Chapter 3

U(1) x U(1) stability of the (%,2,-1)
Kasner metrics.

In this Chapter we present the proof of Theorem 1.5.2, namely that the singularity of

(P1,p2,p3) = (2,%,—3) (or permutation thereof) Kasner metrics is stable under U(1) x
U(1) symmetric perturbations. The problem réduces to establishing a priori estimates
for a Lorentzian harmonic-type map from two-dimensional Minkowski space-time to
the unit two—dimensional hyperboloid of constant negative curvature. We shall start
by analyzing the harmonic map equations, the geometric interpretation of the estimates

proved below will be given in Section 3.5.

3.1 Introduction — notation

Let M be a Riemannian manifold with scalar product ( , ). Let to < 0, let z(¢,0) :

[t0,0) x S* — M satisfy
DX, DX, X,

Dt Dot
where X; = Q%%ﬁ)’ Xo = —835%’—92, D denotes the Levi-Civita connection of (, ),

(3.1.1)

D
— = Dx, = X} Dy,

D -
Do '_tEDXgE/\z;ADA'

D
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(Y) or |Y| will be used to denote 1/(Y,Y); we shall identify S with {8 € [0, 27]jmod2x}-
We shall throughout use the notation

X0 = (2)"

we shall always assume X(to,-), Xo(to,-) € H1(S*). K(, ) denotes the curvature tensor
of (, ) defined by

K(X,Y)Z =DxDyZ — DyDxZ — Dixy\Z,

We use |K| to denote an upper bound on the sectiomal curvatures, and |DK], etc. to
denote the Riemannian norm of the tensor DK, etc. The matrix 7, will denote the two
dimensional Minkowski metric, 5,, dz* dz” = —di? + df%. For |t| < = it will often be

convenient to use the coordinates
u=t+46, v=t-49,

so that

(M1

=vo=i(atm) woresiG-w)

3.2 Pointwise Estimates

In this Section we shall prove some rough pointwise estimates as ¢ — 0 for solutions of
(8.1.1). The ideas of the proofs are inspired by some unpublished work by V. Moncrief;

the author is grateful to V. Moncrief for making his results available prior to publication.

Lemma 3.2.1 X®) satisfies the equation

D\* (Dy? | DX®
=Y _{= k) = =22 (k)
[(Dt) (Da) ]X i Di T N (3:2.1)
If for all multi-indices 0 < |a| < k-1 we have

[D* X, < Cy e, |D* X < Oy e
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and if
|K|+ |DK|+...|D K| < Cq

then
1. IN®| < F(Cy, Ca, k) Jt]7*2 .
2. We also have the estimate

. |
IN®| <3 Fi(Ch, Cayi, k) | X O 2752 (3.2.2)

i=1

where F', Fy are some constants depending upon the arguments listed.

Proof: Applying (—,%)k to both sides of (3.1.1) one obtains

D\? [ D\? 1 DX® M®)
DN (DN gy _ _1DXB Ly MB
[(Dt) (Do)]X +1 ra

t Dt
with
D\? D\*F DX
® — (Y yw_ (L2 LA
1 = (5) % - (55) B
D \k D
® — (L )
M (Dé‘) Xi— g X

We have the recurrence relations for & > 1

DL® D DX®

(k+1) Z (K (k)

L 5 T o K (X6, Xo) XB) + K(Xe, Xo) =
(k)

MG = %H((Xe,xt)X(k)

with
LO=MO=MO =0, LO=K(X X)X,

and part 1 follows by induction. To prove part 2 one shows by induction that there exists

a set of linear operators A®*%) such that

k
NG — Z A(kyi)(X(i))

=1
(e.g. AWV(Y) = K(Y, X,) X;) and the bounds on |A(*%)| are established by an induction

argument. O
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Lemma 3.2.2 Let T, be a symmetric traceless tensor, let j, =T,",. We have

|Te(t1,0)] < sup (12l (%o, 0) + | Tiol(to, 6)) (3.2.3)

PYE[f—t1+t0,0+11 —10]

ty
+ sup (17:1(2, 0) + |5l (2, 8)) dt . (3.2.4)
to  pe[f—ty+t,0+t1—1]

