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Abstract. If every functional which exposes a subset of the unit ball of a Banach space does so 
uniformly strongly (uniformly weakly) then the space is uniformly rotund (weakly uniformly rotund). 
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A normed linear space X is rotund if every point of its unit sphere S(X) is an 
extreme point of its closed unit ball B(X). The space X is uniformly rotund if for 
each c > 0 there exists a <5(c) > 0 such that llx- Yll < c whenever llx + Yll ~ 2- <5(c) 
and x, y E S(X). X is weakly uniformly rotund if for each g E S(X*) and c > 0 
there exists a <5(c,g) > 0 such that lg(x- y)l < c whenever llx + Yll ~ 2- <5(c, g) and 
x,y E S(X). 

If X is uniformly rotund then for each c > 0 there exists a <5(c) > 0 such that 
for every x E S(X) and f E S(X*) with f(x) = 1 we have that S(B(X), J, <5(c)) ~ 
X+ cB(X) where S(B(X), j, a( c)) denotes the slice {y E B(X) : f(y) > 1- <5(c)}. 
If X is weakly uniformly rotund then for each g E S(X*) and c > 0 there exists a 
a(c,g) > 0 such that for every x E S(X) and f E S(X*) with f(x) = 1 we have that 
S(B(X),j,a(c,g)) ~ x + {y EX: lg(y)l < c}. We show that uniformity of slicing of 
the ball, apart from rotundity, is sufficient to imply uniform rotundity properties. 

For each f E S(X*) we will denote by E1 = {x E B(X): f(x) = 1} and we will 
say that f exposes B(X) if E1 =f:. 0. The Bishop-Phelps Theorem guarantees that if X 
is a Banach space then the set of all functionals in S(X*) that expose B(X) is dense 
in S(X*). Given an f E S(X*) that exposes B(X) we will say that E1 is strongly 
exposed by f iffor each c > 0 there exists a <5(c) so that S(B(X), f, <5(c)) ~ EJ+cB(X) 
and that E1 is weakly exposed by f if for each g E S(X*) and c > 0 there exists a 
<5(c, g) > 0 such that S(B(X), j, a(c, g)) ~ E1 + {y : lg(y)l < c }. Our results are a 
consequence of the following general considerations. 

A set-valued mapping ~ from a topological space A into subsets of the dual X* 
of a normed linear space X is weak* upper semi-continuous to E A if for each weak* 
open subset W of X* such that ~(to) ~ W there exists a neighbourhood U of t0 such 
that ~(U) ~ W. If~ is weak* upper semi-continuous and ~ has non-empty weak* 
compact convex images at each point of A then we say that ~ is a weak* cusco on 
A. Further, ~ is a minimal weak* cusco on A if its graph does not properly contain 
the graph of any other weak* cusco on A. We use the following characterisation of 
minimality. 

Lemma 1. ([2}, Lemma 2.5} A weak* cusco ~ from a topological space A into 
subsets of the dual X* of a normed linear space X is a minimal weak* cusco if and only 
if for any non-empty open subset V of A and weak* closed convex subset K of X*, with 
~(V) ~ K, there exists a non-empty open subset V1 ~ V such that ~(Vl) n K = 0. 
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A set-valued mapping <If> from a metric space (A, d) into subsets of the dual X* of 
a normed linear space X is said to be Hausdorff norm upper semi-continuous at t 0 E A 
if for each £ > 0 there exists a J(c:, t 0 ) > 0 such that <!f>(t) ~ <!J>(t0 ) + c:B(X*) for all 
t E A with d(t, t 0 ) < J(c:, t 0 ) and is said to be Hausdorff weak* upper semi-continuous 
at t0 E A if for each x E S(X) and £ > 0 there exists a J(c:, x, t 0 ) > 0 such that 
<lf>(t) ~ <!J>(to) + {f E X* : lf(x)l < £} for all tEA with d(t, to) < 8(c:, x, to). We will 
say that <If> is uniformly Hausdorff norm upper semi-continuous on a subset D of A if for 
each c: > 0 there exists a J(c:) > 0 such that <I>(s) ~ <I>(t) +c:B(X*) for all s, tED with 
d( s, t) < 8 ( c:) and is said to be uniformly Hausdorff weak* upper semi-continuous on D 
if for each x E S(X) and£> 0 there exists a 8(c:, x) > 0 such that <!f>(s) ~ <I>(t) + {f E 
X* lf(x)l < c:} for all s,t ED with d(s,t) < o(c:,x). Uniformly Hausdorff upper 
semi-continuous mappings have significant single-valuedness properties, as shown in 
([2], Proposition 3.4). 

