Chapter 5

Dense Matrix Factorisation Operations

The following routines are described in the following pages:
Bunch-Kaufman-Parlett factor and solve 116
Cholesky, $L D L^{T}$ factor and solve 118
Band $L D L^{T}$ factor and solve 121
$L U$ factor (Gaussian elimination) and solve 122
Band $L U$ factor and solve 124
$Q R$ factor and solve with/out column pivoting 126
Extract matrices from compact form ($Q R$ only) 129
Compute and apply Givens' rotations 130
Householder transformations 133
Solve for diagonal and triangular matrices 135
Update routines for $L D L^{T}$ and $Q R$ factorisations 137
Eigenvalue routines 139
Eigenvalue/vector extraction routines 142
Singular value decomposition 143
Matrix polynomials and exponentials 145
Fast Fourier Transform 147

To use these routines use the include statement

```
#include "matrix2.h"
```

and for the complex routines
\#include "zmatrix2.h"

NAME
BKPfactor, BKPsolve - Bunch-Kaufman-Parlett symmetric indefinite factorise and solve

SYNOPSIS

```
#include "matrix2.h"
MAT *BKPfactor(MAT *A, PERM *pivot, PERM *blocks)
VEC *BKPsolve(MAT *A, PERM *pivot, PERM *blocks,
    VEC *b, VEC *x)
```


DESCRIPTION

The routine BKPfactor() forms in situ a symmetric indefinite factorisation of the matrix A of the form

$$
P^{T} A P=M D M^{T}
$$

where P is a permutation matrix, M is lower triangular, and D is block diagonal, with 1×1 or 2×2 blocks. The matrix P is represented by the permutation pivot and $D_{i i}$ is a 1×1 block if and only if blocks->pe[i] == i; otherwise blocks->pe[i] is the index of the other row/column in the 2×2 block. After the routine the D and M factors are stored in \mathbf{A} in compact form. This avoids the requirement for additional vectors or matrices for storage.

Note that pivot and blocks must both be non-NULL and pivot != blocks for both BKPfactor() and BKPsolve().

The routine BKPsolve() solves the equation $A x=b$ for x. The solve routine BKPsolve() is designed specifically to work with BKPfactor() as they operate on the same compact storage scheme. Note that the factorisation may succeed when the matrix A passed is singular, and that the solve routine may then fail, raising an E_SING error. The solve routine may be used in situ with $b==\mathbf{x}$. If \mathbf{x} is NULL or too small to hold the result, then a new vector is created of the appropriate size for storing the result. In either case the resulting solution vector is returned.

This factorisation routine, and the accompanying solve routine are derived from "Decomposition of a Symmetric Matrix" by J. Bunch, L. Kaufman and B. Parlett, Numerische Mathematik 27, 95-109 (1976).

Errors will be raised if A or pivot or blocks are NULL, or if A is not square, or if the sizes of A, pivot or blocks are not compatible.

EXAMPLE

```
MAT *A;
PERM *pivot, *blocks;
VEC *x, *b;
A = m_input(MNULL):
```

$\mathrm{b}=\mathrm{v}$ _input (VNULL);
pivot $=$ px_get $(A->m)$;
blocks $=$ px_get $(A->m)$;
/* assuming A symmetric */
BKPfactor (A, pivot,blocks);
$\mathbf{x}=$ BKPsolve (A, pivot,blocks,b,VNULL) ;

SEE ALSO

CHfactor() and CHsolve()
SOURCE FILE: BKPfactor.c

```
NAME
    CHfactor, MCHfactor, CHsolve, LDLfactor, LDLsolve -
    Cholesky factor and solve
```

SYNOPSIS
\#include "matrix2.h"
MAT *CHfactor(MAT *A)
MAT *MCHfactor(MAT *A, double tol)
VEC *CHsolve(MAT *A, VEC *b, VEC *x)
MAT *LDLfactor (MAT *A)
VEC *LDLsolve (MAT *A, VEC *b, VEC **)

DESCRIPTION

Both CHfactor () and LDLfactor() factor the matrix A in situ and returns the factored matrix (in compact form). The Cholesky factorisation routine and the $L D L^{T}$ routines both use only the lower triangular part of A , but the Cholesky factorisation routine fills the upper triangular part of \mathbf{A} also.

These routines require that \mathbf{A} is square. The Cholesky factorisation, in particular, requires that \mathbb{A} be sufficiently positive definite (e.g. lowest eigenvalue of \mathbb{A} is at least machine epsilon away from zero). If non-positive definiteness is detected during factorisation, then an E_POSDEF error will be raised. If you wish to catch such an error, see information on the catch() macro. If your matrix is indefinite, then it would be best to use the BKPfactor() and BKPsolve() routines.

The routine MCHfactor() computes a modified Cholesky factorisation. This is not a true Cholesky factorisation, but rather the Cholesky factorisation of $A+D$ where D is a diagonal matrix with non-negative entries. Whether the A matrix is modified in this way is determined by the tol parameter; the diagonal entry of the Cholesky factorisation is ensured to be $\geq \sqrt{\text { tol }}$. The D matrix is guaranteed to be zero in exact arithmetic if $u^{T} A u \geq \operatorname{tol} u^{T} u$ for all u.

EXAMPLE

```
MAT *A, *LLT, *LDL;
VEC *b, *x;
double tol;
A = m_input(MNULL);
b = v_input (VNULL);
input("Input tol for modified Cholesky: ", "%lf", &tol);
LLT = m_cOpy(A,MNULL);
/* If A positive definite... */
CHfactor(LLT);
```

$\mathbf{x}=$ CHsolve(LLT, b, VNULL) ;
/* ...otherwise, get approximate solution... */
LLT $=$ m_copy (A, MNULL) ;
MCHfactor(LLT,tol): $\quad /$ * LLT now has factors of $A+D$ */
MCHsolve (LLT, b , X) ;
/* ...or use LDL factorisation */
LDL $=$ m_COpy (A, MNULL) ;
LDLfactor (LDL);
LDLsolve (LDL, b , x) ;

SEE ALSO
catch() and BKPfactor()
SOURCE FILE: cHfactor.c

```
NAME
    band2mat, mat2band-Band matrix utility routines
SYNOPSIS
```

\#include "matrix.h"
MAT *band2mat(BAND *bdA, MAT *out)
BAND *mat2band(MAT *A, int 1 b , int $u \mathrm{~b}$, BAND *out)

DESCRIPTION

The routine band2mat () creates an ordinary dense matrix out (a Meschach MAT structure) that is represented by the band matrix structure bdA represents. The returned matrix is square.

