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REGULARIZATION ALGORJTHMS: APPLICATIONS 

A.G. Yagola 

1 Introduction 

Beginning from 1966, we (together with A.V. Goneharzsky, A.S. Leonov and 
other members of the mathematical school headed by A.N. Tikhonov) proposed 
new approaches for solving linear and nonlinear ill-posed problems: 

(a) on compact sets of bounded monotone functions (with further general­
ization on sets of convex and monotone convex functions); 

(b) in Hilbert and reflexive Banach spaces including cases where the oper­
ator (linear or nonlinear) is specified with an error and there exist a 
pr-ion constraints on the unknown solutions (generalized descrepancy 
principle, generalized discrepancy method etc). 

For detailed explanation of the theory and the full list of references , see books 
[1]-[4]. In [1]-[2] it is possible to find fortran programs (with test examples) for 
solving linear ill-posed problems with and without a pnor-i constraints including 
one and two-dimensional equations of convolution type. 

Now these methods are very well known and used in theoretical investigations 
as well as in applications. Some applications from astrophysics and vibrational 
spectroscopy are described below. 

2 Inverse Problems in Astrophysics 

Astrophysics deals with immensely remote objects, such as stars and galaxies, 
whose properties can only be measured by those indirect manifestations which are 
observable from the Earth or from a spacecraft in Earth's orbit. Hence, inverse 
problems, the majority of which are ill-posed, must be solved in order to interpret 
observed data.. We shall describe only some results from our experience with solv­
ing inverse problems in astrophysics, see [4]-[6], and for computer programs (in 
fortran), refer [6]. 
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2.1 Wolf-Rayet Stars in Close Binary Systems 

A wide range of important inverse problems in astrophysics are associated with 
the interpretation of the observed properties of dose binary systems. The pio­
neering studies in this field were carried out by H. Russel, J. Merrill, Z. Kopal, 
A. Batten, D. Popper, V.P. Tsesevich, D. Ya. Martynov, A.M. Shul'berg, M.I. 
Lavrov, and V.A. Krat. The more important attributes of stars, such as their 
masses, radii, temperatures, and structure of atmospheres, can be successfully es­
timated by studying the motion and various interaction effects of gravitationally 
coupled binary star systems. Such a complete set of attributes cannot be obtained 
for a single star. Hence, it is very fortunate for the astrophysicist when a particular 
object is a close binary system. 

Note that almost every other star in the Galaxy belongs to a binary or a mul­
tiple system. At present, more than 4000 eclipsing binary systems (i.e. systems 
whose orbital planes are oriented in such a way that,as seen from the Earth, the 
components eclipse each other twice each orbital period) are known. Close binary 
systems include various stella.r objects: normal main sequence stars, supergiants, 
Wolf-Rayet stars, subdwarfs, subgiants, white dwafts, neutron stars, and, proba­
bly, black holes. A series of inverse problems can be formulated on the basis of 
the light curves and radial velocity curves of binary systems. When solved by 
standard regularization methods, various important attributes of stars and binary 
systems can be assessed. As a result, reliable conclusions concerning the nature 
and evolution of these stystems can be made. 

Wolf-Rayet stars (WR-stars), which lie in the galaetic plane, were discovered 
by Wolf and Rayet ·more than a hundred years ago. At present, about 300 such 
stars are known. But why are those stars so remarkable among other hundred 
billion stars of the Galaxy and why do astronomers pay so much attention to 
them? In fact, the optical spectra of WR-stars are very peculiar because they 
simultaneously contain strong emission lines of hydrogen, atomic and ionized he­
lium, nitrogen, carbon, and oxygen in various ionization states. For many of these 
lines to be excited, the temperature of matter or radiation must reach several hun­
dred thousand degrees, while the visible continuum of WR-stars can be roughly 
described by blackbody radiation sources with mean temperatures of 10,000 to 
20,000 degrees. This means that the matter in WR-stars is far from being in 
thermodynamic equilibrium. Moreover, the observations (and the analyses done 
on their basis) unambiguously indicate that WR-stars have anomalous chemical 
compositions. WR-stars, for example, contain far more helium than normal stars. 

