minimum eigenvalues of [aij(x)] 
by A( x) and .A( x) respectively, so that 

( 4.2) 

for all X E nand~ E IRn-{o}. We say ( 4.1) is strictly elliptic inn ifA 2: Ao > 0 
for some constant .\0 , and uniformly elliptic in n if A/ .A is bounded in n. 

Results for elliptic equations of the form ( 4.1) usually require additional 
assumptions on the coefficients. We shall assume throughout this section that 

( 4.3) 
lbi (X) I . 
.A(x) :S:bo forz=1,···,n,xE!1, 

for some constant b0 < =· Conditions on c will also be necessary, but these 
will be stated as needed. 

Our first aim is to prove the weak maximum principle for solutions of ( 4.1 ). 

Theorem 4.1 Let L be an elliptic operator of the form (4.1), and suppose 
u E C2 (!1) n C0 (D) satisfies 

( 4.4) Lu 2: 0 (:S: 0) in n, c = 0 in n, 

in a bounded domain n. Then u achieves its maximum (minimum) on 80, 

z. e.' 

( 4.5) supu = supu (infu = infu) . 
n an n an 

Proof At an interior maximum point x0 we have Du = 0 and D2u ::; 0 in the 
sense of matrices, so that aij(x0 )Diju(x0 ) ::; 0. Consequently, if we have the 
strict inequality Lu > 0 in n, we immediately obtain a contradiction. Using 
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( 4.3) we may now fix a constant k > 0 such that Lekxt > 0. Then for any 
E > 0 we have L(u + Eekxt) > 0 inn, so that 

sup( u + <:ekx1 ) = sup( u + <:ekxt). 
n an 

We now obtain (4.5) by letting<:--+ 0. 
We can generalize this result to the case c ::; 0 in n. We have L 0u = 

aiiD;jU + biD;u 2 -cu 2 0 inn+= {x En: u(x) > 0} if Lu 2 0 inn, so the 
maximum of u on n+ must be achieved on an+. Thus we have 

Theorem 4.2 Let L be elliptic in a bounded domain n, and suppose that 
u E C2 (n) n C0 (fi) satisfies 

(4.6) 

Then 
(4.7) 

If Lu = 0 in n, then 
(4.8) 

Lu 2 0 (::; 0) in n, c ::; 0 in n. 

sup u ::; sup u+ (in£ u > in£ u-) 
n an n - an 

sup lui =sup lui. 
n an 

As with Poisson's equation this leads to a uniqueness result for the Dirichlet 
problem 
(4.9) Lu=finn, u=</>onan. 

Theorem 4.3 Let L be elliptic in a bounded domain n with c ::; 0. Suppose 
that u, v E C2(n) n C0 (fi) satisfy Lu = Lv inn, u = v on an. Then u = v in 
n. If Lu 2 Lv inn and u::; v on an, then u::; v inn. 

The following strong maximum principle generalizes Theorem 2.2. 

Theorem 4.4 Let L be uniformly elliptic, c = 0 and Lu 2 0 (::; 0) in a 
(possibly unbounded} domain n. If u attains its maximum (minimum) at an 
interior point, then u is constant in D. If c ::; 0 and cf >. is bounded, then u 
cannot achieve a nonnegative maximum (nonpositive minimum) in the interior 
unless it is constant. 

We omit the proof since we will not need this result. See [GT], Chapter 4, 
for a proof. 

In the remainder of this section we want to explain how to prove the ex
istence of solutions for the Dirichlet problem ( 4.9). First we give a notion of 
smoothness for boundaries of domains. 

We will say that a domain n in 1Rn has boundary of class Ck,a for a 
nonnegative integer k and a E [0, 1] if for each point Xo E an there is a ball 
B = B(x0 ) and a one to one mapping 'ljJ of B onto a domain D C JRn such 
that 
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(i) 1/J(Bnn)ciRn+={xEIRn:xn>O}; 

(ii) 1/J(B nan) c aiRn +i 

(iii) 1/J E Ck·"'(B), 1/J-1 E Ck•"'(D). 

We will say that a domain n has a boundary portion T c an of class Ck,a if 
for each x0 E T there is a ball B = B(x0 ) in which the above conditions are 
satisfied and such that B nan cT. 

We can now state the fundamental results for linear elliptic equations of 
the form (4.1). 