The routine mat 2 band () extracts the banded part of A with lower bandwidth 1b and upper bandwidth ub and stores the result in the BAND structure out. The input matrix A must be square; if not an E_SQUARE error is raised.

For more information about band matrix data structures and storage patterns see the chapter on data structures.

Note that the conversion routines do not directly copy the mat field of the band structure. If you need efficient storage of band matrices, the routines band2mat () and mat2band () should probably be avoided.

SEE ALSO

bdLDLfactor() and bdLufactor().

SOURCE FILE: bdfactor.c

NAME

bdLdLfactor, bdLDLsolve - Band Cholesky factorise and solve

SYNOPSIS

```
#include "matrix2.h"
BAND *bdLDLfactor(BAND *bdA)
VEC *bdLDLsolve (BAND *bdA, VEC *b, VEC *x)
```


DESCRIPTION

These routines compute the $L D L^{T}$ factorisation, and solve, a symmetric system of banded equations. These routines only use the lower band and the main diagonal of A.

After the call bdudufactor(A), A is in factored form which compactly represents both the diagonal matrix D, but also the unit lower triangular matrix L.

If the matrix is exactly singular on factorisation, then an E_SING error is raised.

EXAMPLE

To extract a tridiagonal matrix from a dense matrix A, and to factorise and solve a system $A x=b$:

```
MAT *A;
VEC *b, *x;
BAND *bdA;
```

/* Note: only need lower triangular part */
bdA $=\operatorname{mat} 2 b a n d(A, 1,0$, (BAND *) NULL):
bdLDLfactor (bdA);
$x=$ bdLDLsolve (bdA, b, VNULL) ;

BUGS

This method can be numerically unstable for matrices that are not positive definite.
The routine bduDLfactor () does not test for symmetry.

SEE ALSO

bdLufactor(), LDLfactor()
SOURCE FILE: bdfactor.c

```
NAME
    LUfactor, LUsolve, LUTsolve, LUcondest, m-inverse,
    zLUfactor, zLUsolve, zLUAsolve, zLUcondest, zm_inverse-
    LU factorisation (Gaussian elimination) and solve
```


SYNOPSIS

```
#include "matrix2.h"
MAT *LUfactor(MAT *A, PERM *pivot)
VEC *LUsolve (MAT *A, PERM *pivot, VEC *b, VEC *x)
VEC *LUTsolve(MAT *A, PERM *pivot, VEC *b, VEC *x)
double LUcondest(MAT *LU, PERM *pivot)
MAT *m_inverse(MAT *A, MAT *out)
```

\#include "zmatrix2.h"
ZMAT *zLUfactor(ZMAT *A, PERM *pivot)
ZVEC *zLUsolve (ZMAT *A, PERM *pivot, ZVEC *b, ZVEC *x)
ZVEC *zLUAsolve(ZMAT *A, PERM *pivot, ZVEC *b, ZVEC *x)
double zLUcondest(ZMAT *LU, PERM *pivot)
ZMAT *zm_inverse(ZMAT *A, ZMAT *out)

DESCRIPTION

The routines Lufactor () and zLufactor () perform $L U$ factorisation, which is otherwise known as Gaussian elimination with implicit scaled partial pivoting. The zLufactor() performs the complex $L U$ factorisation. The $L U$ factors of \mathfrak{A} are stored in \mathbb{A} in compact form. Once this is done, the routine Lusolve () can be used to solve equations of the form $A x=b$ for x by forward and back substitution. For real matrices, the system $A^{T} x=b$ can be solved by using LUTsolve (), while for complex matrices $A^{*} x=b$ can be solved using zLUAsolve (). The code for a full factorisation and solving $A x=b$ and $A^{T} y=b$ is:

```
/* set up A and b */
pivot = px_get(A->m);
x = v_get (A->n);
y = v_get (A->m);
LU = m_COpY(A,MNULL);
Lufactor(LU,pivot);
x = LUsolve(LU,pivot,b,x);
y = LUTsolve(LU,pivot,b,y);
condition = LUcondest(LU,pivot);
```

A full description of Gaussian elimination with partial pivoting and its numerical behaviour can be found in a number of books, though we refer the reader specifically
to Matrix Computations by G.H. Golub and C. van Loan, North Oxford Academic, §§3.2-3.4, pp. 92-122, 2nd Edition (1989). The variant here is that scaling is used implicitly. That is, scaling is only used to decide which rows to swap during the partial pivoting process.

Note that the factorisation routine Lufactor() may succeed where the solve routine LUsolve () fails if, for example, A is singular. Also note that $L U$ factorisation also succeeds when \mathbf{A} is not even square, though this is a requirement for the success of LUsolve () or zLUsolve (). Errors are raised by LUfactor() or zLUfactor () if A or pivot is NULL, or if the size of pivot is less than the number of rows of A. Errors are raised by Lusolve, LUTsolve(), zLUsolve() or zLUAsolve() if these conditions occur, if b is NULL, or if A is not square. Then if \mathbf{x} is NULL or too small to contain the result a new vector of the appropriate size is created. In either case the solution of $A x=b, \mathbf{x}$, is returned. The routines LUsolve (), LUTsolve(), zLUsolve() or zLUAsolve() may be used in situ (that is, with $\mathrm{b}=\mathbf{x}$) with version 1.2 or later.

The condition number (relative to the infinity norm) can be estimated using the routine LUcondest () or the routine zLUcondest (). This estimate is not guaranteed to under- or over-estimate the true condition number; however, it can usually be relied on to give an estimate correct to within an order of magnitude, which is usually all that is required.

The routines m_inverse() and zm_inverse() compute the inverse of A and returns the result in out. This is carried out using the LU factorisation routines. As is usually noted in numerical analysis texts, inverse matrices should rarely be computed. If a system of equations need to be solved, use the above code calling Lufactor () and LUsolve(), or zLUfactor() and zLUsolve() directly.