However, any decisive conclusion about WR-stars is very difficult whilst the 
observations only involved single stars. A WR-star itself (the core containing the 
main part of the mass) is hidden inside a thick atmosphere that expands radially 
with a velocity of several thousand kilometers per second. By contrast, when 
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observing the Sun we see.a sharp-edged disk. This is because the Sun's shell where 
the visible radiation is produced is 300 km thick; i.e. only about 10-4 of the Sun's 
radius. But the atmosphere of a WR-star stretches for many millions of kilometers 
and is much larger than the star's core, even though the mass of the atmosphere 
is only 10-9 of the total mass of the star. 

The situation is similar to looking at a lamp through a dense fog when the visible 
oreol seems to be much larger than the lamp itself. It is therefore not surprising 
that studies of single WR-stars, which are derived from observations of their total 
radiation show that the radii of WR-stars are 20-30 times bigger than the Sun's 
radius. In addition, their effective temperatures are much too low (30 OOOK) to 
excite line spectra. We have therefore to assume that the kinetic temperature of 
electrons in the atmosphere is very high (i.e. several hundred thousand degrees). 
The mechanism for such strong heating (one that occurs in the Sun's chromosphere 
and corona) is the dissipation of the energy of acoustic and magnetohydrodynamic 
waves emanating from the stars. 

In 1964, Yagola, Goncharsky and A.M. Cherepashchuk commenced a study of 
WR-stars in eclipsing binary systems. The WR-stars are so immensely remote that 
no telescope from the Earth can resolve their disks. Nonetheless, observations taken 
during eclipses of binary systems containing WR-stars give us a unique possibility 
for depicting the star's disks in different colours. Thus continuous spectra can be 
built for the entire disk of a WR-star, and for its central and peripheral regions as 
well. When the partner of a binary system~a normal star from a spectral class 0 or 
B~eclipses the WR-sta.r, the resultant light curve contains information about both; 
namely, the total luminosity of the WR-star and the brightness distribution over 
its disk. (The light curve is the plot of the star's radiation at a given wavelength 
or in a given wavelength range over time.) 

We have proposed a new approach to the interpretation of the light curves of 
eclipsing binary systems on the basis of the modern regularization methods for ill­
posed problems. Based on this efficient computer programs have been developed 
to solve these problems [6]. A natural a priori physical assumption is that the 
functions of interest are monotone and nonnegative. In addition, an extensive 
program of observations of all the known eclipsing binary systems containing WR­
components has been undertaken (for more detail, see [6]). 

Let us consider briefly the mathematical problem of interpreting the light curve 
of an eclipsing system containing a WR-star and a normal star from the spectral 
class 0 or B. The WR-star has an extended atmosphere, while its partner is an 
opaque star whose atmosphere is negligibly thin and its brightness distribution 
over the disk is determined by its spectral class. Both stars are spherical, travel­
ling around their centre of mass in circular orbits. The light curve of the system 
depends on the angular position of the components in the orbital plane. It can be 
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expressed as a function .6. of the distance between the components' disks in the 
plane perpendicular to the viewing line. The variations of light are completely de­
termined by the mutual eclipses of the components. When the opaque star eclipses 
the WR-star, the measured light of the system is 

1(.6.) = L- j { I(p)da, 
ls(tJ.) 

(1) 

where L is the light when there is no eclipse in the system (it is constant if the 
system's radiation is not affected by reflection or tides), pis the polar radius of the 
WR-star's disk, I(p) is the brightness distribution over the WR-component 's disk 
under the assumption of spherical symmetry, da is a surface element, and S(.6.) 
is the region of the eclipse overlap, which depends on the distance between the 
components. 