Proof. Let T, (g, v) = Tpu(t = 42,0 = %2), let Ty = T, u* u”, etc. We have

Tuu,v = _}g‘juu Tvu,u = _% j’u) ju.(u, ’l)) = ]#(

u+ v u-—v)
2 7 2

therefore

NIH

Il

Tuu(ul ] vl)

/A (uy,v v)dv + Tyu(u1,v1 — A),

/ W, 01) du + To(us — X, v1),

Tu‘u(ul) ’U1) =

NIH

adding these equations, setting A = 2(¢; — %o), one is by elementary manipulations led to
Tu(ts,00) = =3 fig {Ue + Jo)(t, 00+t — 1) + (G = Jo)(, 61 — 11 + 1)} dt
+3 (T + Tio) (0, 01 + 1 — to) + 3 (Tt — Tuo) (0,01 + 10 — 1) , (3.2.5)

and the result follows. O

Let us recall Gromwall’s lemma:

Lemma 3.2.3 Let f,z € C*([t0,0)), y € C°%([t0,0)), y > 0, satisfy for t € [to,0)

t

f) <a@)+ | yls) f(s)ds.

to

F(&) < z(to)exp ([: y(s) ds) + /t: %(s) exp { /;ty(u) du} ds.

Proposition 3.2.1 Let 2(t0,0) € C¥(SY), k > 1, X,(to,0) € CF1(S?). For all t > tg

Then

we have'

!The proof of point a) of Proposition 3.2.1 is a slight variation of an unpublished argument of V.
Moncrief.
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(|Xt|2+|Xe|2)(t,9)S2{ sup (1K 4 1Xol?) (toy )}(%")2 (3.2.6)

PE[—t+t0,0+t—10]

b) If k> 2, and if
|K|+ |DK| +...+|D¢IK| < C,

then there exist constants C depending only upon the arguments listed such that,

foralll<|e| <k,
|D°2|(£,8) < C(lal, to, Cs, | Xo(to) lgtet-1, 1 Xe(t0) lgrat- ) [£]7. (3.2.7)

Proof. Let
T = [t{(XF, XF)) — Ly, (X, x P}

(adding a subscript means differentiation). We have

B o= 7®" = 160 x 2 _ e y2y _ g x® N®Y 4 B xv K(X,, X,)X®)Y,
B 2 Y @ ©

(3.2.8)
P =0ifk=0,ek =1 otherwise. For k = 0 it follows
Tt(o)
=0, 1= 100 - (K < =

For 2o <t <1y let

M) = sup W, ),

PE[G—t1 41,0411 —]
h(k)(t) = sup |Tt(9k)|(t,1/;),

PYE[F—11+t,0+11 1]

From Lemma 3.2.2 we have

FO) S FO(15) + RO (¢ / f(°
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so that Gromwall’s lemma with z(¢) = f©(45) + RO(t,), y(¢) = T%T’ gives

Vio<t1 <0 fOU)E] < (FO%) + O (to))tol
27O (to)to| (3.2.9)

IA

which is equation (3.2.6). To obtain part (b) we shall proceed by induction, suppose
therefore that (3.2.7) holds for |a| < k — 1. (3.2.8) and Lemma 3.2.1 yield

T
1 < =+ RIXEPUN + Caltl XXl X )
T8 "
< G HOFORE Ry o
(k)
< gf’;‘;f + P,
T(k)

with some constant C' = C(Cy,Cy), F? = F? + C|t,|¥, and Lemma 3.2.2 gives

2/%(s)
H

FO@) < 9 (1) + BB (2 )+/ ( +2F? 3"2"‘2>d3a.

From Gromwall’s Lemma one obtains

2

7O < (1O (k) + 2B (1)) —;’ T

s (7570 = [t 71272, (3.2.10)

so that the result for all the derivatives of the form

D 1—1 D D =2
(55) %o, fﬁ(b’é) Ko

follows. The estimates for the remaining derivatives can be obtained by e.g. commuting
all the ¢ derivatives to the left, and then using (3.2.1) to replace pairs of i-derivatives by

pairs of 8 derivatives. O
Remark. If |X,| < CJt]*! for some A > 0, then a simple modification of the above

proof gives

|D* X5 < Ottt (3.2.11)
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It is tempting to conjecture that this is a sharp estimate: (3.2.11) is indeed the best one

can expect, since this behaviour is displayed by the maps considered in Appendix B, with

any 0 < A< 1.

