
Chapter 5 

Dense Matrix Factorisation 
Operations 

The following routines are described in the following pages: 

Bunch-Kaufman-ParleU factor and solve 
Cholesky, LD Lr factor and solve 
Band LDLT factor and solve 
LU factor (Gaussian elimination) and solve 
Band LU factor and solve 
QR factor and solve with/out column pivoting 
Extract matrices from compact form (QR only) 
Compute and apply Givens' rotations 
Householder transformations 
Solve for diagonal and triangular matrices 
Update routines for LDLT and QR factorisations 
Eigenvalue routines 
Eigenvalue/vector extraction routines 
Singular value decomposition 
Matrix polynomials and exponentials 
Fast Fourier Transform 

To use these routines use the include statement 

#include "matrix2.h" 

and for the complex routines 

#include "zmatrix2.h" 
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NAME 
BKPfactor, BKPsol ve- Bunch-Kaufman-Parlett symmetric indefinite 
factorise and solve 

SYNOPSIS 

#include "matrix2.h" 
MAT *BKPfactor(MAT *A, PERM *pivot, PERM *blocks) 
VEC *BKPsolve(MAT *A, PERM *pivot, PERM *blocks, 

VEC *b, VEC *x) 

DESCRIPTION 

The routine BKPfactor () forms in situ a symmetric indefinite factorisation of 
the matrix A of the form 

pTAP=MDMT 

where P is a permutation matrix, M is lower triangular, and D is block diagonal, with 
1 x 1 or 2 x 2 blocks. The matrix Pis represented by the permutation pivot and Dii 
is a 1 x 1 block if and only if blocks- >pe [ i] == i; otherwise blocks- :>pe [ i] 
is the index of the other row/column in the 2 x 2 block. After the routine the D and 
M factors are stored in A in compact form. This avoids the requirement for additional 
vectors or matrices for storage. 

Note that pivot and blocks must both benon-NULLandpivot ! = blocks 
for both BKPfactor {) and BKPsol ve (}. 

The routine BKPsol ve () solves the equation Ax = b for x. The solve routine 
BKPsol ve () is designed specifically to work with BKPfactor () as they operate 
on the same compact storage scheme. Note that the factorisation may succeed when 
the matrix A passed is singular, and that the solve routine may then fail, raising an 
E_SING error. The solve routine may be used in situ with b == x. If xis NULL 
or too small to hold the result, then a new vector is created of the appropriate size for 
storing the result. In either case the resulting solution vector is returned. 

This factorisation routine, and the accompanying solve routine are derived from 
"Decomposition of a Symmetric Matrix" by J. Bunch, L. Kaufman and B. Parlett, 
Numerische Mathematik 27, 95-109 (1976). 

Errors will be raised if A or pivot or blocks are NULL, or if A is not square, or 
if the sizes of A, pivot or blocks are not compatible. 

EXAMPLE 

MAT 
PERM 

*A; 
*pivot, *blocks; 

VEC *x, *b; 

A= m_input(MNULL); 



b = v_input(VNULL); 
pivot = px_get(A->m); 
blocks = px_get(A->m); 
/* assuming A symmetric */ 
BKPfactor(A,pivot,blocks}; 
x = BKPsolve(A,pivot,blocks,b,VNULL); 

SEE ALSO 

CHfactor() and CHsolve () 

SOURCE FILE: BKPfactor.c 
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NAME 
CHfactor, MCHfactor, CHsolve, LDLfactor, LDLsolve
Cholesky factor and solve 

SYNOPSIS 

#include "matrix2.h" 
MAT *CHfactor(MAT *A) 
MAT 
VEC 
MAT 
VEC 

*MCHfactor(MAT *A, double tol) 
*CHsolve(MAT *A, VEC *b, VEC *x). 
*LDLfactor(MAT *A) 
*LDLsolve(MAT *A, VEC *b, VEC *x) 

DESCRIPTION 

Both CHfactor () and LDLfactor () factor the matrix A in situ and returns the 
factored matrix (in compact form). The Cholesky factorisation routine and the LDLT 
routines both use only the lower triangular part of A, but the Cholesky factorisation 
routine fills the upper triangular part of A also. 

These routines require that A is square. The Cholesky factorisation, in particular, 
requires that A be sufficiently positive definite (e.g. lowest eigenvalue of A is at least 
machine epsilon away from zero). If non-positive definiteness is detected during 
factorisation, then an E_POSDEF error will be raised. If you wish to catch such an 
error, see information on the catch ( ) macro. If your matrix is indefinite, then it 
would be best to use the BKPfactor () and BKPsol ve () routines. 

The routine MCHfactor ( ) computes a modified Cholesky factorisation. This is 
not a true Cholesky factorisation, but rather the Cholesky factorisation of A+ D where 
D is a diagonal matrix with non-negative entries. Whether the A matrix is modified 
in this way is determined by the tol parameter; the diagonal entry of the Cholesky 
factorisation is ensured to be ~ y'tOi. The D matrix is guaranteed to be zero in exact 
arithmetic if uT Au ~ toluT u for all u. 

EXAMPLE 

MAT *A, *LLT, *LDL; 
VEC *b, *x; 
double tol; 

A= m_input(MNULL); 
b = v_input(VNULL); 
input("Input tol for modified Cholesky: ", "%lf", &:tol); 
LLT = m_copy{A,MNULL); 
I* If A positive definite ••• */ 
CHfactor(LLT); 
X= CHsolve{LLT,b,VNULL); 



I* ••• otherwise, get approximate solution •.• *I 
LLT = m_copy(A,MNULL); 
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MCHfactor(LLT,tol); 
MCHsolve(LLT,b,x); 

I* LLT now has factors of A + D *I 

I* ... or use LDL factorisation *I 
LDL = m_copy(A,MNULL); 
LDLfactor(LDL); 
LDLsolve(LDL,b,x); 

SEE ALSO 

catch () and BKPfactor () 

SOURCE FILE: CHfactor.c 
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NAME 

band2mat, :m.at2band- Band matrix utility routines 

SYNOPSIS 

#include "matrix.h" 
MAT *band2mat(BAND *bdA, MAT *out) 
BAND *mat2band(MAT *A, int lb, int ub, BAND *out} 

DESCRIPTION 

The routine band2mat () creates an ordinary dense matrix out (aMeschach MAT 
structure) that is represented by the band matrix structure bdA represents. The returned 
matrix is square. 

