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1. Spacelike hypersurfaces of prescribed mean curvature 

Spacelike hypersurfaces of prescribed mean curvature have played an important role in the 
study of the structure of Lorentzian manifolds. Examples include the singularity theorems 
of Hawking and Penrose [HE], the analysis of the Cauchy problem for Einstein's equations 
based on 3 + 1 foliations ([CBY], [LA]) and the first proof of the positive mass theorem 
due to Schoen and Yau ([SY]). 

General existence and regularity results for prescribed mean curvature hypersurfaces were 
obtained by Gerhardt ([CG]) and Bartnik ([Bl]), boundary values problems were treated 
in [BS] and in [B2]. For an excellent survey of the area we refer to the article by Bartnik 
([B3]). 

In [EHl] and [E1,2], spacelike hypersurfaces of prescribed mean curvature were constructed 
as stationary limits of mean curvature flow, which had previously been very successfully 
employed in Riemannian manifolds (see [Hl] for a survey). In this talk, we will review some 
of the central features of this nonlinear evolution process in the special case of spacelike 
hypersurfaces in Minkowski space as most of the essential analytical difficulties already 
arise in this simplest situation. 

Minkowski space Rn,l is Rn+l endowed with the metric(-,·) defined by (X, Y) = x·y-xoyo 
for vectors X= (x,x 0 ),Y = (y,y0 ). With regard to this metric, vectors in Rn,l can 
be divided into spacelike, timelike and null-vectors depending on whether they satisfy 
(X, X) > 0, (X, X) < 0 or (X, X) = 0. The timelike vectors can be divided further in the 
natural way into future and past directed vectors. 

A hypersurface M C R n,l is called spacelike if it admits an everywhere timelike normal 
field which we assume to be future directed and to satisfy the condition (v, v) = -1. 
Note that the metric on 111 induced from Rn,l is Riemannian. Spacelike hypersurfaces 
can locally be expressed as graphs of functions u : n -+ R satisfying I Du (X) I < 1 for all 
X En where n is an open subset of Rn. In particular, a spacelike hypersurface satisfies 
the inequality lu(x)- u(y)i < lx- Yl for all x, yEn. In this talk we will concentrate on 
so-called entire graphs i.e. we will assume Sl = Rn unless otherwise stated. 
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We define the Lorentz distance function by z = (X, X). When restricted toM this is given 
by lxl 2 -u2 (x) which is nonnegative if M contains the origin. One can check using the mean 
value theorem that z is a proper function on Min the sense that lim\x\-+oo(lxl 2 - u 2 (x)) = 
oo. This implies in particular that the sets Mn{z:::::; p2 } are compact in M for every p > 0. 

The future directed unit normal can be expressed in terms of u by 

v(x) = (Du(x), 1) 
Jl -1Du(x)l2 

The mean curvature of lvf is defined as H = div v. The equation of a hypersurface with 
mean curvature prescribed as a function 1-l = 1-l(·,u,Du) can therefore be written as 

(1) div ( Du ). (x) = 1-l(x,u(x),Du(x)). 
Jl-IDul2 

This is an elliptic partial differential equation with ellipticity constant controlled by the 
gradient function 

1 
v = -(v, eo)= Jl -1Dul2 

One generally aims to bound v as this implies uniform ellipticity of equation (1) and 
therefore reduces the analysis to standard techniques for such equations. 

Maximal hypersurfaces. Spacelike hypersurfaces with mean curvature H = 0 are called 
maximal hypersurfaces in view of the fact that the equation 

lV = 0 d. ( Du ) 
Jl-IDul2 

is the Euler-Lagrange equation for the area functional of a spacelike hypersurface 

which in Rn,l one would like to maximise subject to boundary conditions. 