3.3 Integral “Decay” Estimates

Proposition 3.3.1 Let z € C¥([to,0) x S*) and let Xy(to,-), X:(to,*) € Hi(SY), i > 1.

There exist constants depending only upon the arguments listed such that
LV 1<]al<i+1,
g0) = § d0 1P| D°a < C (o, IXo(to)lleps (s I Kito) Iy )5 o)
(3.3.1)

2. If at least one differentiation is a 6 differentiation we have

lim ¢((¢) = 0. (3.3.2)

t—0

3. If at least one differentiation is a § differentiation then B0 ¢ L'([to,0]) and

¢]
4] (0:) S ,
I 45 < € (Jal, to I Xo(to) sty IXelto) iy (o) - (333)

to !SI

4. g®(s) tends to a limit as s goes to zero.

Remark: The results above are close to being sharp, because, as shown in Appendix
B (¢f. Proposition B.1.1), for any € € [0,1) there exist solutions of (3.1.1) such that we
have |X9| = th_l, |X99| = Ctﬁ_2, etc.

Proof. Let
LD = [P (X, XY — m (X%, XP)

e® (1) = f dOTH .
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We have
TE =T = XD + (4 )XY - P2 (P, N
+ B[R+ Xy, K (Xq, X)) X®) | (3.3.4)
e =0for k=0, ek =1 o-therwise, so that for #; > tg
e®(t)) = e®(t) — /tt dt f 87" (3.3.5)
which for k = 0 reads
€O (1) = eO(t5) — /t’ dt § 4o 1l(Xs)? (3.3.6)

so that e(©(t) is strictly decreasing and therefore tends to a limit, e()(0), which gives
(3.3.1) for @ = 0 or a = t. (3.3.6) and Lebesgue monotone convergence theorem imply
$d0|t|(Xe)2 € L*([to,0]). To show (3.3.3) for higher derivatives we shall proceed by

induction, suppose therefore that for 1 <k <7 -1

0 o(®)(¢
/ 0 g < oo (3.3.7)
io |t|
Part 2 of Lemma 3.2.1 gives
e 2 (X, NBY < (3 X)) e+ )

k

< IPHIXPP 0 X OP (3.3.8)
=1

for some constant C. From Proposition 3.2.1, point 2, we have e(*)] X|| K (X,, X;) X®)| <

C|t|=*=3 for some constant C, so that from (3.3.5) we have
®) ®) " 241 1y, x (02 (k)y2
CO) < e @ao)— [t f 0Pk - DO+ (k4 D0E)
E oot . . ~
+C3 / "t f do |tF X O + 220t — to) - (3.3.9)
=1 to

By hypothesis the integrand of the last integral at the right-hand side of (3.3.9) is in

L*([t,, 0]); therefore by Lebesgue monotone convergence theorem

]t "t f do Jt1((XPY? 4 (X)) < 0. (3.3.10)
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(3.3.10) implies that there exists a sequence t; — 0 such that e¢®*)(¢;) — 0, and from
(3.3.5) we have
ti
B (2) = e®(;) - /t dt ]{ oI (3.3.11)
(3.3.4), (3.3.7), (3.3.8) and (3.3.10) imply that T® is in L'([to, 0] x S1) so that we may
pass to the limit ¢; — 0 to obtain
0
e®(t) = — / dt f TP (3.3.12)
t
(3.3.12) shows in particular that lim;_o e()(t) = 0, which is (3.3.2). Finally let A(t) =
§ 12| Xs|%(¢,0). For t3 > t; we have
t2
h(ta) = h(tr) = [ k(1) dt ,
i1

k()= —-2—%(;—) + 2}l{d0 (X, Xor)

by what has been said k(t) € L'([to,0]) and an argument along the lines of the proof of
(3.3.12) shows that (3.3.2) holds for a = 8. The estimate (3.3.3) follows from (3.3.10) by

commuting pairs of ¢ derivatives with pairs of @ derivatives using equation (3.1.1). O

3.4 Pointwise “Decay” Estimates

For 15 <t < 0 let Cf, denote the solid truncated light cone
Ctto = {(370),t0 <s<t,s<0< —3}.