If we recall that dS = p( dpd<p) ( <p being the polar angle on the WR-component 's 
disk), the integration over <p transforms (1) into a one-dimensional Fredholm equa­
tion of first kind: 

L -1(.6.) =!a" K(.6.,p)I(p)dp, (2) 

where r is the radius of the WR-star. The expression for the kernel K(.6., p) can be 
easily obtained. The equations describing the second minimum of the light curve 
and the eclipse of the normal component by the WR-star can be derived in a similar 
way. To do so, we take the brightness distribution over the normal component as 
known, and look for the absorption distribution over the WR-component's disk. 
Naturally, we have to assume that the brightness and absorption distributions we 
want are monotone and nonnegative. In addition, the radii of the components, 
and the angle i of the orbital plane to the plane perpendicular to the viewing line 
are unknowns. A complete description of the problem and the methods used to 
determine the unknown functions and geometrical parameters are given in [5]-[6]. 
Other problems concerning the interpretation of light curves for eclipsing binary 
systems are also presented there. 

Figure 1 shows the brightness distributions Ic(O over the disk of the WR-star 
in the eclipsing system V 444 Cygni. It can be seen, that although the total radius 
of the visible photosphere is 10 to 20 times that of the Sun and increases with 
the wavelength due to the strengthening role of free-free absorption, the radius of 
the central intensity peak in blue and ultraviolet (absorption is at a minimum in 
these spectral ranges because it only depends on light scattering by free electrons) 
is three times the radius of the Sun. It is natural to consider that the radius of the 
central peak is the radius of the WR-star itself (we call it the WR-core). 
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Figure 1. Distribution of brightness over the disc of a Wolf-Rayet 
star in ultraviolet (.A= 2980 A), visible (>.from 4244 to 7512 A), and 
infrared(>. from 2.2 to 3.5 p) spectral ranges restored from the analysis 
of light curves in the binary eclipsing system V 444 Cygni. The central 
region of the star's disk are more blue and, therefore, more hot than 
periphery. The radius of the core of the Wolf-Rayet star is about 3Re, 
while that of the expanding atmosphere, whose mass is 10-9 of that of 
the core, is about 20R0 . 

Since brightness distributions over the WR-component's disk are obtained for 
different wavelengths, we can plot the spectra of the WR-core and that of the 
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shell. Such spectra are presented in Figure 2. Although the radiation temperature 
of the WR-component's disk as a whole is 20 000 K, these spectra show that that 
of the WR-core is close to 100 000 K . The relatively low temperature of the disk 
as a whole is due to the low-temperature (700 K) recombination radiation of the 
extended atmosphere, which contributes 80% of the visible radiation. These results 
were recently verified by observations in infrared and in ultraviolet from the OA0-2 
orbital station of USA. 

log E-r.. + C 

1.0 

Figure 2. The observed spectra of continuum for different parts of 
the Wolf-Rayet star's disk obtainde from the data in Figure 1. Crosses 
correspond to the visible range, while asterisks, circles, and dots to new 
data on light curves of the system V 444 Cygni obtained in the ultra-
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violet (J. Eaton, USA) and in infrared (L. Hartmann, USA) ranges. 
Solid lines are the spectra of black bodies with corresponding tempera­
tures. The radiation temperature of the Wolf-Rayet star's core is close 
to 100, 000 /{, while that of the disk as a whole can be roughly described 
by black-body radiation with the temperature of 20,000 K. 

Thus, by solving an inverse problem related to the interpretation of the light 
curves of eclipsing binary stars we were able to separate the radiation of the WR­
core from that of the extended atmosphere and to give estimates of the radius, 
temperature and luminosity of the WR-core. From the knowlege of the mass, 
radius, and temperature of a star, we can make conclusions about its nature and 
evolutionary history [5]-[6]. 

2.2 Neutron Stars and Black Holes in Binary Systems 

According to our modern understanding [7], a star at the end of its evolution 
can become either a white dwarf (if its mass M is less than 1.4 M0 ), or a neutron 
star (if M > 1.4 M0 ), or a black hole (if M > 2 M0 ). 