The routine mat2band () extracts the banded part of A with lower bandwidth lb 
and upper bandwidth ub and stores the result in the BAND structure out. The input 
matrix A must be square; if not an E_SQUARE error is raised. 

For more infonnation about band matrix data structures and storage patterns see 
the chapter on data structures. 

Note that the conversion routines do not directly copy the mat field of the band 
structure. If you need efficient storage of band matrices, the routines band2mat (} 
and mat2band () should probably be avoided. 

SEE ALSO 

bdLDLfactor () and bdLUfactor (). 

SOURCE FILE: bdfactor.c 
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NAME 

bdLDLfactor, bdLDLsol ve -Band Cholesky factorise and solve 

SYNOPSIS 

#include "matrix2.h" 
BAND *bdLDLfactor(BAND *bdA) 
VEC *bdLDLsolve (BAND *bdA, VEC *b, VEC *x) 

DESCRIPTION 

These routines compute the LD LT factorisation, and solve, a symmetric system 
of banded equations. These routines only use the lower band and tne main diagonal of 
A. 

After the call bdLDLfactor (A), A is in factored form which compactly repre
sents both the diagonal matrix D, but also the unit lower triangular matrix L. 

If the matrix is exactly singular on factorisation, then an E_SING error is raised. 

EXAMPLE 

To extract a tridiagonal matrix from a dense matrix A, and to factorise and solve a 
system Ax = b: 

MAT *A; 
VEC *b, *x; 
BAND *bdA; 

I* Note: only need lower triangular part */ 
bdA = mat2band(A,l,O,(BAND *)NULL); 
bdLDLfactor(bdA); 
x = bdLDLsolve(bdA,b,VNULL); 

BUGS 

This method can be numerically unstable for matrices that are not positive definite. 

The routine bdLDLfa.ctor (} does not test for symmetry. 

SEE ALSO 

bdLUfactor(),LDLfactor() 

SOURCE FILE: bdfactor.c 
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NAME 
LUfactor, LU~olve, LUTsolve, LUcondest, m_inverse, 
zLUfactor, zLUsolve, zLUAsolve, zLUcondest, zm_inverse
LU factorisation (Gaussian elimination) and solve 

SYNOPSIS 

#include "matrix2.h" 
MAT *LUfactor(MAT *A, PERM *pivot) 
VEC 
VEC 
double 
MAT 

*LUsolve (MAT *A, PERM *pivot, VEC *b, VEC *x) 
*LUTsolve(MAT *A, PERM *pivot, VEC *b, VEC *x} 

LUcondest(MAT *LU, PERM *pivot) 
*m_inverse(MAT *A, MAT *out) 

#include "zmatrix2.h" 
ZMAT *zLUfactor(ZMAT *A, PERM *pivot) 
ZVEC *zLUsolve (ZMAT *A, PERM *pivot, ZVEC *b, ZVEC 
ZVEC *zLUAsolve(ZMAT *A, PERM *pivot, ZVEC *b, ZVEC 
double zLUcondest(ZMAT *LU, PERM *pivot) 
ZMAT *zm_inverse(ZMAT *A, ZMAT *out) 

DESCRIPTION 

*x) 
*x) 

The routines LUfactor () and zLUfactor () perform LU factorisation, which 
is otherwise known as Gaussian elimination with implicit scaled partial pivoting. The 
zLUfactor () performs the complex LU factorisation. The LU factors of A are 
stored in A in compact form. Once this is done, the routine LUsol ve ( ) can be used 
to solve equations of the fonn Ax = b for x by forward and back substitution. For 
real matrices, the system AT x = b can be solved by using LUTsol ve ( ) , while for 
complex matrices A*x = b can be solved using zLUAsolve 0. The code for a full 
factorisation and solving Ax = b and AT y = b is: 

I* set up A and b */ 

pivot = px_get(A->m); 
x = v_get(A->n); 
y = v_get(A->m); 
LU = m_copy(A,MNULL); 
LUfactor(LU,pivot}; 
x = LUsolve(LU,pivot,b,x); 
y = LUTsolve(LU,pivot,b,y}; 
condition = LUcondest{LU,pivot); 

A full description of Gaussian elimination with partial pivoting and its numerical 
behaviour can be found in a number of books, though we refer the reader specifically 
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to Matrix Computations by G.H. Golub and C. van Loan, North Oxford Academic, 
§§3.2-3.4, pp. 92-122, 2nd Edition (1989). The variant here is that scaling is used 
implicitly. That is, scaling is only used to decide which rows to swap during the partial 
pivoting process. 

Note that the factorisation routine LUfactor () may succeed where the solve 
routine LUsol ve ( ) fails if, for example, A is singular. Also note that LU factorisation 
also succeeds when A is not even square, though this is a requirement for the success of 
LUsol ve () or zLUsol ve (). Errors are raised by LUfactor () or zLUfactor () 
if A or pivot is NULL, or if the size of pivot is less than the number of rows of 
A. Errors are raised by LUsol ve, LUTsol ve ( ) , zLUsol ve ( ) or zLUAsol ve ( ) 
if these conditions occur, if b is NULL, or if A is not square. Then if x is NULL or 
too small to contain the result a new vector of the appropriate size is created. In either 
case the solution of Ax = b, x, is returned. The routines LUsol ve ( ) , LUTsol ve ( ) , 
zLUsol ve () or zLUAsol ve () may be used in situ (that is, with b == x) with 
version 1.2 or later. 

