Appendix E

On a wave equation with a singular source.

In this Appendix we shall show that the solutions of the problem (1.8.3)–(1.8.4), with $0 \notin \text{supp } f, f \in C^{\infty}(\mathbb{R}), \varphi, \psi \in C^{\infty}(\mathbb{R}^2)$, are smooth on \mathbb{R}^3 \supp ρ . Consider thus the equation

$$\Box U = f(t) \,\delta_0 \,,$$

recall that

$$\Delta \ln r = 2\pi \delta_0, \tag{E.0.1}$$

where $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$, and we also have

$$0 < \alpha \in \mathbb{R}, \quad \Delta r^{\alpha} \ln r = \alpha (\alpha \ln r + 2) r^{\alpha - 2}. \tag{E.0.2}$$

From (E.0.1) one finds that the function $U_1 = U - f(t) \ln r/2\pi$ satisfies

$$\Box U_1 = -\frac{1}{2\pi} \frac{\partial^2 f}{\partial t^2} \ln r \,,$$

and using (E.0.2) one shows by induction that there exist functions $\varphi_i \in C^{\infty}(\mathbb{R}), 0 \notin$ supp φ_i , such that for any $k \in \mathbb{N}$ we have

$$\Box U_k \equiv \Box \left(U - \sum_{i=0}^k \varphi_i(t) r^{2i} \ln r \right)$$
$$= \chi_k(t) r^{2k} \ln r + \psi_k \equiv \rho_k ,$$

for some functions $\chi_k \in C^{\infty}(\mathbb{R})$, $\psi_k \in C^{\infty}(\mathbb{R}^3)$. For any $\ell \in \mathbb{N}$ we can find k such that $\rho_k \in H_{\ell+2}(\mathbb{R}^3)$; we also have $U_k|_{t=0} = U|_{t=0}$, thus the Cauchy data for U_k are smooth, and by standard theory $U_k \in H_{\ell+2}(\mathbb{R}^3) \subset C_{\ell}(\mathbb{R}^3)$. This shows that for any ℓ we have $U \in C_{\ell}(\mathbb{R}^3 \setminus \mathbb{S}^3)$, thus $U \in C_{\infty}(\mathbb{R}^3 \setminus \mathbb{S}^3)$, which had to be established. Let us note that the argument presented above provides also an asymptotic expansion for U_{ρ} in a neighbourhood of supp ρ , which can be used to analyze in detail the nature of the singularities occuring in $(M_{\rho}, \gamma_{\rho})$.