Theorem 4.5 Let n be a bounded domain in IRn with an E C 2•"' for some 
a E (0, 1), and let L be as above with 

( 4.10) 

and 
(4.11) 

where A and A are positive constants. 
(i) If c :S: 0, then for any f E C0•"'(fl) and any¢ E C2•"'(fl) the Dirichlet 

problem 
( 4.12) Lu = j in n, u = ¢ on an 

has a unique solution u E C2·"'(fl). 
(ii) If u E C 2(n) n C 0 (fl) is any solution of (4.12) (not necessarily with 

c:::; 0), then u E C2""(fl) and 

( 4.13) 

where C depends only on n, A, A, a and n. If in addition an,¢ E Ck+2 •"' and 

(4.14) 

then u E Ck+2•"'(fl) and 

(4.15) 

where C depends only on n, k, A, A, a and n. 

Remarks (i) It is essential that a E (0, 1) in the above theorem-the con
clusions are false in the cases a = 0 and a = 1. 

(ii) As well as the above global regularity assertions and estimates there 
are completely interior and partially interior (i.e., in a neighbourhood of a 
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boundary point) versions of these results. The global result is obtained by 
patching together these local results. 

(iii) If c::::; 0, then lulo;n can be estimated in terms off and ¢. In fact, 

( 4.16) sup lui ::::; sup 1¢1 + C sup If I/ A 
n an o 

where C depends only on diam D and sup0 lbl/ A (see [GT], Theorem 3.7, and 
also the remark following Theorem 3.3). 

(iv) The existence assertion of Theorem 4.5 is generally false if we do not 
assume c ::::; 0. However, the following is true regardless of the sign of c: the 
problem (4.12) has a unique solution in C 2·a:(O) for any f E C 0•a:(O) and any 
¢ E C2•a:(f2) if and only if the homogeneous problem 

( 4.17) Lu = 0 in D , u = 0 on oD 

has only the trivial solution u = 0 (see [GT], Theorem 6.15). 
We will sketch the main ideas in the proof of Theorem 4.5. First, Theorem 

4.5 has two main parts-an assertion about the existence of a solution and an 
assertion that any solution satisfies certain estimates. The estimates play a 
key role in the proof of existence, so let's assume that we have already proved 
these and concentrate on the existence problem for the moment. 

First, we can simplify things by assuming zero boundary values-this can 
be achieved by replacing u by u- ¢. Next, in place of the problem (4.12) let's 
consider a family of problems 

( 4.18) Ltu := tLu + (1 - t)L'l.u = f m IJ, u = 0 on on, 

where t E [0, 1]. Notice that L 0 = L'l. and L 1 = L, and that the coefficients of 
Lt satisfy the conditions (4.10) and (4.11) with 

At = min { 1, ,\} , At = max { 1, A} . 

The operator Lt is a bounded linear operator from the Banach space B1 = 
{ u E C 2•a: (D) : u = 0 on o!J} into the Banach space = C0 •01 ( 0). The 
solvability of the Dirichlet problem (4.18) is equivalent to the invertibility of 
the mapping Lt. Let Ut denote the solution of ( 4.18), assuming that there is 
one. Then, by the estimates (4.13) and (4.16), we have 

(4.19) 

for a constant C depending only on n, A, A and diam but not on t. In other 
words, 
( 4.20) 
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Now suppose that (4.18) is solvable for somes E [0, 1], i.e., Ls is onto. By 
( 4.20) Ls is one to one and hence the inverse L-;1 exists. Furthermore, L-;1 is 
a bounded linear operator with IIL-;1 11::; C, by (4.19). The equation Ltu = f 
is equivalent to the equation 

Lsu J + (Ls- Lt)u 

f + (t- s)Lo- (t- s)L1, 

which in turn is equivalent to 

The mapping T from B1 to itself given by 

is is clearly a contraction mapping (and hence has a fixed point) if 

Is- tl < 8 = [C(IILoll + IIL1II)]-1 . 

It follows that Lt is onto for all t E [0, 1] with !s-ti < 8. By repeatedly applying 
this argument on subintervals of [0, 1] of length less than 8 we conclude that 
Lt is onto for all t E [0, 1] if it is onto for any fixed t E [0, 1], in particular, for 
t = 0. 

To summarize, to prove the solvability in C 2 '"'(0) of the Dirichlet problem 
( 4.12) it is sufficent to prove the estimate ( 4.19) for any solution of ( 4.18) for 
any t E [0, 1], and to prove the solvability in C 2 '"'(0) of the Dirichlet problem 
for the special case of Poisson's equation. In particular, by Theorem 3.4 we 
can solve the Dirichlet problem (4.12) in C 2 '"'(0) in the special case that D 
is a ball, assuming of course that the coefficients and the data satisfy the 
hypotheses of Theorem 4.5. But once we have this we can solve the Dirichlet 
problem ( 4.12) on a ball for continuous boundary data c/J, obtaining a solution 
u E C 2,a(B) n C0 (13). We do this by approximating cjJ by a sequence of smooth 
functions { cPi}, solving the Dirichlet problem on B with boundary data cPj, and 
passing to a limit with the help of the interior version of the estimate ( 4.13) 
and a suitable barrier argument. We can then adapt the Perron method to 
obtain a Perron solution of (4.12) on any bounded domain n, and, using (4.13), 
this solution can be shown to belong to C 2 '"'(0) if 8D E C2 ,0t and cjJ E C 2 '"'(0). 