The condition number (relative to the infinity norm) can be estimated using the 
routine LUcondest () or the routine zLUcondest (). This estimate is not guaran
teed to under- or over-estimate the true condition number; however, it can usually be 
relied on to give an estimate correct to within an order of magnitude, which is usually 
all that is required. 

The routines m_inverse ( ) and zm_inverse ( ) compute the inverse of A and 
returns the result in out. This is carried out using the LU factorisation routines. As is 
usually noted in numerical analysis texts, inverse matrices should rarely be computed. 
If a system of equations need to be solved, use the above code calling LUfactor () 
and LUsol ve (), or zLUfactor () and zLUsol ve () directly. 

SOURCE FILE: lufactor.c, zlufctr.c 
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NAME 

bdLUf actor, bdLUsol ve -Band LU factorise and solve 

SYNOPSIS 

#include "matrix2.h" 
BAND *bdLUfactor(BAND *bdA, PERM *pivot) 
VEC *bdLUsolve (BAND *bdA, PERM *pivot, VEC *b, VEC *x) 

DESCRIPTION 

The routine bdLUfactor () computes the LU factorisation of a band matrix 
A with partial pivoting. This routine performs essentially the same calculations as 
LUf actor ( ) . This operation is done in situ in bdA. Because partial pivoting is used, 
the (upper) bandwidth of the matrix being factorised increases. Specifically, the final 
upper bandwidth is lb + ub where lb is the original lower bandwidth and ub is the 
original upper bandwidth. 

The routine bdLUsol ve 0 computes the solution to the banded system Ax = b 
using the band matrix bdA in factored form. Note that only square matrices can be 
represented as banded matrices. This can be done in situ (x "'"" b). 

These routines raise an E_NULL error if either bdA or pivot is NULL. 

EXAMPLE 

To factor and solve Ax = b: 

BAND *bdA; 
PERM *pivot; 
VEC *x, *b; 

I* set up bdA */ 

I* get a random right-hand side */ 
b = v_rand(v_get(A->mat->n}); 
I* factor bdA ••. *I 
pivot = px_get(A->mat->n); 
bdLUfactor(bdA,pivot); 
I* ••• and solve system*/ 
x = v_get(b->dim); 
bdLUsolve(bdA,pivot,b,x); 

BUGS 

Unless bdA is resized to its original size (which can be done very efficiently by 
bd_resize ()) repeated calls to bdLUfactor (bdA, .•. ) will result in the upper 
bandwidth increasing until it is n - 1 where bdA represents an n x n matrix. 



SEE ALSO 

LUfactor() 

SOURCE FILE: 
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bdfactor.c 



126 CHAPTER 5. DENSE MATRIX FACTORISATION OPERATIONS 

NAME 
QRfactor, QRCPfactor, QRsolve, QRCPsolve, QRTsolve, 
QRcondest, zQRfactor, zQRCPfactor, zQRsolve, 
zQRCPsolve, zQRAsolve, zQRcondest -QR factorisation and solve 

SYNOPSIS 

#include "matrix2.h" 
ldAT *QRfactor(MAT *A, VEC *diag) 
l~T *QRCPfactor(MAT VEC *diag, PERM *pivot) 
'1\I'EC 

1/'EC 

VEC 

double 

*QRsolve(MAT V"EC '"diag, VEC *b, VEC *x) 
*QRTsolve(MAT *A, VEC *diag, VEC *b, VEC *x} 
*QRCPsolve(MAT *A, VEC *diag, PERM *pivot, 

VEC *b, VEC *x) 
QRcondest(MAT *QR) 

#include "zmatrix2.h" 
ZMAT *zQRfactor(ZMAT *A, ZVEC *diag) 
ZMAT *zQRCPfactor(ZMAT *A, ZVEC *diag, PERM *pivot) 
ZVEC 
ZVEC 
ZVEC 

double 

*zQRsolve {ZMAT *A, ZVEC *diag, ZVEC *b, ZVEC 
*zQRAsolve(ZMAT *A, ZVEC *diag, ZVEC *b, ZVEC 
*zQRCPsolve(ZMAT *A, ZVEC *diag, PERM *pivot, 

ZVEC *b, ZVEC *x) 
zQRcondest(ZMAT *QR) 

DESCRIPTION 

The routines QRfactor () and zQRfactor () perform straightforward QR fac
torisations of A. The routine zQRfactor {) computes the complex QR factorisation. 
For those unfamiliar with the terminology, the Q R factorisation of A is a factorisation 
of the form 

A=QR 

where R is upper triangular, and Q is orthogonal in the real case and unitary in the 
complex case. That is Q-1 = QT and QT Q = I in the real case, and Q-1 = Q* 
and Q* Q = I in the complex case. This factorisation exists whether or not A 
is singular or even square. The Q R factorisation is performed using Householder 
transformations. (These are orthogonal matrices of the form Pi = I- aiviv[ (real 
case) or Pi = I- aiviv; (complex case) where ai = 2/vf vi (real case) or ai = 2/v;vi 
(complex case).) 

The routines QRCPfactor () and zQRCPfactor () perform a QR factorisation 
with column pivoting, which is a factorisation of the form 

ATIT = QR 

where additionally, TI is a permutation matrix. The TI matrix is represented by pivot. 
This is done exactly as for QRfactor () and zQRfactor () except for the pivoting. 
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Both of these factorisations are performed in situ, and store the Q and R factors 
compactly in A and diag. This compact form is used consistently within this package, 
and is essentially that of Golub and van Loan's Matrix Computations, §5.2, p. 212, 2nd 
edition, (1989), except that the v's are not normalised in this package. The dimensions 
of both diag must be at least as large as the minimum of the number of rows and 
columns of A. 

Once A and diag contain this compact representation of the Q R factors of A, we 
can use QRsol ve () to solve systems of linear equations, and indeed, find least square 
error solutions to overdetermined systems of equations. See Matrix Computations, 
§ 1.4, p. 11 for an example. Indeed, the code 

MAT *QR; 

QR = m_copy(A,MNULL); 
QRfactor(QR,diag}; 
QRsolve(QR,diag,b,x); 

finds the least squares solution x to 

Ax~b. 