Proposition 1. Given a metric space (A, d) and a normed linear space X, with 
dual X*, a minimal weak* cusco <If> from A into subsets of X* which is uniformly 
Hausdorff weak* upper semi-continuous on some dense subset D of A is single-valued 
on A and for each x E S(X) the mapping t H x(P(t)) is uniformly continuous on 
A. Further, if P is uniformly Hausdorff norm upper semi-continuous on D then P is 
single-valued and uniformly norm continuous on A. 

Proof. First we will show that ([l is single-valued on D. So let us suppose for the 
purpose of obtaining a contradiction that <I> is not single-valued at t 0 ED. Then there 
exist h, h E <!>(to), r > 0 and x E S(X) such that (h- h)(x) > 3r > 0. Consider 
K = {f E X* : f ( x) 2:: h (x) - 2r}. Since P is uniformly Hausdorff weak* upper semi
continuous on D there exists a 6 > 0 so that <I>(s) ~ <I>(t) + {f E X* : lf(x)l < r} 
whenever s, t E D and d(s, t) < 8. Now, <I>(B(t0 , ~ K since /2 fl. K so there 
exists a non-empty open subset% of B(t0 , 8) such that ([l(V1 ) n K = 0. Now for any 
t E V1 n D we have that f1 fl. <I>(t) + {f E X* : lf(x)j < But on the otherhand, 
d(to, t) < &, which means that h E <!J>(to) ~ <P(t) + {f E X* : lf(x)l < r }; which is 
impossible. Hence <I> is single-valued on D. For each x E X the mapping Tx : D -+ R 
defined by Tx ( t) = x (<I> ( t)) is uniformly continuous on D and hence has a uniformly 
continuous extention T; to A. It now follows from the weak* upper semi-continuity 
of <If> on A that T;(t) E x(<I>(t)) for all tEA. Now, from ((4], Proposition 1.4) we have 
that t H x(<I>(t)) is a minimal cusco on A. Therefore for each x E S(X) the mapping 
t H x(<iP(t)) = T;(t) is uniformly continuous on A. In particular, this implies that P 
is single-valued on A. 

In the case when <li is uniformly Hausdorff norm upper semi-continuous on D we 
have from the previous argument that P is single-valued on A and so the mapping 
<I>n: D-+ X* defined by Pn(t) = i!i(t) is uniformly norm continuous on D and hence 
has a uniformly norm continuous extension iJ>:D to A. It now follows from the weak* 
continuity of <I> on A that <I>:D = <I> and so <li is uniformly norm continuous on A. 0 

We now relate the exposure of subsets of the unit ball of a normed linear space 
to continuity properties of the subdifferential mapping of the dual norm of the space. 
Given a normed linear space X, the sub differential of the norm at x E X is the subset 
Bllxll = {f E B(X*) : f(x) = llxl\}. The subdifferential mapping x H Bllxll is a 
weak* cusco from X into subsets of B(X*). 
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Lemma 2. Let fo E S(X*). If Efo is strongly exposed (weakly exposed) by fo E 
S(X*) then the subdifferential mapping f 1-t 811!11 from X* into subsets of B(X**) is 
Hausdorff norm upper semi-continuous (Hausdorff weak* upper semi-continuous) at 

fo and If;; is weak* dense in 811/oll· 

Proof For each c: > 0 there exists a 8(c:) > 0 such that 

S(B(X),f,/i(c:)/2) ~ S(B(X),fo,li(c:)) ~ Efo +c:B(X) 

for each f EX* with II!- foil ::::; 8(c:)/2. Hence by Goldstine's theorem we have that: 

8/lfll ~ S(B(X**), j, fJ(c:)/2) ~ S(B(X), j, o(c:)/2) 
A A w* 

~ S(B(X), Jo, J(c:)) 
::::=:::::-w* 

~ Efo + c:B(X**) ~ 81/foll + c:B(X**) 

for each f E X* with lifo- !II < J(c:)/2. This shows that f 1-t 811!11 is Hausdorff 
norm upper semi-continuous at fo and that 

* _w 

8/lfoll ~ Efo + t:B(X**) for each c > 0 

which gives the first result. The prooffor the case when Eta is weakly exposed by fo is 
similar, except with .5(c) replaced by 8(c:,g), t:B(X) replaced by {y EX: /g(y)/ < c} 
and c:B(X**) replaced by {FE X**: I9(F)I::::; c}. D 

For a normed linear space X the restriction of the subdi:fferential mapping x 1-t 

8/lxll to S(X), is a minimal weak* cusco, ([2], Lemma 3.5). 