We now turn to the estimate ( 4.13). As mentioned above, the estimate 
( 4.13) is a consequence of interior and partially interior estimates similar to 
those derived for solutions of Poisson's equation in the previous section. In 
fact, they are derived from these by a perturbation argument, which we now 
describe. 
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Let Xo be a point of n. By making a linear transformation of coordinates 
we may assume that aii(x0 ) = oii. We now write equation (4.1) in the form 

and apply Theorem 3.1 to get 

C(n, a)(lulo;B2 + R2 lfl~,a;BJ 
(4.22) - { 2 2 < C(n, a, A) lulo;B2 + R (R"ID ulo;B2 + 1Dulo;B2 + lulo;BJ 

+R2+"(R"[D2u]a;B2 + ID2ulo;B2 + [Du]a;B2 

+1Dulo;B2 + [u]a;B2 + lulo;BJ + lfl~,a;B2 } 
for any two concentric balls Bl = BR(xo) and B2 = B2R(xo) cc n; to keep 
the dependence on R a little simpler we have assumed that R :::; 1. Here 
we have also used the easily verified inequalities [f + g]a :::; [!]a + [g]a and 
[fg]a ::S: lflo[9]a + [f]al9lo· We now use the following interpolation inequality: 
for each E > 0 and any integers k ~ l ~ 1 there is a constant C = C( E, a, n, k) 
such that for any u E Ck•"'(BR) we have 

(4.23) 

Using this and the inequality 

(4.24) 

in ( 4.22) we obtain 

(4.25) [D 2u]a;B1 ::S: C (R"'[D 2u]a;B2 + R-(2+<>)(1ulo;B2 + R2 lfl~,a;BJ) 

where C depends on n, a and A. The important point here is that the coef
ficient of [D2u]a;B2 can be made small by making R small. This alone is not 
sufficient to absorb the term CR"'[D2u]a;B2 into the left hand side of the in
equality, since the seminorm on the left is taken over a smaller ball. However, 
this can be achieved with the help of a somewhat technical covering argu
ment (see [S], Lecture 6, Lemma 2). Alternatively, it is possible to work with 
weighted Holder spaces and use an interpolation inequality similar to ( 4.23) 
in these spaces. In any case, we finally conclude that 

(4.26) 

where C depends on n, a and A. 
A similar argument can be used to get the boundary estimate 

(4.27) 
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for any two concentric balls B1 = BR(x0 ) and B2 = B2R(x0 ) of sufficiently 
small radius centred at a point Xo E an. The constant c depends on n, a, A, R 
and an. The details are a little more complicated, since we first need to flatten 
an in a neighbourhood of Xo. 

The global Schauder estimate ( 4.13) follows by combining ( 4.26) and ( 4.27) 
and using a covering argument. The higher order estimates follow by succes
sively applying ( 4.13) to the elliptic equation satisfied by each derivative of u. 
Some care is needed here since u is not a priori sufficiently smooth to differ
entiate equation ( 4.1) the required number of times, but this difficulty can be 
overcome by approximating derivatives of u by difference quotients. 
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5 SOBOLEV THEORY 

In this section our aim is to develop the theory of linear elliptic equations in a 
class of spaces known as Sobolev spaces. The Holder spaces are suited to the 
theory of classical solutions, i.e., solutions which are (at least) twice continu
ously differentiable. However, these spaces are neither reflexive nor separable, 
which precludes the application of certain techniques of functional analysis, 
especially Hilbert space methods, to the proof of existence of solutions. In the 
Sobolev space theory we weaken the notion of solution so that we can solve 
the Dirichlet problem in a separable Hilbert space. This requires much less 
work than the procedure described in the previous three sections. The price 
we pay for this is that we need to do further work to show that the solution 
we obtain is in fact a classical solution. 

We begin with the definitions of Sobolev spaces. For 1 ~ p < oo the space 
of measurable functions whose p-th power is integrable on n is denoted by 
LP(O) (with the usual convention that functions which agree almost every
where are regarded as the same). The norm on LP(O) is given by 

(5.1) 
1 

lluiiLP(O) = llullp;O = (in luiP dx) P 

'For p = oo L00 (0) denotes the space of bounded measurable functions with 
the norm 
(5.2) 

with the supremum understood to be the essential supremum. 
The LP spaces are Banach spaces. They are separable for 1 ~ p < oo and 

reflexive for 1 < p < oo. Furthermore, L2 (0) is a Hilbert space under the 
inner product 

(5.3) (u,v) =in uvdx. 