White dwarfs were discovered at the beginning of the century and are now rel­
atively well studied. Several thousand white dwarfs are known within 100 parsec 
from the Earth. The pressure inside such stars does not depend on temperature, 
but is determined by the quantum mechanically degenerated electron gas. Al­
though the mass of a white dwarf is about 0.85 M0 , its radius is very small (of 
the order of the Earth's radius), hence the density is about one tonne per cubic 
centimeter. In his famous paper on this subject, which was published in 1931, 
Chandrasekhar, who was then 20 and who was la.ter awarded the Nobel prize in 
1983, showed that, as the mass of a white dwarf increases, the degeneration of 
the matter must become relativistic (i.e. the velocities of the electrons approach 
the speed of light). As a result, the decreased pressure of the electron gas cannot 
oppose gravity. Therefore, a white dwarf whose mass exceeds the Chandrasekhar 
limit (for a helium white dwarf this limit is about 1.4 M0 ) must collapse. 

The physical basis for the formation of neutron stars was formulated by Lan­
dau in the 1930's. A neutron star consists of degenerate neutron gas, its mass is 
about 1 M 0 , its radius about 10 to 20 km, its density of the order of a billion 
tonnes per cubic centimeter. The radiopulsars, which were discovered in 1967, are 
in fact rapidly rotating (with the period of 2': 1.5 ms ), strongly magnetized (mag­
netic field strength '::' 1012 Gs) neutron stars. In 1972, X-ray pulsars were also 
discovered. They are rapidly rotating, strongly magnetized neutron stars but they 
are the components of dose binary systems accreting matter supplied by normal 
star partners. At present, several hundred radiopulsars and several dozen X-ray 
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pulsars are known. 

Black holes are predicted by Einstein's theory of general relativity. It is now 
believed that the pressure of degenerate neutron matter in a neutron star with 
a mass greater than 2 M 0 (the Oppenheimer-Volkov limit) cannot oppose star's 
gravity, so the star must suffer a relativistic collapse, i.e. it implodes without limit 
to produce a black hole. The radius of a nonrotating black hole tends to r9 = 2 
GM/c2 , where G = 6.67 x 10-8 dyne ·sm2 /g2 is the graviational constant, M is 
the star's mass, and cis the speed of light. The value r 9 (gravitational radius) is 
about 6 km for M = 21VJ0 . In the local coordinates of the star, its radius reaches 
r 9 in a finite time and then falls without limit. In the coordinate system of a 
remote observer, the radius of a star subjected to the relativistic collapse tends to 
r 9 over an infinitely long time but it gets very close to r 9 in the first few moments 
of collapse. 

Neither light nor any other signal can leave the "surface" of a black hole because 
of its enormously strong gravity. The gravitational force is so strong that from the 
viewpoint of a remote observer time stops at radius r9 , hence the object is gravia­
tionally self-connected. For a nonrotating black hole, the radius r 9 determines the 
event horizon, which cannot be overcome as seen by a remote observer. Therefore, 
no process occurring within a sphere of radius T9 is accessible for a remote observer. 

It was shown by Zeldovich and Novikov and by Shklovsky that the accretion of 
matter from a normal star to a relativistic object in a close binary system will result 
in intense X-ray radiation. To clarify this, let us consider a system of a normal star 
and a relativistic object. If the radius of the normal star is large enough then the 
tidal effect of the relativistic object results in a distortion of the star's sphere. The 
star becomes pear-shaped and almost fills up the Roche lobe of the binary system. 
Hence, matter flows from the star's surface to the relativistic object, forming a 
rotating disk-shaped shell (accretion disk) in the vicinity of the relativistic object. 
The supernova explosion, which gave rise to the relativistic object in the system, 
may affect the roa.tional axis of the normal star in such a way that it may not be 
perpendicular to the orbital plane, and therefore precesses slowly. 