Similarly, if QRCPfactor () is to be used to factor A, then QRCPsol ve () can be 
used to solve the least squares problem Ax~ b. The code to do this is: 

QR = m_copy(A,MNULL); 
QRCPfactor(QR,diag,pivot); 
QRCPsolve(QR,diag,pivot,b,x); 

The corresponding operations for complex matrices simply requires prefixing the func
tions by a "z" and replacing MAT by ZMAT. 

Note that in the real case, QRTsol ve ( QR, diag, b, x) solves the underdeter
mined problem Ax = b; that is, it computes the minimum 2-norm x that satisfies Ax = 

b form :S n. The corresponding complex routine is zQRAsolve (QR, diag, b, x). 

The condition number of a matrix factored using either QRfactor {) or 
QRCPfactor () can be estimated using QRcondest (): 

printf("2-norm condition no. approx. = %g\n", QRcondest(QR)); 

Thecorrespondingcomplexfunctionis zQRcondest (). ThefunctionQRcondest () 
returns a lower bound for the least squares condition number of the factored matrix A 

provided A has full rank. If A is square, then this is exactly equal to the 2-norm 
condition number 
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If the Q R factors are exactly singular, then QRcondest ( ) will return HUGE (HUGE_ VAL 
for ANSI C). 

The estimate is obtained by obtaining estimates for II Rib and 11 R-lu2. Note that 
Q and IT do not affect the 2-horm or least squares condition numbers. The estimate of 
IIR-1 11 2 is found using the techniques of LUcondest () to obtain a vector y with unit 
oo-norm such that IIR-1ylloo is quite small. This is described in Golub and van Loan, 
2nd Edition pp. 128-130, (1989). Then the power method is applied to the matrix 
(RT R)-1 (real case) or (R* R)-1 (complex case) a total of three times with initial 
vector y. The corresponding e_stimate of IIRib is obtained by a related method of 
finding a vector y with unit oo-norm and.IIRYIIoo quite large. The power method is 
applied to the matrix RT R (real case) orR* R (complex case). Taking square root of 
the estimated eigenvalues gives a lower bound to the 2-norm condition number of R. 

A simple, and usually reliable, estimate of the rank of a matrix is to factor the 
matrix A using QRCPfactor ( ) (real case) or zQRCPfactor ( ) (complex case), 
and then to count the number of diagonal entries of A greater than a certain tolerance 
in magnitude. A more reliable approach is to use the Singular Value Decomposition. 
See svd(). 

SEE ALSO 

Householder routines hhvec ( ) , hhtrvec ( ) , hhtrrows ( ) and hhtrcols ( ) , 
zhhvec ()' zhhtrvec ()' zhhtrrows () and zhhtrcols (); sva (). 

SOURCE FILE: qrfactor.c, zqrfctr.c 
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NAME 

makeQ, makeR, zmakeQ, zmakeR- explicitly form Q and R factors 

SYNOPSIS 

#include "matrix2.h" 
MAT *makeQ(MAT *QR, VEC *diag, MAT *Qout) 
MAT *makeR(MAT *QR, MAT *Rout) 

#include "zmatrix2.h" 
ZMAT *zmakeQ(ZMAT *QR, ZVRC *diag, ZMAT *Qout) 
ZMAT *zmakeR(ZMAT *QR, ZMAT *Rout) 

DESCRIPTION 

The routines makeQ ( ) and zmakeQ ( ) explicitly forms the real orthogonal Q or 
complex unitary Q of the Q R factorisation from the compact representation in QR and 
diag. The result is stored in Qout. This routine may not be used to form Qout in 
situ. 

The routines makeR ( ) and makeR ( ) explicitly forms the upper triangular R 
matrix of the QR factorisation. The result is stored in Rout. These two routines may 
be used in situ; that is, with QR == Rout. (Actually the routine just zeros the strictly 
lower triangular half of QR.) 

If Qou t or Rout is NULL or too small to contain the result then a new matrix is 
created and returned. 

EXAMPLE 

MAT *A, *QR, *Q, *R; 
VEC *diag; 

diag = v_get(A->m); 
QR = m_copy(A,MNULL); 
QRfactor(QR,diag); 
Q = makeQ(QR,diag,MNULL); 
R = makeR(QR,MNULL); 
/* makeR(QR,QR); replaces QR with the R matrix*/ 

SOURCE FILE: qrfactor.c, zqrfctr.c 
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NAME 
givens, rot_cols, rot_rows, .. rot_vec, zgivens, zrot_cols, 
zrot_rows, rot_zvec -Givens' rotations routines 

SYNOPSIS 

#include "matrix2.h" 
void givens(double x, double y, Real &c, Real &s) 
MAT *rot_cols(MAT *A, int i, int k, 

double c, double s, MAT *out) 
MAT *rot_rows(MAT *A, int i, int k, 

Real c, Real s, MAT *out) 
VEC *rot_vec (VEC *x, int i, int k, 

double c, double s, VEC *out) 

#include "zmatrix2.h" 
void zgivens(complex x, complex y, Real &c, complex &s) 
ZMAT 

ZMAT 

ZVEC 

*zrot_cols(ZMAT *A, int i, int k, 
double c, complex s, ZMAT *out) 

*zrot_rows(ZMAT *A, int i, int k, 
double c, complex s, ZMAT *out) 

*rot_zvec (ZVEC *x, int i, int k, 
double c, complex s, ZVEC *out) 

DESCRIPTION 

The routine gi vena ( ) computes a pair ( c, s) such that 

(5.1) 

where c2 + s2 = 1. The routine zgi vens ( ) computes a pair ( c, s ), c real and s 
complex where 

(5.2) 

The matrix formed from the ( c, s) pair is a real orthogonal or a complex unitary 
matrix, and is often referred to as a Givens' rotation. The other routines apply such 
an orthogonal matrix to vectors and matrices. The actual orthogonal matrix (from 
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givens ())that is applied to vectors and matrices is the matrix 

The routine rot_eols () forms AJik(c, s)T and stores the result in out. The 
routine zrot_eols () forms AJik(c, s)* and stores the result in out. 