The space of functions which are locally p-integrable on n is denoted by 
Lfoc(O). 

Let u be locally integrable on n and let a be any multi-index. Then a 
locally integrable function v is said to be the a-th weak derivative of u if it 
satisfies 
(5.4) in ¢v dx = ( -1)1<>1in uD"¢dx for all¢ E d"1(n). 

It is clear from the definition that the a-th weak derivative is unique if it ex
ists. Furthermore, if u E CI<>I(O), then the weak a-th derivative of u coincides 
with the classical derivative D"u, by integration by parts. Thus weak differ
entiability is an extension of the classical concept. We denote the o:-th weak 
derivative of u by D"u. 
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Many properties of classical derivatives remain true for weak derivatives, 
for example, the usual Leibniz rule for differentiating products is valid, as is a 
form of the chain rule (see [GT], Chapter 7). We will not explicitly use these 
here, although these properties are used in proving some of the results we will 
state. 

We can now define the Sobolev spaces. For p ;?: 1 and any nonnegative 
integer k we define 

Wk,P(f!) is a Banach space under the norm 

(5.6) 

if 1 ~ p < oo. Wk,oo(n) is also a Banach space if the norm is defined in the 
obvious way. Wk·P(f!) is separable for 1 ~ p < oo and reflexive for 1 < p < oo. 
Furthermore, Wk·2 (f!) is a Hilbert space under the inner product 

(5.7) 

We denote by W1:~(f!) the space of functions belonging to Wk,p(f!') for any 
n' cc n. 

An important result is the following. 

Theorem 5.1 ([GT], Theorem 7.9) The subspace Wk,P(f!) n coo(n) is dense 
in Wk,P(f!). 

The closure of Cgo(n) in wk,P(f!) is denoted by w;·P(f!). It is also a Banach 
space. An equivalent norm on w;·P(f!) is given by 

(5.8) 

This is a consequence of the following Sobolev embedding theorem. It is a 
fundamental tool in the theory of partial differential equations. 

Theorem 5.2 ([GT], Theorems 7.10, 7.17) Let n be a bounded domain zn 
JRn. 
{i} If p < n, the space w~·P(f!) is continuously embedded in LP*(n), p* 
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npf(n- p), and compactly embedded in Lq(n) for any q < p*. Furthermore, 
we have 
(5.9) llullnpf(n-p) :S C(n,p)IIDuiiP · 

{ii) If p > n, the space W~'P(n) is continuously embedded in C0•"'(fi) for 
a= 1-njp, and compactly embedded in C0·13(fi) for any (3 < o:. Furthermore, 
we have 
(5.10) lulo,a;!1 :S C(n,p)[1 + (diamn)"JIIDuiiP. 

To see why Sobolev spaces are useful let's return to Poisson's equation 

(5.11) b.u= f. 

Suppose u E C2(n) is a solution of (5.11). Then, by integration by parts we 
have 
(5.12) -in Du · Dv dx =in fv dx for any v E C6(n). 

But (5.12) makes sense even if u belongs only to W1•2 (n) rather than to C2 (n). 
Thus we define a function u E W1•2(n) to be a weak or generalized solution of 
(5.11) if it satisfies (5.12) for all v E C6(n). 

We now turn our attention to the Dirichlet problem 

(5.13) b.u = f in n ' u = rP on an . 

A generalized solution of (5.11) is not necessarily continuous, so it is not clear 
whether the boundary condition in (5.13) has any meaning for such solutions. 
However, we can give a weak notion of this as well: if u, rP E W 1•2(n), we say 
u = rP on an if u- rP E W~'2 (n). A weak definition of inequality on an can 
also be given. In particular, u:::; 0 on an if u+ = max{u,O} E W~'2 (n). 

Once we have these notions we can prove a weak maximum principle for 
W 1•2 solutions. 

Theorem 5.3 ([GT], Theorem 8.1) Let u E W 1•2 (n) satisfy b.u;::: O(:S 0) in 
a bounded domain n. Then 

(5.14) sup u :::; sup u+ 
!1 8!1 

( in£ u >in£ u-) . !1 - 8!1 

Proof By approximation and Theorem 5.1, (5.12) is valid for any v E W~'2 (n). 
Therefore we may choose v =max{ u- l, 0} where l = sup811 u+, in the weak 
form of /:).. u ;::: 0, namely 

in Du · Dv dx:::; 0 for all nonnegative v E W~'2 (n), 
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to obtain 
{ jDuj 2 dx ::::; 0. 

i{u>l} 

This implies (5.14). 
As a corollary of this we see that generalized solutions of the Dirichlet 

problem (5.12) are unique. 
We now turn to the existence question. Here the fact that W~'2 (D) is a 

Hilbert space makes this relatively easy. As in the classical case we can reduce 
to the case of zero boundary values by replacing u by u - <ft. We must then 
replace f by j = f- !J.<jJ. Notice that this is not a function in general, since 
<jJ belongs only to W 1•2 (D). Set fi = -Di<P· Then the equation 

(5.15) 

can be interpreted in weak form, namely 

(5.16) - k Du · Dv dx = k (fv- i Div) dx for any v E W~'2 (D). 