Let B(t) denote the “space ball”, B(t) = {(s,0) : s =t,t < 0 < —t}. Let R}, L} be the
right and left truncated light-rays from (0,0), ¢f. Figure 3.4.1:
Ly, = {(s,0):t0<s<t,0=s}

t
R,

{(5,0) : tg < s <t,0 = —s}

By proposition 3.2.1 we can define

vo = sup [¢]|Xi] < 0. (3.4.1)

to

76



t = t1
Ly, Ry,
cs
t=t,

Figure 3.4.1: Truncated light cone.
Lemma 3.4.1 Let
I XE9 (o) llmsny + 1l X37 (ko) llmysn< M-

There exist t; independent constants C1(M,to), Ci(k, M, ), Ca(k, M,to) such that for
alltg <t; <0, k> 1, we have

y

o P00) + (X)) <6 [ (KT3I +
tg ) o

b)

Lo ) + (X)) < (K3 [, 1%l + Calh),

o

and | K| is defined by

(K(A, B)C, D)
K| = sup |K = su e
|Kl=sup [Kl(p) = sup  =rrmronD

A,B,C,DETp M

where K is the curvature tensor of (M, {, }).

Proof. Let
T = [t (XD, X)) — L, (XB= XB)).
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We have

T8, = —3T0" v
|t|2k—

= {2k = 1)(X, XP) + (k = 1)(XP) + k(X))

+% (Xl(tk),N(k)> + %6(k)|t|2k<Xav I{(Xu,Xa)X(k)) ,
T®) = _% T‘Ek)u,u ot :

" 2k—-1
= —% {(1 = 2k)(X5, XY + (k= 1)(XP)? + (X))
|t| <X(k) N(k)> %E(k)|tl2k(xa,I{(Xu’Xa)X(lc)> ,

e®) = 0if k=0, e® =1 otherwise, therefore

2 —
68 (uT(k)) ( (k)) — |t| {(k + I)IX(k)I + k| X k)l + le—m—l_)ﬁ <Xék) 7Xt(k)>}
u
2k+1
—'“2 (X + % X§9, N®) - 56"°’!tl“<Xa, KXot lxe,xa)xﬂc)) (3.4.2)

Integrating (3.4.2) over C}! yields, for k > 1,

Lo WPHGIXOP +1 X0 - 2 / e+ “+HX£k,N<’“’>
to

< P [ (ORI X X)) af]

It
+2€W) /
el

0
where f(t)]:; = f(t1) — f(to). For k =1 we have

to

162+ (X0, K (X, +

lTIXe,X“)X(’“))I , (3.4.3)
INW| = | K (Xo, X)Xl < |K|1 X[ | Xo|
and straightforward manipulations lead to
Lo 12 21Xl + 3 1XaP} <3 [, (1K[03)* Xl +C,
to to

and we have used proposition 3.2.1 to estimate the integrals at the right hand side of

(3.4.3) by a constant C. Lemma 3.2.1 part 2 and an induction argument yield similarly

Lo 10 0XPP 4 1XOPY < i) (K103 [, Xl + Calh),
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which had to be established. m]

Remark. If k = 0 we have N© = 0 and (3.4.2) integrated over C}} yields

/o,‘; (]Xolz - —’%(X(;,Xt)) <C (3.4.4)

for some ¢;-independent constant C.

Proposition 3.4.1 Let to < 0, let z(to,) € C*(S?), Xi(to,-) € CFY(SY), k > 2,
suppose that either
2
/C , 1Xs]? < o0 (3.4.5)
or

L, 160, X0) < oo.

to

Then for all0 < |o| <k -1

lim D X, = 0.
(t,6)—(0,0)
(z,e)ec?o
Proof. (3.4.4) shows that without loss of generality we can suppose that (3.4.5) holds.
Lemma 3.4.1, part a) shows that
L, 20Xl + | Xal?) < o0,

to

therefore for all € > 0 there exists § > 0 such that for all |t] < 6

Jop Pl 41X+ [ 6o < (3.46)

2
For 0 < ¢ < min(Jto], 7/2) let fi : C22 — R+ U {0} be defined by
CE 5 (5,0) = fi(s,0) = t)Xol(ts, 0).

By (3.4.6) and by the pointwise estimates of proposition 3.2.1 for any p > 2 and for t < §

we have

IN

/. 0P < Clo)e, (3.4.7)

foj f:?