The routines rot_rows ( ) and zrot_rows ( ) form Jik ( c, s )A and stores the 
result in out. 

The routines rot_ vee ( ) and rot_ vee ( ) form Jik ( c, s )x and stores the result 
in out. 

All of the •• rot_ ••• ( ) routines may be used in situ and create a new vector or 
matrix if the out parameter is NULL or is too small to contain the result. The result 
of the application of the Givens' rotation is returned by each of the •• rot_ ••• () 
routines. 

Note that Jik(c, s)T = Jik(c, -s) in the real case, and Jik(c, s)* = J;,k(c, -s) in 
the complex case. This makes pre- and post-multiplying by transposes of J;.k ( c, s) 
easy. 

EXAMPLE 

int i, k; 
VEC *x; 
MAT *A; 
Real e, s; 

...... 
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I* get Givens transformation *I 
givens(x->ve[i],x->ve[k],&c,&s); 
I* apply to x *I 
rot_vec(x,i,k,c,s); 
I* apply symmetrically to A *I 
rot_cols(A,i,k,c,s); 
rot_rows(A,i,k,c,s); 

BUGS 

The givens () routine may result in overflow if the x and/or y parameters are of 
size greater than VHUGE. 

SOURCE FiLE: givens.c, zgivens.c 
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NAME 
hhvec, hhtrcols, hhtrrows, hhtrvec, zhhvec, zhhtrcols, 
zhhtrrows, zhhtrvec - Householder transformation operations 

SYNOPSIS 

#include "matrix2.h" 
VEC *hhvec(VEC *x, unsigned iO, Real *beta, 

VEC *out, Real *newval) 
MAT *hhtrcols(MAT *A, int iO, int jO, VEC *hh, double beta} 
MAT *hhtrrows(MAT *A, int iO, int jO, VEC *hh, double beta) 
VEC *hhtrvec(VEC *hh, double beta, int iO, VEC *x, VEC *out) 

#include "zmatrix2.h" 
ZVEC *zhhvec(ZVEC *x, unsigned iO, Real *beta, 

ZVEC *out, complex *newval) 
ZMAT *zhhtrcols(ZMAT *A, int iO, int jO, ZVEC *hh, 

double beta) 
ZMAT *zhhtrrows(ZMAT *A, int iO, int jO, ZVEC *hh, 

double beta) 
ZVEC *zhhtrvec(ZVEC *hh, double beta, int iO, ZVEC *x, 

ZVEC *out) 

DESCRIPTION 

The routines hhvec ( ) and zhhvec ( ) compute the parameters for a Householder 
transformation. In particular, given a vector x, a vector v (== out) and a real 
numbers f3 (== beta) and a (possibly complex) number newval are computed where 
the Householder transformation P = I - f3vv* satisfies 

(5.5) 

Note that in the case of x a real vector, newval is real. Note also that zhhvec ( ) 
computes the parameters for a complex vector. 

The x parameter is not modified. The formulae used are taken from Matrix 
Computations by G. Golub and C. van Loan, p. 40, 1st Edition, (1983), §5.1, pp. 196-
196, 2nd Edition, (1989). 

If out is NULL or too small to hold the v vector, then a new vector is created to 
store the result. In either case, the result is returned. An error is raised if the x vector 
is NULL. 

The routine hhtrcols () forms the product APT where Pis the Householder 
transformation defined by hh and f3 (== beta). (That is, P =I- (3hhhhT.) The 
routine zhhtrcols () forms the product AP* where Pis the Householder transfor
mation defined by hh and f3 ( == beta). (That is, P = I - f3hh hh* .) All rows i with 
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i < i 0 and columns j with j < j 0 are ignored. The operations are performed in situ 
inA. 

The routines hhtrrows ( ) and zhhtrrows ( ) form the product P A where Pis 
the Householder transformation defined by hh and {3. Again, all rows i with i < iO 
and columns j with j < j 0 are ignored. The operations is performed in situ in A. 

Finally, the routines hhtrvec 0 and zhhtrvec ( ) forms the vector Px where 
Pis the Householder transformation defined by hh and {3. The result is stored in out. 
If out is NULL or too small to hold the results of the operation, then a new vector is 
created of the appropriate. size. In either case the result is returned. 

SOURCE FILE: hsehldr.c 
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NAME 
Dsolve, Lsolve, LTsolve, Usolve, UTsolve, zDsolve, 
zLsolve, zLAsolve, zUsolve, zUAsol ve -Basic solve routines 

SYNOPSIS 

#include "matrix2.h" 
VEC *Dsolve (MAT *A, VEC *b, VEC *x) 
VEC *Lsolve (MAT *A, VEC *b, VEC *x, double diag) 
VEC *LTsolve(MAT *A, VEC *b, VEC *x, double diag) 
VEC *Usolve {MAT *A, VEC *b, VEC *x, double diag) 
VEC *UTsolve(MAT *A, VEC *b, VEC *x, double diag) 

#include "zmatrix2.h" 
ZVEC *zDsolve (ZMAT *A, ZVEC *b, ZVEC *x) 
ZVEC *zLsolve {ZMAT *A, ZVEC *b, ZVEC *x, double diag) 
ZVEC *zLAsolve(ZMAT *A, ZVEC *b, ZVEC *x, double diag) 
ZVEC *zUsolve {ZMAT *A, ZVEC *b, ZVEC *x, double diag) 
ZVEC *zUAsolve(ZMAT *A, ZVEC *b, ZVEC *x, double diag) 

DESCRIPTION 

The routines Dsol ve ( ) and zDsol ve ( ) find and return the solution x of Dx = b 
where D is the diagonal part of the matrix A ( == A). 