In view of this it is reasonable to assume that j, fi E L2(D). 
Now consider the Hilbert space 1{ = W~'2 (D) equipped with the inner 

product 

(5.17) ( u, v )H = k Du · Dv dx . 

We denote the corresponding norm by II·IIH· As noted above, it is equivalent 
to the usual W 1•2 norm, so that 1{ is indeed a Hilbert space. If we now define 

(5.18) 

for v E 'H, then by Holder's inequality and (5.9) we have 

(5.19) IF(v)l < (11flluu:~J + ~ llfllu(n)) llvllw1 •2 (!1) 

< C (llfllu(n) + ~ llfllu(n)) llviiH 

so that F is a bounded linear functional on 'H. It follows from the Riesz 
representation theorem for Hilbert spaces that there is a unique element u E 1{ 

such that 
(5.20) F(v) = (u,v)H for all v E 'H. 

This says exactly that the Dirichlet problem 

(5.21) !J.u = f + Ddi in D, u = 0 on an, 
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is uniquely solvable in W~'2 (D) for any f, P E L2(D). Furthermore, for the 
particular choice v = u in (5.19) and (5.20) we obtain the estimate 

(5.22) 

Returning to the original boundary condition in the usual way we see that we 
have proved the following. 

Theorem 5.4 Let n be a bounded domain in 1Rn. Then the Dirichlet problem 

(5.23) ll.u = f + Ddi in n, u = ¢ on an, 

has a unique generalized solution in W1 •2 (D) for any f, Ji E L2 (D) and ¢ E 

W 1•2(D). Furthermore, we have 

(5.24) 

We can extend all of these ideas to more general second order elliptic 
equations. The notion of generalized solution is based on integration by parts, 
so it is natural to require that the equation be written in a form suitable for 
this procedure. Thus we assume now that L has the form 

(5.25) 

where the coefficients are measurable functions on n. We also need to assume 
the ellipticity condition 

where A is a positive constant. vVe also assume that the coefficients are 
bounded: 
(5.27) iaij(x)l, lbi(x)l, ici(x)l, ld(x)l:::; A for all X En 
for another positive constant A. Finally, corresponding to the nonpositivity of 
the coefficient of u for an equation of the form (4.1), we assume 

(5.28) 
f . 12 

Jo ( dv- b' Div) dx :=:; 0 for all nonnegative v E W0 ' (D). 

Proceeding essentially as before, we can prove the following. 

Theorem 5.5 ([GT], Theorem 8.3) Let n be a bounded domain in 1Rn, and 
suppose the operator L given by (5.25) satisfies conditions (5.26), (5.27) and 
(5.28). Then for any f, Ji E L2 (0) and¢ E W 1 •2 (0) the Dirichlet problem 
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Lu = f + Ddi in n, u = ¢ on an has a unique generalized solution zn 
W1,2 (n), and we have 

(5.29) 

where C depends on n, A, A and n. 

The final question we will consider in this section is the regularity of the 
solutions obtained in Theorems 5.4 and 5.5. The following theorem answers 
this. 

Theorem 5.6 ([GT), Theorems 8.8, 8.10, 8.12, 8.13) (i) Let u E W1,2 (n) be 
a weak solution of the equation Lu = f in n where L is strictly elliptic in n, 
the coefficients aij,bi E Ck,l(f!), the coefficients ci,d E Ck-l,l(f!) (Loo(n) if 

k = 0), and f E Wk,z(n), where k is a nonnegative integer. Then for any 
subdomain n' cc n we have u E Wk+2,2 (n') and 

(5.30) 

where C depends only on n, )., k, dist (n', an) and K, where 

In particular, ifaij,bi,ci,d,f E c=(n), then u belongs to c=(n). 
(ii) Suppose in addition that an E Ck+2 and that there exists a function ¢ E 
wk+z,z such that u- ¢ E Wl'2(D). Then u E Wk+2,2(n) and 

( 5.31) 

where C depends only on n, A, k, K and an. In particular, if aij, bi, ci, d, f, ¢ E 

c= ( 0) and an E c=, then u belongs to coo ( f!). 