SOURCE FILE: lufactor.c, zlufctr.c

NAME
bdLufactor, bdLUsolve - Band $L U$ factorise and solve

SYNOPSIS

```
#include "matrix2.h"
BAND *bdLUfactor(BAND *bdA, PERM *pivot)
VEC *bdLUsolve (BAND *bdA, PERM *pivot, VEC *b, VEC *x)
```


DESCRIPTION

The routine bdLUfactor() computes the $L U$ factorisation of a band matrix A with partial pivoting. This routine performs essentially the same calculations as Lufactor(). This operation is done in situ in bdA. Because partial pivoting is used, the (upper) bandwidth of the matrix being factorised increases. Specifically, the final upper bandwidth is $l b+u b$ where $l b$ is the original lower bandwidth and $u b$ is the original upper bandwidth.

The routine bdLusolve () computes the solution to the banded system $A x=b$ using the band matrix bdA in factored form. Note that only square matrices can be represented as banded matrices. This can be done in situ ($x==b$).

These routines raise an E_NULI error if either bdA or pivot is NULL.

EXAMPLE

To factor and solve $A x=b$:

```
BAND *bdA;
PERM *pivot;
VEC *x, *b;
/* set up bdA */
/* get a random right-hand side */
b = v_rand(v_get(A->mat->n));
/* factor bdA ... */
pivot = px_get(A->mat->n);
bdLufactor(bdA,pivot);
/* ...and solve system */
x = v_get(b->dim);
bdLUsolve(bdA, pivot,b,x);
```


BUGS

Unless bdA is resized to its original size (which can be done very efficiently by bd_resize()) repeated calls to bdLUfactor (bdA, . . .) will result in the upper bandwidth increasing until it is $n-1$ where bdA represents an $n \times n$ matrix.

SEE ALSO

Lufactor()
SOURCE FILE: bdfactor.c

```
NAME
    QRfactor, QRCPfactor, QRsolve, QRCPsolve, QRTsolve,
    QRcondest, zQRfactor, zQRCPfactor, zQRsolve,
    zQRCPsolve, zQRAsolve, zQRcondest -QR factorisation and solve
SYNOPSIS
#include "matrix2.h"
MAT *QRfactor(MAT *A, VEC *diag)
MAT *QRCPfactor(MAT *A, VEC *diag, PERM *pivot)
VEC *QRsolve(MAT *A, VEC *diag, VEC *b, VEC *x)
VEC *QRTsolve(MAT *A, VEC *diag, VEC *b, VEC *x)
VEC *QRCPsolve(MAT *A, VEC *diag, PERM *pivot,
    VEC *b, VEC *x)
double QRcondest(MAT *QR)
#include "zmatrix2.h"
ZMAT *zQRfactor(ZMAT *A, ZVEC *diag)
ZMAT *zQRCPfactor(ZMAT *A, ZVEC *diag, PERM *pivot)
ZVEC *zQRsolve (ZMAT *A, ZVEC *diag, ZVEC *b, ZVEC *x)
ZVEC *zQRAsolve(ZMAT *A, ZVEC *diag, ZVEC *b, zVEC *x)
ZVEC *zQRCPsolve(ZMAT *A, ZVEC *diag, PERM *pivot,
    ZVEC *b, zVEC *x)
double zQRcondest(ZMAT *QR)
```


DESCRIPTION

The routines QRfactor() and zQRfactor() perform straightforward $Q R$ factorisations of A. The routine zorfactor () computes the complex $Q R$ factorisation. For those unfamiliar with the terminology, the $Q R$ factorisation of A is a factorisation of the form

$$
A=Q R
$$

where R is upper triangular, and Q is orthogonal in the real case and unitary in the complex case. That is $Q^{-1}=Q^{T}$ and $Q^{T} Q=I$ in the real case, and $Q^{-1}=Q^{*}$ and $Q^{*} Q=I$ in the complex case. This factorisation exists whether or not A is singular or even square. The $Q R$ factorisation is performed using Householder transformations. (These are orthogonal matrices of the form $P_{i}=I-\alpha_{i} v_{i} v_{i}^{T}$ (real case) or $P_{i}=I-\alpha_{i} v_{i} v_{i}^{*}$ (complex case) where $\alpha_{i}=2 / v_{i}^{T} v_{i}$ (real case) or $\alpha_{i}=2 / v_{i}^{*} v_{i}$ (complex case).)

The routines QRCPfactor() and zQRCPfactor() perform a $Q R$ factorisation with column pivoting, which is a factorisation of the form

$$
A \Pi^{T}=Q R
$$

where additionally, Π is a permutation matrix. The Π matrix is represented by pivot. This is done exactly as for QRfactor () and zQRfactor () except for the pivoting.

Both of these factorisations are performed in situ, and store the Q and R factors compactly in A and diag. This compact form is used consistently within this package, and is essentially that of Golub and van Loan's Matrix Computations, §5.2, p. 212, 2nd edition, (1989), except that the v 's are not normalised in this package. The dimensions of both diag must be at least as large as the minimum of the number of rows and columns of A .

Once A and diag contain this compact representation of the $Q R$ factors of A, we can use QRsolve () to solve systems of linear equations, and indeed, find least square error solutions to overdetermined systems of equations. See Matrix Computations, §1.4, p. 11 for an example. Indeed, the code

```
MAT *QR;
```

QR = m_copy (A, MNULL);
QRfactor(QR,diag);
QRsolve(QR,diag,b,x);
finds the least squares solution x to

$$
A x \approx b .
$$

Similarly, if QRCPfactor() is to be used to factor A, then QRCPsolve () can be used to solve the least squares problem $A x \approx b$. The code to do this is:

```
QR = m_copy(A,MNULL);
QRCPfactor(QR,diag,pivot);
QRCPsolve(QR,diag, pivot, b, x);
```

The corresponding operations for complex matrices simply requires prefixing the functions by a " z " and replacing MAT by ZMAT.