The routines Lsol ve ( ) and zLsol ve ( ) find and return the solution x of Lx = b 
where L is the lower triangular part of A if diag is zero; Lis the strictly lower triangular 
part of A with diag on the diagonal if diag is not zero. These routines use forward 
substitution. 

The routines LTsol ve ( ) and zLAsol ve ( ) find and return the solutions x of 
LT x = b and L * x = b respectively where L is the lower triangular part of A if diag 
is zero; L is the strictly upper triangular part of A with diag on the diagonal if diag 
is not zero. 

The routines Usol ve ( ) and zUsol ve ( ) find and return the solution x of U x = b 
where U is the upper triangular part of A if diag is zero; U is the strictly upper 
triangular part of A with diag on the diagonal if diag is not zero. These routines use 
back substitution. 

The routines UTsol ve () and zUAsol ve () find and return the solution x of 
ur x = band U*x = b respectively where U is the upper triangular part of A if diag 
is zero; U is the strictly upper triangular part of A with diag on the diagonal if diag 
is not zero. These routines use back substitution. 

All of these routines may be used in situ; that is, they can be used with b == x. 

If x is too small to contain the result then a new vector is created of the appropriate 
dimension. In either case the solution of the equations is returned. 
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The rationale behind the use of the diag parameter is that often, as in LU factori
sation or LDLT factorisation, the diagonal entry for Lis implicit (usually one). The 
diag parameter enables these routines to be used generally, including for the results 
of Q R factorisation, for example. 

EXAMPLE 

For solving Ax = b using Cholesky factorisation, with only L: 

MAT *L; 
VEC *b, *;x; 

Lsolve(L,b,x,O.O); 
LTsolve(L,x,x,O.O); 

I* use L's diagonal entries */ 

For solving Ax = b using LU factorisation with L unit lower triangular and no 
pivoting: 

MAT *L, *U; 
VEC *b, *x; 

Lsolve(L,b,x,l.O); 
Usolve(U,b,x,O.O); 

SEE ALSO 

I* L unit lower triangular */ 

LUsolve(),zLUsolve(),CHsolve(),LDLsolve(),QRsolve(), 
zQRsolve() 

SOURCE FILE: solve.c, zsolve.c 
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NAME 

LDLupdate, QRupdate- factorisation update routiaes 

SYNOPSIS 

#include "matrix2.h" 
MAT *LDLupdate(MAT *LDL, VEC *w, double alpha) 
MAT *QRupdate (MAT *Q, MAT *R, VEC *u, VEC *v) 

DESCRIPTION 

The routine LDLupdate () modifies the matrix LDL which is assumed to cont~n 
(in compact form) the LD LT factorisation of a matrix A. The L matrix is the strictly 
lower triangular part of LDL, except with ones on the diagonal; while Dis the diagonal 
of LDL, so that A = LD LT. The matrix r.JDL is modified in situ so that if L+ and D + 
denote the factors described by LDL after the routine; then 

where a is the value of alpha and w is w. The modified LDL matrix is returned. 

The method used for updating the factorisation is given in "Methods for modifying 
matrix factorisations" by P. Gill, G. Golub, W. Murray and M. Saunders, Mathemat~ 
ics of Computations, 28, pp. 505-535 (1974). The particular algorithm used is the 
algorithm Cl of their paper. 

This routine may fail if A+ awwr is not sufficiently positive definite; if this failure 
occurs, then an E_POSDEF error is raised. 

The routine QRupdate () updates the QR factorisation of a matrix A = QR. 
Unlike the previous routine, this routine requires the explicit factors Q and R of A. 
These can be obtained from the compact form by means of the routines makeQ ( ) 
and makeR ( ) . If the matrices Q and R after the routine are denoted Q + and R+ 
respectively, then 

Q+R+ = Q(R + uvT) =A+ (Qu)vr. 

Setting u = QT w gives Q +R+ = A + wvT. 

If Q is NULL, then only the R matrix is modified. The R matrix is returned. 

The routine is based on one given in Matrix Computations by G. Golub and C. 
van Loan, pp. 437-443, 1st Edition (1983), pp. 593-594, 2nd Edition (1989). 

EXAMPLE 

Updating LD LT factorisation: 

MAT *A, *LDL; 
VEC *u; 
double alpha; 



138 CHAPTER 5. DENSE MATRIX FACTORISATION OPERATIONS 

LDL = m_copy{A,MNULL); 
LDLfactor(LDL); 

I* A <- A + alpha.u.uAT */ 
LDLupdate(LDL,u,alpha); 

Updating Q R fact.orisation: 

MAT *A, *QR, *Q, *R; 
VEC *diag, *beta, *u, *v, *w; 

QR ""m_copy(A,MNULL); 
QRfactor(QR,diag,beta); 
Q = makeQ(QR,diag,beta,MNULL); 
R = makeR(QR,MNULL); 

I* A <- A + w.vAT */ 
u = v_get(Q->m); 
u = v.m_mlt(Q,w,u); 
QRupdate(Q,R,u,v}; 

SOURCE FILE: update.c 
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NAME 

schur, symmeig, trieig, zschur- Eigenvalue routines 

SYNOPSIS 

#include "matrix2.h" 
MAT *schur(MAT *A, MAT *Q) 
VEC *symmeig(MAT *A,-MAT *Q, VEC *out) 
VEC *trieig(VEC *a, VEC *b, MAT *Q) 

#include "zma1;:rix2.h" 
ZMAT _ *zschur(MAT *A, MAT *Q) 

DESCRIPTJON 

The routine schur ( ) computes the Real Schur decomposition of the matrix A. 
That is, it computes a block upper triangular matrix T and an orthogonal matrix Q such 
that 

The matrix T has diagonal blocks of sizes 1 x 1 and 2 x 2. The eigenvalues of these 
diagonal blocks are the eigenvalues of the original A matrix. The algorithm used to 
find the eigenvalues of A is the Francis QR algorithm. This algorithm is described in 
Matrix Computations by G. Golub and C. van Loan, pp. 231-236, 1st Edition (1983), 
pp. 377-381, 2nd Edition (1989). 