This is proved by applying the estimate (5.29) to the derivatives of u, or 
more precisely, to suitable difference quotients of u, since we do not know a 
priori that u is sufficiently smooth to differentiate directly. 
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6 PARABOLIC EQUATIONS 

In this section we will describe some results for parabolic equations. A parabolic 
equation is one of the form 

(6.1) 
ou 

Ut =- = Lu on n X (0, T)' at 
where n is a domain in IRn and Lis an elliptic operator for each timet E (0, T). 
Thus the general linear second order parabolic equation has the form 

(6.2) ~~ = t aij(x,t)Diju+ tbi(x,t)Diu+c(x,t)u+f(x,t) 
'l,J=l t=l 

where 
n 

(6.3) L aij(x, t)~i~j > 0 for all ~ E IRn, ~ i= 0 
i,j=l 

for each (x, t) E (0, T). 
The simplest example of a parabolic equation is the heat equation 

(6.4) Ut = 6.u. 

We will restrict our attention to this model equation in this lecture. However, 
the theory of much more general parabolic equations can be developed very 
much along the lines of elliptic theory, with the heat operator playing the 
central role in place of the Laplacian. Roughly speaking, there is a parabolic 
version of most results of the elliptic theory. Thus there are mean value equal
ities for solutions of the heat equation, parabolic weak and strong maximum 
principles, and parabolic versions of the Schauder and Sobolev theories. Of 
course, there are also aspects which have no elliptic analogues, such as the 
asymptotic behaviour of solutions as t ~, oo, but even these may have close 
connections to the elliptic theory. 

The basic boundary value problem for the heat equation, and also for gen
eral second order parabolic equations, is to prescribe the value of the solution 
on the parabolic boundary of Q = n X (O,T) (we always take T > 0), which is 
given by 8'Q = ({0} X n) u (on X [O,T]). This is known as the first initial
boundary value problem. It is called the Cauchy problem in the special case 
n = IRn. 

We begin with the weak maximum principle for the heat equation. 

Theorem 6ol Let n be a bounded domain in IRn and let Q = n X (O,T). 
Suppose that u E C2 (Q) n C0 (Q) satisfies Ut- 6.u::; 0 in Q. Then 

(6.5) supu = supu. 
Q 8'Q 
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Proof Let E > 0 and set v = u - ct, so that 

(6.6) Vt - .6. v < 0 in Q. 

Let T' E (0, T) and set Q' = n x (0, T'). If v attains its maximum over Q' at 
an interior point, then Vt = 0 and D 2v s; 0 at that point, which contradicts 
(6.6). If v has its maximum over Q' at a point of S1 x {T'}, then Vt ;::: 0 and 
D 2 v s; 0 at that point, which also contradicts (6.6). It follows that v attains 
its maximum on a'Q', and hence, letting T'--+ T and E--+ 0, that u attains its 
maximum on 8' Q. 
Remark It is clear that this argument generalizes to more general parabolic 
equations. However, there is also a mean value equality for solutions of the 
heat equation from which we may obtain the maximum principle, as we did in 
Section 2 for harmonic functions. There is also a strong maximum principle for 
solutions of (6.4) (which can also be deduced from the mean value equality) 
which states that if u attains its maximum at a point of Q- a'Q, then u is 
constant in Q. 

From Theorem 6.1 we immediately obtain the following uniqueness result 
for the first initial-boundary problem. 

Theorem 6.2 Let S1 be a bounded domain in 1Rn. Then there is at most one 
solution u E C2 (Q) n C0 (Q) of the problem 

(6.7) Ut- .6.u = j in Q, U = <j; on a'Q. 

Next we find an analogue of the fundamental solution and a related repre
sentation formula for solutions of the Cauchy problem 

(6.8) Ut- .6.u = 0 in 1Rn X (O,oo), u =</;on 1Rn. 

The quickest way to do this is to take the Fourier transform of the heat equa
tion. But the following method (taken from [E]) is more elementary. First, if 
u solves the heat equation (6.4) on 1Rn X (0, oo ), then so does the function w 
given by 

u;,(x, t) = u(>.x, ).2t) 

for any A E JR. This scaling property suggests that we look for a solution of 
the form 

u(x,t) = v (rt
2

) r = lxl, t > 0, 

where v is to be determined. This eventually leads to what we want, but it 
turns out to be simpler to look for solutions of the form 

(6.9) u(x, t) = w(t)v (rt2 ) , 
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where both v and w are to be determined. After a little computation we find 
that 

Ut- ~u = w'(t)v ( rt
2

) - w(t)v' ( ~2 ) :: 

-w(t)v" (rt2) 4~2- w(t)v' (~2) 2tn. 