Note that in the real case, QRTsolve (QR, diag, b, x) solves the underdetermined problem $A x=b$; that is, it computes the minimum 2-norm x that satisfies $A x=$ b for $m \leq n$. The corresponding complex routine is zQRAsolve ($Q \mathrm{R}, \mathrm{diag}, \mathrm{b}, \mathrm{x}$).

The condition number of a matrix factored using either QRfactor() or QRCPfactor () can be estimated using QRcondest ():
printf("2-norm condition no. approx. = \%g\n", QRcondest(QR));
The corresponding complex function is $z Q R$ condest (). The function QRcondest () returns a lower bound for the least squares condition number of the factored matrix A

$$
\kappa_{L S}(A)=\|A\|_{2}\left\|A^{+}\right\|_{2}
$$

provided A has full rank. If A is square, then this is exactly equal to the 2 -norm condition number

$$
\kappa_{2}(A)=\|A\|_{2}\left\|A^{-1}\right\|_{2} .
$$

If the $Q R$ factors are exactly singular, then QRcondest () will return HUGE (HUGE_VAL for ANSI C).

The estimate is obtained by obtaining estimates for $\|R\|_{2}$ and $\left\|R^{-1}\right\|_{2}$. Note that Q and Π do not affect the 2 -norm or least squares condition numbers. The estimate of $\left\|R^{-1}\right\|_{2}$ is found using the techniques of LUcondest () to obtain a vector y with unit ∞-norm such that $\left\|R^{-1} y\right\|_{\infty}$ is quite small. This is described in Golub and van Loan, 2nd Edition pp. 128-130, (1989). Then the power method is applied to the matrix $\left(R^{T} R\right)^{-1}$ (real case) or $\left(R^{*} R\right)^{-1}$ (complex case) a total of three times with initial vector y. The corresponding estimate of $\|R\|_{2}$ is obtained by a related method of finding a vector y with unit ∞-norm and $\|R y\|_{\infty}$ quite large. The power method is applied to the matrix $R^{T} R$ (real case) or $R^{*} R$ (complex case). Taking square root of the estimated eigenvalues gives a lower bound to the 2-norm condition number of R.

A simple, and usually reliable, estimate of the rank of a matrix is to factor the matrix A using QRCPfactor() (real case) or zQRCPfactor() (complex case), and then to count the number of diagonal entries of A greater than a certain tolerance in magnitude. A more reliable approach is to use the Singular Value Decomposition. See svd().

SEE ALSO

Householder routines hhvec (), hhtrvec(), hhtrrows() and hhtrcols(), zhhvec(), zhhtrvec(), zhhtrrows() and zhhtrcols(); svd().

SOURCE FILE: qrfactor.c, zqrfctr.c

NAME

makeQ, makeR, zmakeQ, zmakeR - explicitly form Q and R factors

SYNOPSIS

```
#include "matrix2.h"
MAT *makeQ(MAT *QR, VEC *diag, MAT *Qout)
MAT *makeR(MAT *QR, MAT *Rout)
#include "zmatrix2.h"
ZMAT *zmakeQ(ZMAT *QR, ZVFC *diag, ZMAT *Qout)
ZMAT *zmakeR(ZMAT *QR, ZMAT *Rout)
```


DESCRIPTION

The routines makeQ() and zmakeQ() explicitly forms the real orthogonal Q or complex unitary Q of the $Q R$ factorisation from the compact representation in $Q R$ and diag. The result is stored in Qout. This routine may not be used to form Qout in situ.

The routines makeR() and makeR() explicitly forms the upper triangular R matrix of the $Q R$ factorisation. The result is stored in Rout. These two routines may be used in situ; that is, with $Q R==$ Rout. (Actually the routine just zeros the strictly lower triangular half of $Q R$.)

If Qout or Rout is NULL or too small to contain the result then a new matrix is created and returned.

EXAMPLE

```
MAT *A, *QR, *Q, *R;
VEC *diag;
diag = v_get(A->m);
QR = m_COPY(A,MNULL);
QRfactor(QR,diag);
Q = makeQ(QR,diag,MNULL);
R = makeR(QR,MNULL);
/* makeR(QR,QR); replaces QR with the R matrix */
```

SOURCE FILE: qrfactor.c, zqrfctr.c

NAME
givens, rot_cols, rot_rows, rot_vec, zgivens, zrot_cols, zrot_rows, rot_zvec - Givens' rotations routines

SYNOPSIS

```
#include "matrix2.h"
void givens(double x, double y, Real &c, Real &s)
MAT *rot_cols(MAT *A, int i, int k,
    double c, double s, MAT *Out)
MAT *rot_rows(MAT *A, int i, int k,
    Real c; Real s, MAT *out)
VEC *rot_vec (VEC *x, int i, int k,
    double c, double s, VEC *out)
```

\#include "zmatrix2.h"
void zgivens(complex x, complex y, Real \&c, complex \&s)
ZMAT *zrot_cols(ZMAT *A, int i。int k,
double c, complex s, ZMAT *out)
ZMAT *zrot_rows (ZMAT *A, int i, int k,

ZVEC *rot_zvec (ZVEC *x, int i, int k,

DESCRIPTION

The routine givens () computes a pair (c, s) such that

$$
\left[\begin{array}{cc}
c & s \tag{5.1}\\
-s & c
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
* \\
0
\end{array}\right]
$$

where $c^{2}+s^{2}=1$. The routine zgivens() computes a pair (c, s), c real and s complex where

$$
\left[\begin{array}{cc}
c & -s \tag{5.2}\\
s^{*} & c
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
* \\
0
\end{array}\right]
$$

The matrix formed from the (c, s) pair is a real orthogonal or a complex unitary matrix, and is often referred to as a Givens' rotation. The other routines apply such an orthogonal matrix to vectors and matrices. The actual orthogonal matrix (from
givens ())that is applied to vectors and matrices is the matrix

$$
J_{i k}(c, s)=\left[\begin{array}{ccccccc}
1 & & & & & & \tag{5.3}\\
& \ddots & & & & & \\
& & c & \ldots & s & & \\
& & \vdots & \ddots & \vdots & & \\
& & -s & \ldots & c & & \\
& & & & & \ddots & \\
& & & & & & 1
\end{array}\right]
$$

for the real case, and

$$
J_{i k}(c, s)=\left[\begin{array}{ccccccc}
1 & & & & & & \tag{5.4}\\
& \ddots & & & & & \\
& & c & \ldots & -s & & \\
& & \vdots & \ddots & \vdots & & \\
& & s^{*} & \ldots & c & & \\
& & & & & \ddots & \\
& & & & & & 1
\end{array}\right]
$$

in the complex case.
The routine rot_cols () forms $A J_{i k}(c, s)^{T}$ and stores the result in out. The routine zrot_cols () forms $A J_{i k}(c, s)^{*}$ and stores the result in out.