IA

€,
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so that setting p equal to, say, 3, one obtains by Sobolev inequality
1
2

V (s,0) € C_7 |fi(s,8)] < C'e.

so that
V0oL < It [t Xe(t,0)] < Cle.

The higher derivatives estimates follow in a similar way from Lemma 3.4.1, part b). O

Proposition 3.4.2 Suppose that>|K|v3 < 5\-173. Then the conclusion of proposition 3.4.1
holds.

Proof. Without loss of generality we may suppose —7 < ¢o. Let
Ci* ={(s,0) € C; ,£6 > 0}.
Integrating (& — £)(6|Xo|?) over Cf* and (£ +2)(0]X5|?) on Cf:~, adding the resulting

identities one obtains

t1

: (3.4.8)

to

/0‘1 (Xo)? = /cﬁ‘ 2(X4, 10| Xe: — 0Xg9) — /B(t) 16](X,)?

to
the estimates of Lemma 3.4.1, part 1, and (3.4.8) give a t;-independent bound C; for
¢
Ja(( )L:, therefore

Jou Ko < 02 [ X1l + X

< Cura( [, o) [, 1PIXF) + [, W1Xwl))

1 1
< Glata) [ <Xa>2+;/0” |t|2|X9t|2+6—2/C,1 [£121 X o |?
to tg

t
to

6(vi|K|)? 3(v3| K|)?
< Cz+[€1+%ll)+fz+%fl)]/ctl(xo>2y
2

to
where we have used the Schwartz inequality and Lemma 3.4.1, point a). Setting ¢; =

VB6U3|K]|, e = \/§v311{| one obtains

(1— 3\/6v§l[&'|)/c (Xo)? < Cy,

t
to
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so that for |K|v2 < (3v/6)~!

Cs
Vig<t<O0 X2 <Cy=—- 2
0= /c;o( o) < G (1 - 3602 K|)

and the Lebesgue monotone convergence theorem implies that the hypotheses of propo-

sition 3.4.1 hold. O

Propositions 3.2.1 and 3.4.2 imply:

Corollary 3.4.1 Let x be a C?, i > 2 solution of (3.1.1) and suppose that

1
X2 + 1 X?) (2o, 8) < ——— .
(PG + 1XaP),0) < s

Then the conclusion of proposition 3.4.1 holds.

3.5 The Stability Theorem.

Let (X,9,K) be U(1) x U(1) symmetric Cauchy data, & ~ T2, let X, = X}-%, a=1,2

a gzt

be the Killing vectors generated be the U(1) x U(1) action. It has been shown in [32]

that if one assumes
(I i — gkl.Kkg g,-j) Xg =0 ({@ Co = Cag,ng{!ng’ng = 0) y (351)

then there exists a coordinate system {t € (—00,0), 8, z* € [0,27|jmod2r, 0@ = 1,2} in

which the metric takes the form
ds? = v,,dz*dz” = e*B(—di? + db?) + N|t|ng (dz® + g°df)(dz® + g°df) ,  (3.5.2)
ngp dz®dz® = (cosh p + cos ¢ sinh p) (dz')? + 2sinh psin ¢ dz'dz?
+(cosh p — cos ¢ sinh p) (dz?)? ,

B= B(t70)a pP= p(tao)a ¢ = ¢(t’0) )
where A and g° are real constants, A > 0. For a metric of the form (3.5.2) the dynamical

part of Einstein equations reduces (¢f. e.g. [32], or [62]) to harmonic—-map-type equations
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(3.1.1) for a map z(t,6) = (p(t,0), $(t,0)) : (—00,0) x S* — H?, where H? ~ R is the
unit hyperboloid with the metric

ds? = dp® + sinh® pd¢? .