Consequently, if u is to solve (6.4), we require 

(r2) w(t) [ (r2) 4r2 (r2) r2 (r2) ] (6.10)w'(t)v t --t-v" t -t-+v' t t+v' t 2n =0. 

If we choose 
(6.11) v(z) = e-z/4 , 

then 4v"(z) + v'(z) = 0, so the first two terms inside the brackets cancel. 
Consequently, (6.10) reduces to 

which has the solution 
(6.12) 

nw(t) 
iv'(t) + -- = 0 

2t 

w(t) = rn/2 • 

Combining (6.9), (6.11) and (6.12) we see that 

(6.13) u(x t) = _1_e-lxl2/4t 
' tn/2 ' 

up to additive and multiplicative constants. The function 

(6.14) K(x t) = 1 e-lxl2 /4t ' ( 47rt)n/2 
is called the fundamental solution of the heat equation or the heat kernel. 
Remark The normalization factor ( 47r )-n/2 is introduced so that 

(6.15) f K ( x, t) dx = 1 for each t > 0. 
}JRn 

We can now use the heat kernel to obtain a representation formula for 
solutions of the Cauchy problem (6.8). To do this we observe that the heat 
equation is translation invariant, so K(x - y, t) is a solution for each fixed 
y E IRn. In addition, the sum of finitely many solutions is also a solution. 
This suggests that 

(6.16) u(x,t)= f K(x-y,t)¢(y)dy 
}JRn 

should also be a solution. 
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Theorem 6.3 Suppose¢ E C0 (1Rn) nL00 (lRn), and let u be defined by (6.16). 
Then 
(i) u belongs to C 00 (lRn x (O,oo)); 
(ii) u satisfies the heat equation in lRn X (0, oo); 
(iii) lim(x,t)--+(xo,o)u(x,t) = ¢(xo) for each Xo E lRn. 

Proof (i) and (ii) follow from the fact that t-nfze-lxl2 / 4 t is ceo with deriva
tives of all orders uniformly bounded on lRn x [8, oo) for each 8 > 0; this allows 
us to differentiate under the integral. To prove (iii) let x0 E lRn and E > 0. 
By continuity of ¢ there is a 8 > 0 such that 

( 6.17) l¢(y)- ¢(xo)l < E if IY- xal < 8, y E lRn. 

For lx- xal < 8/2 we have 

lu(x, t)- ¢(xo)l IJJRn K(x- y, t)(¢(y)- ¢(xo)) dyl 

< f K(x- y, t)l¢(y)- ¢(xo)l dy JB0 (xo) 

+ f K(x-y,t)l¢(y)-¢(xo)ldy. 
}JRn-B0 (xo) 

The first integral is less than E, by (6.15), and the second can easily be shown 
to go to zero as t -+ 0, since ¢is bounded. Thus we obtain lu( x, t) -¢( x0 ) I < 2E 
if lx- x0 1 < 8/2 and t > 0 is small enough. 
Remarks (i) Since we are not on a bounded domain, the weak maximum 
principle cannot be used as before to deduce the uniqueness of solutions of the 
Cauchy problem. In fact, uniqueness does not hold in general, but it can be 
shown that for any given positive constants A and a there is only one solution 
which satisfies the bound lu(x, t)l :::; Ae"'lxl2

• 

(ii) Theorem 6.3 can be generalized to yield a representation formula for 
solutions of the Cauchy problem for the inhomogeneous heat equation Ut -
l-:.u =f. 

The next result we will derive is a representation formula for solutions of 
the inhomogeneous heat equation 

(6.18) Ut - f-:.u = f in Q = 0 X (0, 00), 

where D is bounded with 80 E C 1 , which is analogous to the representation 
formula (2.18). Suppose that u, v E C2 (Q) and u solves (6.19). By integration 
by parts we find that 

h v f dx dt = h v( Ut - l-:.u) dx dt 
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(6.19) - f u( Vt + .6.v) dx dt + f uv dx- f uv dx JQ lnx{T} lnx{o} 

- v- -u- dsdt. loT fo ( au av) 
0 an av av 

We now fix y E n, let f.> 0 and choose v(x, t) = K(x- y, T +f.- t); then v 
belongs to C""(IRn x [0, T]) and solves the backward heat equation vt+.6.v = 0. 
By the proof of Theorem 6.3 (iii) we have 

(6.20) f uvdx 
lnx{T} 

k K(x- y, E)u(x, T) dx 

--+ u(y, T) as f.--+ 0. 

Since K ( x - y, T + f. - t) is uniformly continuous with respect to f., x, t for 
f. ~ 0, X E an, t E [0, T] and for X E n, t = 0, we see from (6.19) that 

(6.21) u(y, T) = f K(x- y, T- t)f(x, t) dx dt + f K(x- y, T)u(x, 0) dx 
~ ~ . 