The routines rot_rows () and zrot_rows () form $J_{i k}(c, s) A$ and stores the result in out.

The routines rot_vec () and rot_vec () form $J_{i k}(c, s) x$ and stores the result in out.

All of the ..rot_... () routines may be used in situ and create a new vector or matrix if the out parameter is NULL or is too small to contain the result. The result of the application of the Givens' rotation is returned by each of the ..rot_... () routines.

Note that $J_{i k}(c, s)^{T}=J_{i k}(c,-s)$ in the real case, and $J_{i k}(c, s)^{*}=J_{i k}(c,-s)$ in the complex case. This makes pre- and post-multiplying by transposes of $J_{i k}(c, s)$ easy.

EXAMPLE

int	i, k;
VEC	*x;
MAT	*A;
Real	C, s;

```
/* get Givens transformation */
givens(x->ve[i],x->ve[k],&c,&s);
/* apply to x */
rot_vec(x,i,k,c,s);
/* apply symmetrically to A */
rot_cols(A,i,k,c,s);
rot_rows(A,i,k,C,s);
```


BUGS

The givens () routine may result in overflow if the x and/or y parameters are of size greater than $\sqrt{\text { HUGE }}$.

SOURCE FILE: givens.c, zgivens.c

NAME
hhvec, hhtrcols, hhtrrows, hhtrvec, zhhvec, zhhtrcols, zhhtrrows, zhhtrvec - Householder transformation operations

SYNOPSIS

```
#include "matrix2.h"
VEC *hhvec(VEC *x, unsigned i0, Real *beta,
    VEC *out, Real *newval)
MAT *hhtrcols(MAT *A, int i0, int j0, VEC *hh, double beta)
MAT *hhtrrows(MAT *A, int iO, int jO, VEC *hh, double beta)
VEC *hhtrvec(VEC *hh, double beta, int iO, VEC *x, VEC *out)
```

\#include "zmatrix2.h"
ZVEC *zhhvec (ZVEC *x, unsigned i0, Real *beta,
ZVEC *out, complex *newval)
ZMAT *zhhtrcols(ZMAT *A, int i0, int j0, ZVEC *hh,
double beta)
ZMAT *zhhtrrows (ZMAT *A, int i0, int j0, ZVEC *hh,
double beta)
ZVEC *zhhtrvec(ZVEC *hh, double beta, int iO, ZVEC *x,
ZVEC *out)

DESCRIPTION

The routines hhvec () and zhhvec () compute the parameters for a Householder transformation. In particular, given a vector x, a vector $v(==$ out) and a real numbers β (== beta) and a (possibly complex) number newval are computed where the Householder transformation $P=I-\beta v v^{*}$ satisfies

$$
P x=\left[\begin{array}{c}
\text { newval } \tag{5.5}\\
0
\end{array}\right]
$$

Note that in the case of \mathbf{x} a real vector, newval is real. Note also that $\mathbf{z h h v e c}()$ computes the parameters for a complex vector.

The \mathbf{x} parameter is not modified. The formulae used are taken from Matrix Computations by G. Golub and C. van Loan, p. 40, 1st Edition, (1983), §5.1, pp. 196196, 2nd Edition, (1989).

If out is NULL or too small to hold the v vector, then a new vector is created to store the result. In either case, the result is returned. An error is raised if the \mathbf{x} vector is NULL.

The routine hhtrcols () forms the product $A P^{T}$ where P is the Householder transformation defined by $h h$ and $\beta\left(==\right.$ beta). (That is, $P=I-\beta h h h h^{T}$.) The routine zhhtrcols () forms the product $A P^{*}$ where P is the Householder transformation defined by $h h$ and β (== beta). (That is, $P=I-\beta h h h h^{*}$.) All rows i with
$i<\mathrm{i} 0$ and columns j with $j<\mathrm{j} 0$ are ignored. The operations are performed in situ in A .

The routines hhtrrows () and zhhtrrows () form the product $P A$ where P is the Householder transformation defined by $h h$ and β. Again, all rows i with $i<i 0$ and columns j with $j<j 0$ are ignored. The operations is performed in situ in A.

Finally, the routines hhtrvec () and zhhtrvec() forms the vector $P x$ where P is the Householder transformation defined by $h h$ and β. The result is stored in out. If out is NULL or too small to hold the results of the operation, then a new vector is created of the appropriate size. In either case the result is returned.

SOURCE FILE: hsehldr.c

```
NAME
    Dsolve, Lsolve, LTsolve, Usolve, UTsolve, zDsolve,
    zLsolve, zLAsolve, zUsolve, zUAsolve-Basic solve routines
SYNOPSIS
```

\#include "matrix2.h"
VEC *Dsolve (MAT *A, VEC *b, VEC *x)
VEC *Lsolve (MAT *A, VEC *b, VEC *x, double diag)
VEC *LTsolve(MAT *A, VEC *b, VEC *x, double diag)
VEC *Usolve (MAT *A, VEC *b, VEC *x, double diag)
VEC *UTsolve(MAT *A, VEC *b, VEC *x, double diag)
\#include "zmatrix2.h"
ZVEC *zDsolve (ZMAT *A, ZVEC *b, ZVEC *x)
ZVEC *zLsolve (ZMAT *A, ZVEC *b, ZVEC *x, double diag)
ZVEC *zLAsolve(ZMAT *A, ZVEC *b, ZVEC *x, double diag)
ZVEC *zUsolve (ZMAT *A, ZVEC *b, ZVEC *x, double diag)
ZVEC *zUAsolve(ZMAT *A, ZVEC *b, ZVEC *x, double diag)

DESCRIPTION

The routines Dsolve () and zDsolve () find and return the solution x of $D x=b$ where D is the diagonal part of the matrix $A(==\mathbb{A})$.