The friction between different layers of the disk decreases its angular momen­
tum and makes the disk's matter fall into the central relativistic object. But the 
gravitational potential at the surface of a neutron star or a black hole is so strong 
that the inner layers of the disk will be accelerated to .almost light speed. This 
heats the matter up to ten million degrees and powerful (1036 - 1038erg/s) X-ray 
radiation will be emitted. This theory of disk accretion by neutron stars and black 
holes was developed by Shakura and Syunyaev, Novikov and Thorne, Pringle and 
Rees. 

Recent observations from orbital laboratories have shown up thousands of com­
pact X-ray sources, the majority of them being accreting neutron stars and, pos-
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sibly, black holes in close binary systems. The powers, spectra, and variabilities of 
X-ray radiation of the sources contain very valuable information about the relativis­
tic objects. At the same time, the relativistic objects can be effectively investigated 
on the basis of optical (photometric, spectral, and polarization) measurements of 
X-ray binary systems. 
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Figure 3. Observed (dots) and theoretical (solid lines) light curves for 
the X-ray binary system Cygni X- 1. The lower limit of the mass of 
the X-ray source at a distance of more than two kilometers from the 
system is 7 1110 . Hence, the object Cygni X - 1 can be considered as 
the first candidate for black holes. 

It has been shown that the main causes of the optical variability of X-ray binary 
systems are the effect of the ellipsoidal shape of the optical star in systems with 
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OB-supergiants and the effect of reflection or, more strictly, the heating of the 
optical star's surface by the powerful X-ray radiation of the accreting relativistic 
object. The amplitude of the optical variability connected with the ellipsoidal 
shape of the normal star and its tidal deformation in the graviational field of the 
relativistic object depends on the ratio q = mx/mv (where mx and mv are the 
masses of the X-ray and optical components), on the angle i between the normal 
to the orbital plane and the viewing line, and on the degree J-L to which the Roche 
lobe is filled. 

'vVe have developed algorithms to solve the inverse problems related to inter­
pretation of optical light curves of X-ray binary systems within the framework of a 
parametric model. These algorithms determine both the values of the parameters 
and to indicate the confidence intervals for these values [6]. 

Various kinds of X-ray binary systems were observed in an extensive program. 
In particular, the telescopes of the Mount Stromlo and Siding Spring observatories 
of the Australian National University were used by Chezepashchuk to investigate 
the binary systems of the Southern Hemisphere. Very significant results were 
obtained by analysing the observatory data by the new method. 

The observed and theoretical light curves for the X-ray binary system Cygni 
X-1 are shown in Figure 3. These curves are seen to be in good agreement. Thus, 
on the basis of information received from a distance of more than two kiloparsecs, 
the mass of the relativistic object was estimated as mx > 7 Me. This is far above 
the upper limit of mass for a neutron star, and convincingly indicates that the 
X-ray source of Cygni X-1 system is a black hole. 

Note that the Cygni X-1 system is unique, since similar treatments of the 
data from many other X-ray sources (e.g. HD 153919, HZ Her, HD 77581) yield 
mass values not greater than 2 Me (characteristic of neutron stars). In addition, 
the optical characteristics of the accreting disks in X-ray binary systems have been 
studied, and agree with the theory of disk accretion of matter by relativistic objects. 

The developed method was used to interpret light curves for other binary stars 
(for example SS 433, see [61). 

2.3 Determination of Structure and Dynamic Characteristics of Ac­
creting Disks in Nova and Nova-like Stars 

A nova or nova-like star is now known in fact to be a binary system, consisting 
of a red dwarf and a degenerate white dwarf surrounded with an accreting disk [8]. 
In order to understand the mechanism underlying explosions of nova and nova­
like stars, we must study the structure of accreting disks at the different phases 
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of flare activity of a binary system. In order to interpret the light curves of the 
stars, complex algorithms have been developed which restore the structure of an 
accreting disk from observations of optical eclipses [6]. It was found that a flare 
from a nova-like star can be related to changes in the parameters of the accreting 
disk, because the disk's radius, surface brightness and luminosity rise considerably 
during a flare. 