+loT hn (K(x-y,T-t):~(x,t)-u(x,t)~~(x-y,T-t)) dsdt. 

It follows from this that if u solves the heat equation on Q, then u E C""(Q). 
The integral 

(6.22) h K(x- y, T- t)f(x, t) dx dt 

is called the heat potential of the function f. It plays a similar role in the theory 
of parabolic equations as the Newtonian potential plays in the elliptic theory. 
In particular, the representation formula (6.21) can be used in a similar way to 
(2.18) to obtain estimates for solutions of (6.18), which can then be extended 
to more general parabolic equations by a perturbation argument similar to the 
one used in Section 4. 

Finally, we give a brief description of one method of proving the existence 
of a solution of the first initial-boundary problem 

(6.23) u 

u 

.6.u inn x (O,oo), 

0 on an X (0, oo), 

</Jon n X {0}. 

For details see [F], Chapter 4, [Fr], [LSU], Section 111.17 and [S], Lecture 12. 
Other methods of proving the existence of solutions are also discussed in [LSU]. 
For simplicity we consider only the homogeneous heat equation with zero data 
on the lateral boundary, but much more general problems can be treated by 
similar techniques. 
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First we look for solutions of the heat equation of the form 

( 6.24) u(x, t) = r(t)'!jJ(x). 

Clearly, for such solutions we must have 

(6.25) 

wherever u =/:- 0 where A is a constant. It follows that 

(6.26) 1(t) = 1(0)e->.t, 

and that 1/J must be a nontrivial solution of 

(6.27) t:.'ljJ + A'ljJ = 0 in n' 1/J = 0 on an. 

The boundary condition on 1/J is imposed to make u = 0 on an X (0, 00 ). 

From the maximum principle for elliptic equations we that (6.27) can have 
a nontrivial solution only if A > 0. The existence theory for (6.27) in the case 
A > 0 is not covered by the results in Sections 4 and 5, but we may proceed 
as follows (see [GT], Section 8.12, or [S], Lecture 9). 

Let 1i = W~'2 (n) and define 

AI = inf In 1Dul2 . 
uE'H-{0} In lul2 

It can be shown that this infimum is achieved and that the minimizing function 
¢1 is a generalized solution of (6.27) with A = A1 . We normalize ¢1 so that 
In <Pi = 1. By a similar argument it can be shown that there is a ¢2 E 1i which 
is orthogonal to ¢1 in L 2 (n) (and also in 1£) such that In¢~= 1, 

r ID¢212 = A2 = inf In 1Dul2 ' 
Jn {uE'H-{O}:ul_q\1} In lul2 

and ¢2 is a generalized solution of (6.27) with A = A2 • Continuing inductively 
we obtain a sequence {¢j} C 1i with </Jjl_</Jk if j =/:- k, such that 11</Jil!u(n) = 1 
for each j, 

r ID¢jl2 = Aj = inf IoiDul2' 
Jn {uE'H-{O}:dql,,. .. ,ql,_,} In lul2 

and each <Pi is a generalized solution of (6.27) with A= Aj. In fact, by elliptic 
regularity theory (Theorem 5.6) each </;j belongs to coo(n), and to coo(f2) if 
an E coo. 

The numbers {Aj} are called the eigenvalues of!:,. and { </;j} are the corre
sponding eigenfunctions. It can also be shown that each eigenvalue has finite 
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multiplicity (i.e., is repeated at most finitely many times), the first eigenvalue 
,\1 has multiplicity one, and Aj --+ oo as j --+ oo. Furthermore, { </Yj} is a 
complete orthonormal set in L2 (0.). 

Returning now to the initial-boundary problem (6.23), we see that if¢ E 

L2 (0.), then ¢has an expansion 

00 

¢(x) = L aj</Yj(x), 
j=l 

and at least formally the solution of (6.23) should be given by 

00 

(6.28) u(x,t) = I::aje-Ait</Jj(x). 
j=l 

This turns out to be the case: the series converges in L2 (0. X (0, T)) for any 
T > 0, and converges in W 1•2(f!) for any fixed t > 0. Furthermore, this 
convergence is uniform for t 2: e for any E > 0. The limit function u given 
by (6.28) is therefore a generalized solution of (6.23). Better regularity of u 
can then be deduced by applying a parabolic analogue of Theorem 5.6. In 
particular, u E C 00 (0. x (O,oo)), and if 80. E Coo, then u E Coo(f! x (O,oo)). 
If also </J E C 00 (0.), then u E c=((f! x (O,oo)) U (f! x {0})). However, it is 
not generally true that u E Coo ( Q) if </J E coo ( f!); further conditions on ¢ are 
needed to conclude this. 
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