The routines Lsolve () and zLsolve () find and return the solution x of $L x=b$ where L is the lower triangular part of A if diag is zero; L is the strictly lower triangular part of A with diag on the diagonal if diag is not zero. These routines use forward substitution.

The routines LTsolve() and zLAsolve() find and return the solutions x of $L^{T} x=b$ and $L^{*} x=b$ respectively where L is the lower triangular part of A if diag is zero; L is the strictly upper triangular part of A with diag on the diagonal if diag is not zero.

The routines Usolve () and zUsolve () find and return the solution x of $U x=b$ where U is the upper triangular part of A if diag is zero; U is the strictly upper triangular part of A with diag on the diagonal if diag is not zero. These routines use back substitution.

The routines UTsolve() and zUAsolve() find and return the solution x of $U^{T} x=b$ and $U^{*} x=b$ respectively where U is the upper triangular part of A if diag is zero; U is the strictly upper triangular part of A with diag on the diagonal if diag is not zero. These routines use back substitution.

All of these routines may be used in situ; that is, they can be used with $\mathrm{b}=\mathbf{x}$.
If x is too small to contain the result then a new vector is created of the appropriate dimension. In either case the solution of the equations is returned.

The rationale behind the use of the diag parameter is that often, as in $L U$ factorisation or $L D L^{T}$ factorisation, the diagonal entry for L is implicit (usually one). The diag parameter enables these routines to be used generally, including for the results of $Q R$ factorisation, for example.

EXAMPLE

For solving $A x=b$ using Cholesky factorisation, with only L :

```
MAT *L;
VEC *b, *x;
Lsolve(L,b,x,0.0); /* use L's diagonal entries */
LTsolve(L, x, x, 0.0);
```

For solving $A x=b$ using $L U$ factorisation with L unit lower triangular and no pivoting:

```
MAT *L, *U;
VEC *b, *x;
```

Lsolve (L,b, $x, 1.0$): /* L unit lower triangular */
Usolve ($\mathrm{U}, \mathrm{b}, \mathrm{x}, 0.0$):
SEE ALSO
LUsolve (), zLUsolve (), CHsolve(), LDLsolve(), QRsolve(),
zQRsolve()
SOURCE FILE: solve.c, zsolve.c

NAME

LDLupdate, QRupdate - factorisation update routines

SYNOPSIS

\#include "matrix2.h"
MAT *LDLupdate(MAT *LDL, VEC *w, double alpha)
MAT *QRupdate (MAT *Q, MAT *R, VEC *u, VEC *v)

DESCRIPTION

The routine LDLupdate () modifies the matrix LDL which is assumed to contain (in compact form) the $L D L^{T}$ factorisation of a matrix A. The L matrix is the strictly lower triangular part of LDL, except with ones on the diagonal, while D is the diagonal of LDL, so that $A=L D L^{T}$. The matrix LDL is modified in situ so that if L_{+}and D_{+} denote the factors described by LDL after the routine, then

$$
L_{+} D_{+} L_{+}^{T}=A+\alpha w w^{T}
$$

where α is the value of alpha and w is w. The modified LDL matrix is returned.
The method used for updating the factorisation is given in "Methods for modifying matrix factorisations" by P. Gill, G. Golub, W. Murray and M. Saunders, Mathematics of Computations, 28, pp. 505-535 (1974). The particular algorithm used is the algorithm C 1 of their paper.

This routine may fail if $A+\alpha w w^{T}$ is not sufficiently positive definite; if this failure occurs, then an E_POSDEF error is raised.

The routine $Q R$ update () updates the $Q R$ factorisation of a matrix $A=Q R$. Unlike the previous routine, this routine requires the explicit factors Q and R of A. These can be obtained from the compact form by means of the routines makeQ() and makeR(). If the matrices Q and R after the routine are denoted Q_{+}and R_{+} respectively, then

$$
Q_{+} R_{+}=Q\left(R+u v^{T}\right)=A+(Q u) v^{T}
$$

Setting $u=Q^{T} w$ gives $Q_{+} R_{+}=A+w v^{T}$.
If Q is NULL, then only the R matrix is modified. The R matrix is returned.
The routine is based on one given in Matrix Computations by G. Golub and C. van Loan, pp. 437-443, 1st Edition (1983), pp. 593-594, 2nd Edition (1989).

EXAMPLE
Updating $L D L^{T}$ factorisation:

MAT	${ }^{* A}, \quad{ }^{*}$ LDL;
VEC	${ }^{* u}$;
double alpha;	

```
LDL = m_copy(A,MNULL):
LDLfactor(LDL);
/* A <- A + alpha.u.u^T */
LDLupdate(LDL,u,alpha);
```

Updating $Q R$ factorisation:

```
MAT *A, *QR, *Q, *R;
VEC *diag, *beta, *u, *v, *w%
QR = m_COPY(A,MNULL);
QRfactor(QR,diag,beta);
Q = makeQ(QR,diag,beta,MNULL);
R = makeR(QR,MNULL);
    /* A<-A +W.V^T */
u = v_get(Q->m);
u = vm_mlt(Q,w,u):
QRupdate(Q,R,u,v):
```

SOURCE FILE: update.c

NAME
schur, symmeig, trieig, zschur-Eigenvalue routines

SYNOPSIS

```
#include "matrix2.h"
MAT *schur(MAT *A, MAT *Q)
VEC *symmeig(MAT *A, MAT *Q, VEC *out)
VEC *trieig(VEC *a, VEC *b, MAT *Q)
```

\#include "zmatrix2.h"
ZMAT *zschur (MAT *A, MAT *Q)

DESCRIPTION

The routine schur () computes the Real Schur decomposition of the matrix A. That is, it computes a block upper triangular matrix T and an orthogonal matrix Q such that

$$
Q^{T} A Q=T
$$

The matrix T has diagonal blocks of sizes 1×1 and 2×2. The eigenvalues of these diagonal blocks are the eigenvalues of the original A matrix. The algorithm used to find the eigenvalues of A is the Francis $Q R$ algorithm. This algorithm is described in Matrix Computations by G. Golub and C. van Loan, pp. 231-236, 1st Edition (1983), pp. 377-381, 2nd Edition (1989).