We also have the constraint equations

oB 1 't 2 2

o =~ X+ Xl (3.5.3)
0B t
58 = §(Xz, Xo) . (3.5.4)

The main result of this chapter is the following:

Theorem 3.5.1 Let & ~ T2 and let (g,, K,) be Cauchy data for a Kasner metric with
ezponents (py,pz,ps) = (2,2, —1), or permutation thereof. There exists € > 0 such that

for all U(1) x U(1) symmetric Cauchy data (g, K) € C*(X) satisfying (3.5.1), for which

(g = 90, K — Ko)||m(myerez) < €,

the mazimal globally hyperbolic Hausdorff development (M,~) of (£, g, K) is future inez-
tendible. Moreover on every future inextendible timelike curve in M the curvature scalar

| Rapys RPY| tends to infinity in finite proper time.

Remark: If one assumes that the Cauchy data are given directly in the form appropriate
for a metric of the form (3.5.2), then it is sufficient to assume that (g, K) € Hi(Z)®L*(X).
It should be pointed out that the construction which leads from general coordinates to
the coordinates of (3.5.2) decreases the degree of differentiability of the components of

the metric tensor.

To prove Theorem 3.5.1 we shall need the following:

Proposition 3.5.1 Let T be a future inextendible timelike curve in a vacuum space-time

with a metric of the form (3.5.2), then T reaches t = 0 in finite proper time.
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Proof: Let I’ = {z#(s)}, where s is a proper time along I', with ¢(s) being an increasing

function of s. From +,,z#z” = —1 we have

—2>1. ..
eds__l (3.5.5)

The constraint equation (3.5.3) and Proposition 3.2.1 give

-1+ E, 0B _1_
4t t 4t "’

where

Ey = sup *[| X, + | X4|*] < 00

t>to

which implies, for some constant C,

C-lltl(El-—l)/Ai < eB < C|t|—1/4 ,
so that (3.5.5) implies, for s; > 31,

—1/4ﬁ 3/4 3/4
Clt! 7s >1 = s3<s+ 4C(It(81)l !t(32)l )/3 ,

thus I' reaches ¢ = 0 in finite proper time. ]

Proof of Theorem 3.5.1: Consider the map z,(t,8) = (p,(¢,0), ¢o(2,6)) = (0,0); it is
easily seen that z, solves the dynamic equations (3.1.1), integrating (3.5.2) one finds that
the corresponding metric is the Kasner metric with exponents (p1,p2,p3) = (3,%,-3).
It follows from Corollary 3.4.1 that for all 2(t,,8), X:(t,, 9) satisfying

11X + 167 < 672
we have
li_r)r& t|Xel = 11_{% 2| Xgo| = 11_{% 3 Xy =0, (3.5.6)
moreover from Proposition 3.2.1, point a) it follows that
o(t,0) = 1| X;|(¢,0) < 2Y/%673* < 1. (3.5.7)

A SHEEP calculation gives

-2B

Rﬁ&aé = 312 {a- t2|Xt|2) Aﬁf,&_ﬁ + Bﬁoaé} ) (3.5.8)

83



where hats refer to the orthonormal frame
el =e Bt ,

el = eBdp ,

e = (26212 [co(8/2)(dz + g'dB) + sin(¢/2)(dy + 5°0)] |
e? = (A[t])"/%e"/* [~ sin(¢/2)(dz + g"d8) + cos(#/2)(dy + ¢*db)]

with z = ', y = 2%, and where the non-vanishing components of A%, are
A =2, Alyi=v,—1, Ay =—v,—1, A=,
Ay =—v, =1, Ay =v,—1, Ay =—vy, Alys; =2, (3.5.9)
v, =tlpt, Vg = t sinh P ¢yt ,

while for B#, &p the following estimations hold

B0 < C [221 (1 + 111Xl + [ Xo]) + 21X [ Xol (1 + [¢]1Xe]) + €2 Xoo| + 7] Xeo] -

(3.5.10)
(3.5.6) - (3.5.7) allow us to neglect all the terms involving B*;,s when calculating o =
Reogys RoPY to obtain