2.4 Mapping of the Distributions of Chemical Elements Over the 
Surface of the Peculiar Ap-stars 

The Galaxy contains many stars in spectral class A whose atmospheres have 
chemical element contents several hundred (or even thousand) times larger than 
those of normal stars. The profiles of the absorption lines in the spectra of these 
stars are quite variable, which indicates that the chemical composition anomalies 
are localized at certain places on the star's surface, while the periodicity of the 
variations seems to be related to the rotations of the stars. The inverse problem 
of determining the local profiles of the absorption lines from the observed integral 
profiles was first formulated by Khokhlova (for a detailed bibliography, see [9]). To 
solve this problem, algorithms based on regularization methods were developed [6]. 

Let us briefly consider the mathematical formulation of this problem. We as­
sume that the temporal variability of the profiles of the absorption lines is due to 
inhomogeneous distributions of the chemical element responsible for the absorption 
lines over the star's surface. We can thus write an equation for the local profiles 
of the absorption lines at each point of the visible surface of a star in terms of the 
integral profiles observed in different phases. 

The profile of a line, which must be observed in the spectrum, averaged over 
the star's disk in the rotation phase wt (w is the angular velocity, t is time), can 
be written as 

R( ' ). _ _ ffcosB>ol[M,B,.\+b..AD(M)]cosBdSM 
A 1Wi - 1 1 J fcosB>O I cont (M, B) cos BdSM 

(3) 

where .\ is the wa.velength, M is a point on the star's surface, dSM is a surface 
element on the sphere, B is the angle between the normal to the star's surface at M 
and the viewing line (the domain of integration is the observed surface of the star, 
cos B > 0), the phase wt appears in the right-hand side in an implicit form through 
b..\D(M) and B, I(M, B, .\ + b.,\D(M)) is the local intensity at Mat a wavelength 
displaced by the Doppler shift b..\D(M) (this shift is due to the star's rotation and 
depends on its orientation with respect to the observer), and Icont(M,B) is the 
intensity of the continuum at the point M. 
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We can rewrite (3) as 

where 

( , ) f fcose>o lcont(M, fJ)R(M, fJ, .A+ D..Av(M)) cos fJdSM 
R A,wt = ( ) , 

f fcos 8>0 Icont M, (} cos fJdS M 

R(M,fJ,.>.) = 1- I(M,fJ,.>.) 
Icont(M,fJ) 

(4) 

(5) 

is the depth of the local profile of the spectral line, this depth depending on fJ 
and M; Icont(O, M) is the continuum intensity which we take to be independent 
of ). because the measured wavelength range is rather narrow and of M because 
the physical conditions on the star's surface are homogeneous. The dependence 
Icont(O) is defined by the limb darkening and we assume it is known for spectral 
class of the star. Hence, the local profile of the absorption line R(M, fJ, .>.)for a given 
M and(} can be approximated by a function RT(.>.) belonging to a set of functions 
that depend on a parameter r, the set being chosen on the basis of physical reasons. 
The problem of finding the distribution r(M) (or, in other words, the local profile 
of the absorption line) can be reduced to a nonlinear integral equation of the first 
kind. To solve this equation, a regularizing algorithm was applied in which the 
Tikhonov functional was minimized by the method of conjugated gradients, and 
the regularization parameters was chosen on the basis of the alternative discrepancy 
principle [6]. 
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Figure 4. Distribution of silicon concentration over the surface of 
the peculiar Ap-star CU Virgo as obtained when solving the inverse 
problem on interpreting the variable profiles of the absorption line Si II 
.>. = 3862A. Two spots where the silicon content is about 1, 000 times 
the normal level. 
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When treated by a regularization method, spectroscopic observations, made 
both in the USSR and abroad, have led to rather interesting results. For example, 
Fig. 4 shows the reconstructed distribution of the equivalent widths of the silicon 
lines over the surface of the Ap-star CU Virgo. It can be seen that this star 
has two spots where the silicon content is about 1000 times the normal level. If 
the maps of chemical elements are compared with the distributions of magnetic 
field, we should obtain valuable information about the mechanisms resulting in the 
observed anomalies. 