The matrix \mathbb{A} is overwritten with T, and if Q is not NULL and the correct size, then the Q matrix is stored in it.

The routine zschur () computes the complex Schur factorisation of A. That is, it computes an upper triangular matrix T and a unitary matrix Q such that

$$
Q^{*} A Q=T
$$

The eigenvalues of A are the diagonal entries of T. The algorithm is a complex version of the Francis $Q R$ algorithm, and is, in fact, somewhat simplified in the complex case.

The routine symmeig () computes the eigenvalues of a symmetric matrix. It also computes an orthogonal matrix Q such that

$$
Q^{T} A Q=\Lambda
$$

where Λ is the diagonal matrix of eigenvalues. The algorithm used to find the eigenvalues of A consists of conversion to symmetric Hessenberg (symmetric tridiagonal) form, and then applying trieig () to obtain the eigenvalues of the tridiagonal matrix.

The eigenvalues are stored in out provided it is not NULL and is sufficiently large to contain all the eigenvalues. The vector containing the eigenvalues is returned. The matrix A is not overwritten.

The routine trieig() computes the eigenvalues of the symmetric tridiagonal matrix

$$
T=\left[\begin{array}{ccccc}
a_{0} & b_{0} & & & \tag{5.6}\\
b_{0} & a_{1} & b_{1} & & \\
& b_{1} & a_{2} & \ddots & \\
& & \ddots & \ddots & b_{n-2} \\
& & & b_{n-2} & a_{n-1}
\end{array}\right]
$$

The algorithm used is a "chasing" technique described in Matrix Computations, pp. 278-281, 1st Edition, pp. 421-424, 2nd Edition. It also accumulates the matrix Q such that $Q^{T} T Q$ is diagonal. To compute the correct Q matrix, Q should be initialised to the identity matrix on entry to trieig(). (See m_ident().)

The values in the a and b vectors are overwritten. At the end of the routine, a contains the eigenvalues, and the b vector is zero.

In all of the above routines, if the matrix Q is NULL on entry, then no calculation of the Q matrices is performed. This should speed up the routines somewhat if only the eigenvalues are needed.

EXAMPLE

Computing real Schur decomposition of (possibly) nonsymmetric A :

```
MAT *A, *S, *Q, *X_re, *X_im;
VEC *evals_re, *evals_im;
S = m_copy(A,MNULL);
Q = m_get (A >>m,A ->m);
schur(S,Q):
/* get eigenvalues (real, imaginary parts) */
evals_re = v_get(A->m);
evals_im = v_get (A->m);
schur_evals(S,evals_re,evals_im):
/* get eigenvectors (real, imaginary parts) */
X_re = m_get (A->m,A->m);
X_im = m_get (A ->m,A ->m);
schur_evecs(S,Q,X_re,X_im);
```

Computing eigenvalues and eigenvectors of a real symmetric matrix:

```
MAT *A, *Q;
VEC *evals;
evals = v_get(A->m);
evals = symmeig(A,Q, evals);
```

The Q matrix contains the eigenvectors.
Computing the eigenvalues and eigenvectors of a symmetric tridiagonal matrix defined by the vectors a (the diagonal entries) and b (the off-diagonal entries):

```
MAT *Q;
VEC *a, *b;
Q = m_get(a->dim,a->dim);
m_ident(Q); /* must initialise Q */
trieig(a,b,Q);
/* a is now the vector of eigenvalues */
```


SEE ALSO

The Hessenberg routines in hessen. c and zhessen.c.

BUGS

It is up to the caller of symmeig() to ensure that the A matrix is symmetric. Symmetry of A is neither checked nor enforced in symmeig().

SOURCE FILE: symmeig.c, schur.c, zschur.c

```
NAME
    schur_evals, schur_vecs - Extracting eigenvalues and eigenvectors from
    the Schur form
```


SYNOPSIS

```
#include "matrix2.h"
void schur_evals(MAT *T, VEC *re_evals, VEC *im_evals)
MAT *schur_vecs(MAT *T, MAT *Q, MAT *X_re, MAT *X_im)
```


DESCRIPTION

Both of these routines assume that T is the matrix computed by the schur () routine; Q is the orthogonal matrix computed by schur ().

The routine schur_evals() compute the eigenvalues of a matrix T in Schur form (block diagonal with 1×1 or 2×2 blocks). The k th eigenvalue of $A=Q T Q^{T}$ is re_evals->ve [k] + iim_evals->ve [k]. At worst this requires solving a series of quadratics; however, it does simplify the task of computing eigenvalues. Complex eigenvalues come in complex conjugate pairs.

The routine schur_vecs() computes the matrix $X=\mathbb{X}$ _re $+i$ X_im such that $X^{-1} A X$ is the diagonal matrix of eigenvalues where $T=Q^{T} A Q$ as computed by the schur () routine. The columns of X are computed by means of one step of inverse iteration using the eigenvalues as computed from the Schur form. This method is usually accurate provided the eigenvalues are not too close together. The computed k th column of X is real if the computed k th eigenvalue is real. The ordering of the columns is consistent with the ordering of the eigenvalues generated by schur_evals().

EXAMPLE

See example for schur() above.

BUGS

It is a bit difficult to check that the computed X is correct if it is complex.

SEE ALSO

schur()
SOURCE FILE: schur.c

NAME
svd, bisvd - Singular Value Decomposition routines

SYNOPSIS

```
#include "matrix2.h"
VEC *svd(MAT *A, MAT *U, MAT *V, VEC *out)
VEC *bisvd(VEC *d, VEC *f, MAT *U, MAT *V)
```


DESCRIPTION

The routine svd () performs a complete Singular Value Decomposition (SVD) on the matrix A. That is, it computes orthogonal matrices U and V such that $U A V^{T}$ is diagonal and the diagonal entries are called the singular values of the matrix A. The first $\min (m, n)$ singular values are stored in the out vector which is also returned. Note that the SVD is defined for nonsquare as well as square matrices.