6—4B

~ 2 2\2 2 2

Let
a=2B+1nlt|, & =sup a(to,0) . (3.5.11)
6

By equation (3.5.3) the function a is monotonically decreasing, therefore
e™*B > |t|e720 : (3.5.12)

which together with (3.5.7) implies that there exists € > 0 such that for ¢ > ¢y, ¢; large

enough, we have
€
t,0 —
‘a( 9 )l > |t|3
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By Proposition 3.5.1 every future inextendible timelike curve reaches ¢ = 0 in finite time,

and Proposition C.2.4 establishes our claims. a

The following result proves existence of curvature singularities in polarized Gowdy metrics

on T3 without smallness hypotheses:

Proposition 3.5.2 Let = be a C' solution of (3.1.1) such that Xp(lo,-), X:i(to,) €
Hy(8Y), let
@ = Ryp,s R*P

be the quadratic curvature scalar of the associated Gowdy space-time. Suppose that
[t]|X:|(t,-) does not converge to 1 in L?(S') as t goes to zero. Then there exists a

sequence of points (t;,0;), t; — 0, such that

€

t;,0; —
alta 0] > o

for some € > 0.

Remarks:

1. Note that a sufficient condition for convergence in L?(S?) is pointwise convergence;:
" so that Proposition 3.5.2 implies in particular that if |¢||X;|(¢, -) converges pointwise
to something different from 1 as ¢ tends to zero, then there must be a curvature

singularity somewhere on the boundary ¢ = 0.

2. The proof of Proposition 3.5.2 does not imply existence of a singularity on the whole
boundary ¢ = 0 since there may be subsets of the set ¢ = 0 on which |¢]|X;](¢,-)
converges to 1. It might happen that the metric is extendible through such subsets

— this occurs indeed for some polarized Gowdy metrics [37] [36].

Proof. From the proof of Theorem 3.5.1 one obtains
-4B

444

{1 = 21X 226+ 2IXL) + B+ B} (3.5.13)

o =
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1 oy L b6
B = -8-(1 - t2|Xt|2)Bf,oaéA” b, b= 1—63,117&,33” .

therefore, by (3.5.12),

4 f altPPd > %o [3 }{ (1= [¢P1X %)% ~ | f By do| - | }4 B, d0” , (3.5.14)

where &, has been defined in (3.5.11). Suppose that 1 — |¢|?| X¢|?> does not converge to 0
in L%*(S"), therefore there exists € > 0 and a sequence t; ,/* 0 such that

f (1 = [6P1Xo2(2:,0))" dO > 8mee,
Proposition 3.2.1 and (3.5.10) imply,

Vo ib,&8  |Basl < C, (3.5.15)

which together with proposition 3.3.1, point 2, gives
F1Busaal’(t,0) db =5
It follows that there exists t(e) < 0 such that for all 0 > ¢ > t(e) we have
| f B(t,6) do|df < 8re? .
From 2zy < 622 + §~'y? it follows that
$2Buap AP A0 <SS $ 61455051 0+ 5 § 67 Bysasl 0,

which can be made arbitrarily small by an appropriate choice of § for ¢ large enough, so

that for ¢ > ¢(¢) we can also require
[fﬂl(t,o) db| < 8me¥oc.

It follows that for t; > t(e) we have

2me

fa(t,-,é)) >
therefore there exist points 6; such that

€

a(e,',t,') > lti|3 .
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Appendix A

On the “hyperboloidal initial data”,
and Penrose conditions.

Let us briefly recall the conformal framework introduced by Penrose [104] to describe
the behaviour of physical fields at null infinity. Given a, say vacuum, smooth “physical”
space-time (M ,7) one associates to it a smooth “unphysical space-time” (M,v) and a

smooth function 9 on M, such that M is a subset of M and

QIM >0, ’Y;wl](l = 02:}';/,1/ ) (AOl)
g =0, (A0.2)
dUp) #0 for pedM, (A.0.3)

where OM is the boundary of M in M (it should be stressed that in this section a notation
inverse to that used in 1.6 is used: tilded quantities denote the physical ones, while non—
tilded quantities denote the unphysical (conformally rescaled) ones). It is common usage
in general relativity to use the symbol Z for M, and we shall sometimes do so. If &
is a hypersurface in M, by Z* we shall denote the connected component of 7 which
intersects the causal future of X. The hypothesis of smoothness of (M, v, ) and the fact
that (M,4) is vacuum imposes several restrictions on various fields; if one defines (cf.
(104])

P = (B L ), (00
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