For some other inverse problems in astrophysics, the reader may refer to [6]. 
For example, the reconstruction of the strip-distribution of radio-brightness over a 
source, with errors in the antenna directivity diagrams being taken into account, is 
also an inverse problem, we have studied. This investigation resulted in the devel­
opment of the theory of ill-posed problems with approximately specified operators 

[1H3J. 

According to our calculations, the regularization methods applied to radioas­
tronomical observations with the 3% errors can improve the resolving power of a 
telescope by a factor of two to three without increasing the telescope's diameter 
[6]. Also, the regularizing algorithms are very useful in spectroscopy where the 
resolving power of a spectrometer can be significantly improved due to corrections 
of observed line profiles to the instrumental profile. 

To conclude, we should note that the regularization methods for ill-posed prob­
lems resulted in a series of new promising branches in astrophysics. We believe that 
processing of astrophysical data without usage of modern mathematical methods 
and large computers is now as impossible as observations without a telescope. 

3 Inverse Problems in Vibrational Spectroscopy 

Now we consider inverse problems of vibrational spectroscopy, which consist 
of determining the parameters of force field of a molecule from experimentally 
measured data (mainly obtained from analysis of the vibrational spectra of the 
molecules). For detailed explanation and the full list of references, the reader may 
refer to our books [10]-[11] and the main publications in English [12]-[14]. 

The concept of the force field of a molecule arose from a consideration of it as 
a quantum-mechanical system consisting of point nuclei and electrons, where the 
masses of the nuclei and the electrons are quite different. In this connection, we can 
introduce a small parameter~' equal to the ratio of the mass of the electron to the 
sum of the masses of the nuclei of the molecule, and we can use the adiabatic theory 
of perturbations, based on expansion of all terms of Schrodinger's equation for the 
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molecule in powers e14 • The second-order equations of perturbation theory enable 
one to speak ofthe motion of the nuclei in certain effective force field U(qt, ... , qn), 
produced by the electron subsystem of the molecule (here q1 , ••. , q4 are the relative 
coordinates of the nuclei). 

The force field plays an important role in determining the properties of the 
molecule. In particular, the equilibrium geometrical configuration of the nuclei of 
the atomes of the molecule (if it exists) q0 = ( q~, ... , q~) satisfies the relations 

(:~) lqo =0, i=l,2, ... ,n, (6) 

while the properties connected with small vibrations of the molecule are determined 
by the matrix of the force constants F with F = (F;j);,j=l,2, ... ,n, where 

(7) 

Since we will henceforth use experimental data on the vibrational motion of 
the molecule, we will formulate the problem of determining the matix F, assuming 
a specified equilibrium configuration q0 • The number of generalized coordinates 
characterizing the configuration of N nuclei should be n = 3N - 6 (3N - 5 for 
a linear molecule). If n > 3N - 6,then the the coordinates will not be indepen­
dent. Their introduction is justified by the convenience of taking into account the 
symmetry of the molecules and the interpretation of the results. 

The frequencies of the vibrational spectra are the main form of the experimental 
data on the vibrations of the molecules. They are connected with the matrix of 
the force constants F by the eigenvalue problem 

GFL =LA, (8) 

where A is a diagonal matrix consisting of the square of the frequencies of the 
normal vibrations of the molecule, A = diag{ wf, ... , w~}, and G is the matrix of 
the kinetic energy in the momentum representation, which depends only on the 
masses of the nuclei and their equilibrium configuration, which we assume to be 
known (possibly with some error), L is the matrix of the eigenvectors. 

Within the approximation considered, the force field of the molecule is inde­
pendent of the nuclear masses, and hence for the spectra of m isotopic varieties of 
the molecule, instead of (8) we use the system 

G;FL; = L;A;, T = 1,2, ... ,m, (9) 

where the subscript i indicates the isotopic variety. 