If NULLs are passed for either or both U and v , then that orthogonal matrix will not be accumulated. This saves both time and space, if just the singular values are desired and not the U or V matrices. If out is NULL on entry to svd (), then a vector of the appropriate size is created to store the singular values, which is returned.

The SVD is computed by first transforming the matrix into a bidiagonal matrix (c.f. schur() where a matrix is transformed into Hessenberg form for eigenvalue calculations) and then applying bisvd(). If a matrix is already in bidiagonal form, then bisvd() can be called directly. The vector d contains the diagonal entries and f contains the super-diagonal entries. As for svd(), if NULLs are passed for either or both U and V, then that (or both) orthogonal matrix will not be accumulated. For correct results using bisvd(), you should initialise U and V to be identity matrices using m_ident() before calling bisvd().

The rank of a matrix can be estimated by counting the number of singular values whose magnitude exceeds a specified tolerance. This tolerance for accurately computed matrices should probably be about 100 times MACHEPS; otherwise it should about an order of magnitude larger than the errors in the matrix.

The algorithm used follows Matrix Computations by Golub and van Loan, pp. 430435, 2nd Edition (1989).

EXAMPLE

For computing the SVD of A :

```
MAT *A, *U, *V;
vEC *svdvals;
U = m_get (A->m,A->m);
V = m_get (A->n,A->n);
svdvals = svd(A,U,V,VNULL);
```

For computing the SVD of the bidiagonal matrix defined by d (the diagonal entries) and f (the super-diagonal entries):

```
MAT *U, *V;
VEC *d, *f;
U = m_get (d->dim,d->dim);
V = m_get(d->dim,d ->dim);
m_ident(U); /* must initialise U and V */
m_ident(V);
bisvd(d,f,U,V)
/* d now contains the singular values */
```


SOURCE FILE: svd.c

NAME

m_exp, m_poly, m_pow - Matrix exponentials, polynomials and powers

SYNOPSIS

```
#include "matrix2.h"
MAT * m_pow(MAT *A, int p, MAT *out)
MAT * m_pow(MAT *A, int p, MAT *tmp, MAT *out)
MAT * m_exp(MAT *A, double eps, MAT *out)
MAT *_m_exp(MAT *A, double eps, MAT *out,
    int *qout, int *jout)
MAT *m_poly(MAT *A, VEC *a, MAT *out)
```


DESCRIPTION

The routine m_pow sets a matrix $A \in R^{n \times n}$ to the power p, where p can be any non-negative integer. (Use m_inverse() for negative p.) The result is placed in the matrix out $=A^{p}$. The routine is based on the binary powering algorithm (see Golub and Van Loan, Matrix computations, John Hopkins University Press, Baltimore, 2 nd edition, 1989). The algorithm requires at $\operatorname{most}^{2}\left\lfloor\log _{2}(p)\right\rfloor n^{3}$ flops where n is the dimension of the matrix.
_m_pow it is a variant of the routine m_pow which uses tmp as a workspace matrix.
The routine m_exp computes an approximation of

$$
e^{A} \approx I+A+A^{2} / 2!+\ldots+A^{q} / q!+\ldots
$$

using the Pade approximation

$$
\exp (A) \approx R_{q q}(A)=D_{q}(A)^{-1} N_{q}(A)
$$

where

$$
N_{q}(A)=\sum_{k=0}^{q} c_{k} A^{k}, \quad D_{q}(A)=\sum_{k=0}^{q} c_{k}(-A)^{k}
$$

and

$$
c_{k}=\frac{(2 q-k)!q!}{(2 q)!k!(q-k)!}
$$

The computed exponential is placed in out. The degree q is determined from an error tolerance eps given by the user. Padé approximation is good for A with a small norm, therefore this condition can be ensured by applying repeated squaring $\left(R_{q q}\left(A / 2^{j}\right)\right)^{2^{j}}$, where j is chosen so that $\left\|A / 2^{j}\right\| \leq 1 / 2$. The Padé approximate can be more efficient by using special Horner regrouping techniques to evaluate matrix polynomial. The relative error of Padé approximate for a matrix with $\|A\| \leq 0.5$ can be estimated by

$$
\frac{\left\|e^{A}-\left(R_{q q}\left(A / 2^{j}\right)\right)^{2^{j}}\right\|_{\infty}}{\left\|e^{A}\right\|_{\infty}} \leq \epsilon(q, q)\|A\|_{\infty} e^{\epsilon(q, q)\|A\|_{\infty}}
$$

and $\epsilon(q, q)=2^{3-(2 q)}(q!)^{2} /((2 q)!(2 q+1)!)$.
In _m_exp the degree q is returned in qout, and j is returned in jout. The routines m_exp and _m_exp are based on the paper: "Nineteen Dubious Ways to Compute The Exponential of the Matrix", SIAM Rev. 20(4), p.801-836, 1987 by C. Moler and C. Van Loan and the book G.H. Golub, C. Van Loan "Matrix Computations", Johns Hopkins University Press, Baltimore, 2nd edition, 1989.
m poly evaluates the polynomial of a matrix A

$$
p(A)=a_{0} I+a_{1} A+\ldots+a_{q} A^{q}
$$

where $a_{0}, a_{1}, a_{2}, \ldots, a_{q}$ are given by the vector a with $q=$ a->dim-1. The result is placed in out. The algorithm used to compute the matrix polynomials in the Padé approximation and in m_poly is based on the paper "A note on the Evaluation of Matrix Polynomials", IEEE Transactions on Automatic Control 24 (1979), p. 209-228 by C.Van Loan. The paper describes a method that is faster and more memory efficient than the standard Horner's method.

SOURCE FILE: mfunc.c

NAME

fft, ifft - Fast Fourier Transform and inverse

SYNOPSIS

\#include "matrix2.h"
void fft(VEC *x_re, VEC *x_im)
void ifft(VEC *x_re, VEC *x_im)

DESCRIPTION

The routine fft () performs a fast Fourier transform on the vector $x=\mathrm{x} _$re + $i x$ im. The transform is computed in situ. It does require that the dimension of x is a power of two.

The routine ifft () performs the inverse fast Fourier transform of $x=x _r e+$ $i x _i m$. As with fft() it is computed in situ, and the dimension of x must be a power of two.

SOURCE FILE: fft.c