The matrix A is overwritten with T, and if Q is not NULL and the correct size, then 
the Q matrix is stored in it. 

The routine zschur () computes the complex Schur factorisation of A. That is, it 
computes an upper triangular matrix T and a unitary matrix Q such that 

Q*AQ=T. 

The eigenvalues of A are the diagonal entries ofT. The algorithm is a complex version 
of the Francis Q R algorithm, and is, in fact, somewhat simplified in the complex case. 

The routine symmeig ( ) computes the eigenvalues of a symmetric matrix. It also 
computes an orthogonal matrix Q such that 

where A is the diagmiai matrix of eigenvalues;·. The algorithm used to find the eigen
values of A consists of conversion to symmetric Hessenberg (symmetric tridiagonal) 
form, and then applying trieig ( ) to obtain the eigenvalues of the tridiagonal matrix. 

The eigenvalues are stored in out provided it is not NULL and is sufficiently large 
to contain all the eigenvalues. The vector containing the eigenvalues is_ returned. The 
matrix A is not overwritten. 
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The routine trieig ( ) computes the eigenvalues of the symmetric tridiagonal 
matrix 

ao bo 
bo a1 bl 

(5.6) T= bl a2 

bn-2 

bn-2 an-1 

The algorithm used is a "chasing" technique described in Matrix Computations, 
pp. 278-281, 1st Edition, pp. 421-424, 2nd Edition. It also-accumulates the ma
trix Q such that QTTQ is diagonal. To compute the correct Q matrix, Q should be 
initialised to the identity matrix on entry to trieig (). (See m_ident () .) 

The values in the a and b vectors are overwritten. At the end of the routine, a 
contains the eigenvalues, and the b vector is zero. 

In· all of the above routines, if the matrix Q is NULL on entry, then no calculation 
of the Q matrices is performed. This should speed up the routines somewhat if only 
the eigenvalues are needed. 

EXAMPLE 

_.Computing real Schur decomposition of (pos~ibly) nonsymmetric A: 

MAT *A, *S, *Q, *X_re, *X_im; 
VEC *evals_re, *evals_im; 

S = m_copy(A,MNULL); 
Q = m_get(A->m,A->m); 
schur(S,Q); 
I* get eigenvalues (real, imaginary parts) *I 
evals_re = v_get(A->m); 
evals_im = v~get (A-,>m); 
schur_evais ( s ,-~vals_re; evals_im) ; 

- . 

I* get eigenvectors (real, imaginary parts) *I 
X_re = m__:_get (A->m,A->m); 
X_im = m_get(A->m,A->m); 
schur_evecs(S,Q,X_re,X_im); 

, . Computing eigenvalues and eigenvectors of a real symmetric matrix: 

MAT *A, *Q; 
VEC *evals; 

evals = v_get(A->m); 
evals = symmeig(A,Q,evals); 
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The Q matrix contains the eigenvectors. 

Computing the eigenvalues and eigenvectors of a symmetric tridiagonal matrix 
defined by the vectors a (the diagonal entries) and b (the off-diagonal entries): 

MAT *Q; 
VEC *a, *b; 

Q = m_get(a->dim,a->dim); 
m_ident(Q); /*must initialise Q */ 
trieig(a,b,Q); 
I* a is now the vector of eigenvalues */ 

SEE ALSO 

The Hessenberg routines in hess en. c and zhessen. c . 

.BUGS 

It is up to the caller 0f s:ymmeig ( ) to ensure that the A matrix is symmetric. 
Symmetry of A is neither checked nor enforced in symmeig ( ) . 

SOURCE FILE: symmeig.c, schur.c, zschur.c 
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NAME 
schur_evals, schur_vecs- Extracting eigenvalues and eigenvectors from 
the Schur form 

SYNOPSIS 

#include "matrix2.h" 
void schur_evals(MAT *T, VEC *re_evals, VEC *im_evals) 
MAT *schur_vecs(MAT *T, MAT *Q, MAT *X_re, MAT *X_im) 

DESCRIPTION 

Both of these routines assume that T is the matrix computed by the schur ( ) 
routine; Q is the orthogonal matrix computed by schur ( ) . , 

The routine schur_evals () compute the eigenvalues of a matrix Tin Schur 
form (block diagonal with 1 x 1 or 2 x 2 blocks). The kth eigenvalue of A = QTQT is 
re_evals->ve [k] +iim_evals->ve [k]. At worst this requires solving a series 
of quadratics; however, it does simplify the task of computing eigenvalues. Complex 
eigenvalues come in complex conjugate pairs. 

The routine schur_ vecs ( ) computes the matrix X = x_re + i X_im such that 
x-1 AX is the diagonal matrix of eigenvalues where T = QT AQ as computed by the 
schur ( ) routine. The columns of X are computed by means of one step of inverse 
iteration using the eigenvalues as computed from the Schur form. This method is 
usually accurate provided the eigenvalues are not too close together. The computed kth 
column of X is real if the computed kth eigenvalue is real. The ordering of the columns 
is consistent with the ordering of the eigenvalues generated by schur_evals (). 

EXAMPLE 

See example for schur ( ) above. 

BUGS 

It is a bit difficult to check that the computed X is correct if it is complex. 

SEE ALSO 

schur() 

SOURCE FILE: schur.c 
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NAME 

svd., bisvd- Singular Value Decomposition routines 

SYNOPSIS 

#include "matrix2.h" 
VEC *svd(MAT *A, MAT *U, MAT *V, VEC *out) 
VEC *bisvd(VEC *d, VEC *f, MAT *U, MAT *V) 

DESCRIPTION 

The routine svd ( ) performs a complete Singular Value Decomposition (SVD) on 
the matrix A. That is, it computes orthogonal matrices U and V such that U AVT is 
diagonal and the diagonal entries are called the singular values of the matrix A. The 
first min( m, n) singular values are stored in the out vector which is also returned. 
Note that the SVD is defined for nonsquare as well as square matrices. 