55 

Coriolis constants, which characterize the vibrational-rotational interaction in 
the molecule, the mean square amplitudes of the vibrations of the internuclear 
distances, which the methods of gas electron diffraction enable one to determine, 
and some other measured quantities (in particular, the constants of centrifugal 
distortion) are dependent on the matrix F (in terms of the eigenfrequencies and 
the eigenvectors, which are functions of the elements of this matrix). 

The set of equations (8), (9) and others (or some of these, depending on the 
available experimental data) will be considered as a single nonlinear operator equa­
tion 

Az = u, z E Z, u E U. (10) 

We represent the set of experimental data by a vector of a finite-dimensional 
space U. We also introduce a vector z of the finite-dimenisonal space Z, consisting 
either of the elements of the matrix F or of quantities, by means of which this 
matrix can be parametrized. Then the operator A places in correspondence with 
the real symmetric matrix F (or the vector z) the set of eigenvalues of problems 
(8) or (9), the Coriolis constants, the mean amplitudes etc. Sometimes the a priori 
constraints on the elements of the matrix F are also known. 

We now arrive at the following formulation of the inverse problem. 

Problem I. Suppose we are given equation (10) with z E D ~ Z, and u E U, 
where Z and U are finite-dimensional spaces, V is a closed set of a priori constraints 
of the problem, and A is a nonlinear continuous operator in 'D. It is required to 
find an approximate solution of equation (10), if instead of A and u, we are given 
their approximations Ah and us such that [[us- u[[ ::; 8, [[Ahz- Az[[ ::; </>[h, z] for 
all z E 'D. Here <P[h, z] is a known continuous functional which approaches zero 
as h -+ 0 uniformly for all z E V n S(O, R), where S(O, R) is a closed sphere with 
centre at z = 0 and with radius R. 

The error in specifying the operator A involves an error in determining the 
equilibrium configuration of the molecule, the parameters of which can be found 
experimentally. The form of the functional </> may be specified. 

Note that Problem I in general satisfies none of the following conditions for the 
wellposedness of the problem: (i) solvability, (ii) uniqueness of the solution; and 
(3) stability. 

A difficulty arises in assuming a solution of Problem I. We now consider the 
problem of finding a normal pseudosolution of Problem I. 

Problem II. It is required to obtain 

inf liz- z0 [[ z E {z: z E 'D, [[Az- u[[ = J-t}, where J-t = inf J[Az- u[[. (11) 
zEV 
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The element z0 E Z should be specified from a. priori considerations about 
the solution, using both approximate quantum-mechanical calculations, and other 
ideas (for example the transferability of the force constants to similar fragments of 
the molecules). 

It is obvious, in the case when a solution of Problem I exists and is unique that 
its normal pseudosolution is identical with the solution itself. 

Taking all the above into account, we formulate the following problem. 

Problem III. Suppose we are given equation (10) and the above conditions are 
satisfied. It is required to obtain approximations z., E 'D to the solution z of 
Problem II from the approximate data (Ah, u0, h, 5) in such a way that 

lim z"' = z. 
h,6--+0 

The algorithm for finding z., is based on Tikhonov regularization. 

(12) 

Numerical methods for solving Problem III, based on the generalized discrep­
ancy principle and their variants, were proposed in [12]. On the .basis of the above 
algorithms, we compiled a package of programs for processing spectroscopic data 
on a computer. It includes a unit for reading information, a unit for preparing 
additional data, a unit for solving the inverse problem, a unit for solving the di­
rect problem, and a program dispatcher. For the results related to force fields 
calculations for some molecules, see [13]-[14]. 

4 Inverse Problems in Electronic Microscopy 

There is not sufficient space to describe in details the interesting problems 
arising in electon microscopy data processing such as image restoration and dif­
ferent tomography problems. For details, see book [15] and articles [16]-[17]. All 
the numerical methods used were based on the generalized discrepancy method 
for linear and nonlinear problems including two-dimensional intergral equations of 
convolution type and three-dimensional integral equations which are of convolution 
type in two variables. These problems provide very good examples of the use of 
regularization methods for "nondestructive testing". 
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