Lemma 3. Consider a subset D of S(X*). 
(i) If for each c > 0 there exists a J(c:) > 0 so that for every f E D, S(B(X), J, r5(c:)) ~ 
E1 + c:B(X) then the restriction of the mapping f 1-t 811!11 to S(X*) is uniformly 
Hausdorff nm·m upper semi-continuous on D. 
{ii) If for each g E S(X*) and c > 0 there exists a 8(c:, g) > 0 so that for every fED, 
S(B(X), f, 8(c:, g)) ~ EJ + {y E X : /g(y)l < c;}, then the restriction of the mapping 
f 1-t 8/lfll to S(X*) is uniformly Hausdorff weak* upper semi-continuous on D. 

Proof. This follows directly from examining the proof of Lemma 2. D 

By combining Proposition 1 with Lemma 3 we obtain the following geometrical 
consequences. 

Theorem 1. Consider a dense subset D of S(X*). 
(i) X is uniformly rotund if for each c > 0 there exists a J(c:) > 0 such that for every 
fED, S(B(X),J,6(c:)) ~ E1 +c:B(X). 

(ii) X is weakly uniformly rotund if for each g E S(X*) and c > 0 there exists a 
8(c:,g) > 0 such that for every fED, S(B(X),f,J(c:,g)) ~ EJ+{y EX: /g(y)l < c}. 
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Proof. In the first case we see that the restriction of the mapping f 1-t 8Jifll to 
S(X*) is single-valued and uniformly norm continuous, which implies that the dual 
norm is uniformly Frechet differentiable, ([1], p.25) and which gives the result by ([1], 
p.134). In the second case we see that the mapping f 1-t 8llfll is single-valued on 
S(X*) and for each g E S(X*) the mapping f 1-t g(8llfll) on S(X*) is uniformly 
continuous, which implies that the dual norm is uniformly Gateaux differentiable, 
{[1], p.25) and which gives the result by ([I] p.63). 0 

As a further application of our theory we establish similar results for a dual space. 

Theorem 2. Consider a dense subset D of S(X). 

{i) X* is uniformly rotund if for each c > 0 there exists a 8(10) > 0 such that for every 
xED, S(B(X*),x,8(c)) ~Ex +cB(X*). 

{ii) X* is weakly uniformly rotund if for each G E S{X**) and c > 0 there exists 
a 8(c, G) > 0 such that for every x E D, S(B(X*), x, 8(c, G)) ~ Ex + {! E X* : 
IG{!)I < c}. 

Proof. The proof of (i) follows directly from Proposition 1 and Lemma 3. For 
the proof of {ii), it follows from Proposition 1 and Lemma 3 that the restriction of 
the subdifferentiable mapping x 1-t 8llxll to S(X) is single-valued on S{X). Hence 
for each G E S(X**) and c > 0 there exists a 8(c, G) > 0 so that for every x E D, 
sup{IG{!- g)l : f, g E S{B(X*), x, 8(c, G)) ::::; 2c. Given F E S(X**) with EF -# 0 
consider S(B(X*),F,8(c,G)). For f,g any two elements of S(B(X*),F,8(c,G)) we 
have [!, g] n {1- 8(c, G))B(X*) = 0. Hence, by the strong separation theorem there 
exists an x E S(X) so that [f, g] ~ S(B(X*), x, 8(10, G)). Since D is dense in S(X) 
we may assume that xED and so IG{!- g) I ::::; 2c; which in particular, implies that 
S(B(X*),F,8(c,G)) ~ EF +{hE X* : IG(h)l ::::; 2c}. The proof now follows from 
Theorem 1 part (ii). 0 

The interesting aspect of Theorem 2 part(ii) is that it has recently been shown 
that there are non-reflexive Banach spaces whose dual norms are weakly uniformly 
rotund, [3]. 
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