If NULLs are passed for either or both u and v, then that orthogonal matrix will not 
be accumulated. This saves both time and space, if just the singular values are desired 
and not the U or V matrices. If out is NULL on entry to svd ( ) , then a vector of the 
appropriate size is created to store the singular values, which is returned. , 

The SVD is computed by first transforming the matrix into a bidiagonal matrix 
( c.f. schur ( ) where a matrix is transformed into Hessenberg form for eigenvalue 
calculations) and then applying bisvd ( ) . If a matrix is already in bidiagonal form, 
then bi svd ( ) can be called directly. The vector d contains· the diagonal entries and 
f contains the super-diagonal entries. As for svd ( ) , if NULLs are passed for either 
or both u and v, then that (or both) orthogonal matrix will not be accumulated. For 
correct results using bisvd ( ) , you should initialise u and v to be identity matrices 
using m_idc;mt ( ) before calling bisvd (). 

The rank of a matrix can be estimated by counting the number of singular values 
whose magnitude exceeds a specified tolerance. This tolerance for accurately computed 
matrices should probably be about 100 times MACHEPS; otherwise it should about an 
order of magnitude larger than the errors in the matrix. 

The algorithm used follows Matrix Computations by Golub and van Loan, pp. 430-
435, 2nd Edition (1989). 

EXAMPLE 

For computing the SVD of A: 

MAT *A, *U, *V; 
VEC *svdvals; 

U = m_get(A->m,A->m); 
v = m_get(A->n,A->n); 
svdvals = svd(A,U,V,VNULL); 
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For computing the SVD of the bidiagonal matrix defined by d (the diagonal entries) 
and f (the super-diagonal entries): 

MAT *U, *V; 

VEC *d, *f; 

U = m_get ( d- >dim, d- >dim) ; 
V = m_get(d->dim,d->dim); 
m_ident (U) ; 
m_ident (V) ; 
bisvd(d,f,U,V) 

/* must initialise U and V */ 

/* d now contains the singular values */ 

SOURCE FILE: svd.c 



NAME 

m_exp, m_poly, m_pow- Matrix exponentials, polynomials and powers 

SYNOPSIS 

#include "matrix2.h" 
MAT * m_pow(MAT *A, int p, MAT *out) 
MAT *_m_pow(MAT 
MAT * m_exp(MAT 
MAT *_m_exp(MAT 

int 
MAT *m__poly(MAT 

DESCRIPTION 

*A, int p, MAT *tmp, MAT *out) 
*A, double eps, MAT *out) 
*A, double eps, MAT *out, 
*qout, int *jout) 
*A, VEC *a, MAT *out) 

145 

The routine m_pow sets a matrix A E Rnxn to the power p, where p can be 
any non-negative integer. (Use m_inverse () for negative p.) The result is placed 
in the matrix out = AP. The routine is based on the binary powering algorithm (see 
Golub and Van Loan, Matrix computations, John Hopkins University Press, Baltimore, 
2nd edition,l989). The algorithm requires at most 2Llog2(p)Jn3 flops where n is the 
dimension of the matrix. 
_m_pow it is a variant of the routine m_pow which uses tmp as a workspace matrix. 

The routine m_exp computes an approximation of 

using the Pade approximation 

where 

q q 

Nq(A) = I:CkAk' Dq(A) = I>k(-A)k, 
k=O k=O 

and 
(2q- k)!q! 

Ck = (2q)!k!(q- k)!" 

The computed exponential is placed in out. The degree q is determined from an error 
tolerance eps given by the user. Pade approximation is good for A with a small nonn, 
therefore this condition can be ensured by applying repeated squaring ( Rqq ( Aj2i) )2;, 

where j is chosen so that I!Af2i II ~ 1/2. The Pade approximate can be more efficient 
by using special Horner regrouping techniques to evaluate matrix polynomial. The 
relative error of Pade approximate for a matrix with II All ~ 0.5 can be estimated by 

ileA- (Rqq(Aj2i))2; lloo < E(q q)IIAII e'(q,q)IIA!Ioo 
lleAIIoo - ' co ' 
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and t:(q, q) = 23-(2ql(q!) 2 /((2q)!(2q + 1)!). 
In _m_expthe degree q is returned in qout, and j is returned in jout. The routines 
m_exp and _m_exp are based on the paper: "Nineteen Dubious Ways to Compute 
The Exponential of the Matrix", SIAM Rev. 20(4), p.801-836, 1987 by C. Moler and 
C. Van Loan and the book G.H. Golub, C. Van Loan "Matrix Computations", Johns 
Hopkins University Press, Baltimore, 2nd edition, 1989. 

m_poly evaluates the polynomial of a matrix A 

where a0 , ab a2, ... , aq are given by the vector a with q = a->dim-1. The result 
is placed in out. The algorithm used to compute the matrix polynomials in the Pade 
approximation and in m_poly is based on the paper "A note on the Evaluation of 
Matrix Polynomials", IEEE Transactions on Automatic Control24 (1979), p. 209-228 
by C. Van Loan. The paper describes a method that is faster and more memory efficient 
than the standard Horner's method. 

SOURCE FILE: mfunc.c 



NAME 

fft, ifft -Fast Fourier Transform and inverse 

SYNOPSIS 

#include "matrix2.h" 
void 
void 

fft(VEC *x_re, VEC *x_im) 
ifft(VEC *x_re, VEC *x_im) 

DESCRIPTION 
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The routine fft () performs a fast Fourier transform on the vector x = x_re + 
ix_im. The transform is computed in situ. It does require that the dimension of x is a 
power of two. 

The routine ifft () performs the inverse fast Fourier transform of x = x_re + 
ix_im. As with fft () it is computed in situ, and the dimension of x must be a power 
of two. 

SOURCE FILE: fft.c 