Theorem ([C], [CY]). All entire solutions of the maximal surface equation for spacelike 
hypersurfaces in Minkowski space are spacelike hyperplanes that is graphs of functions of 
the form 

u(x)=a·x+b 

where a ERn satisfies lal < 1 and bE R. 
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Constant mean curvature hypersu:rfaceso Examples of hypersurfaces with constant 
mean curvature equal to ; are the hyperboloids given by 

up(x) = vlxl2 + p2. 

In particular, the identity z = -p2 holds on these. Note that for p = 0 we obtain the upper 
light cone at 0 and for lxl -+ oo the hyperboloids are all asymptotic to this light cone. 
Other examples of constant mean curvature hypersurfaces were constructed by Treibergs 
[T]. 

An interesting property of entire spacelike hypersurfaces of constant mean curvature is 
that they are automatically geodesically complete. This is a consequence of the following 
a priori gradient estimate due to Cheng and Yau ([CY]) which is the most important 
ingredient in the proof of the above theorem for maximal hypersurfaces. 

Theorem ([CY])o Let A1 =graph u be an entire spacelike hypersurface of constant mean 
curvature H. Suppose that 0 E M. Then the Lorentz distance function on A1 satisfies the 
estimate 

IVvlzl :-::; C(n,H) 

where V denotes the tangential gradient toM. 

Integrating this gradient estimate along geodesic rays in M and using the compactness of 
the sets ]\/[ n { z :-::; p2 } one can show that geodesic balls in M are compact which establishes 
the geodesic completeness of M. 

Estimate (*) can also be interpreted as a local estimate for the gradient function v but 
such estimates can be obtained more directly (see [B3]). We will return to this later when 
we discuss parabolic equations for spacelike hypersurfaces. 

Geodesically incomplete spacelike hype:rsurfaces. Let us consider spacelike hyper
surfaces which satisfy H = v. These arise naturally in a heat flow problem related to 
equation ( 1). The differential equation ( 1) in the case 1i = v can be written as 

(2) Hv- 1 = )1- 1Dul 2 div ( Du ) = 1. 
Jl-IDul2 

For n= 1 this becomes 
u" 

---- = (arctanhu')' = 1 
1 - ( u') 2 

which has u( x) = log cosh x as a particular solution. This solution is asymptotic to the 
upper light cone lxl-log 2 for l::rl -+ oo just as the constant mean curvature hyperboloids. 
However, unlike these its graph is geodesically incomplete, i.e. the curve has finite length in 
Minkowski space. In fact, one could ask whether entire solutions of (2) in any dimension 
are geodesically incomplete. Noting that the function u(x) = log cosh lxl and suitable 
rescales of it furnish sub- and supersolutions of (2), the following existence result in higher 
dimensions is proved in [E2]: 
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Proposition. There exist entire spacelike solutions u : Rn --+ R of equation (2). 

One can construct examples of solutions of (2) in some other simple spacetimes. In a general 
spacetime, the gradient function is given by v = -(T, v) where T is the future directed 
unit timelike normal to a fixed reference slicing of the spacetime. Consider for instance the 
Schwarzschild spacetime in 1+1 dimension with metric given by ds 2 = -a2 dx6 + a-2 dr2 

with a 2 = 1 - Zm where x 0 denotes the time coordinate, m > 0 is the mass and r > 2m. 
r 

One calculates (see e.g. [Bl]) that 

where ' denotes derivatives with respect to 1". The radial null geodesics satisfy the equation 
r* = r +2m log 2~ (see [W]). It is interesting to note that the function u(r) = logcoshr* 
satisfies equation (2) up to lower order terms although both H and v grow exponentially 
for r --+ oo. In fact, one easily checks that 

We furthermore observe that H ;::: v. By suitably rescaling u we can find a function for 
which H < v. Similar functions can be constructed in higher dimensions and are again 
useful as barriers in the construction of solutions of (2). 

2. A heat flow for spacelike hypersurfaces 

We consider a family of spacelike embeddings Xt =X(·, t) : Rn --+ Rn,l with corresponding 
hypersurfaces li!It = Xt (R n) satisfying the evolution equation 

(3) oX = (H -1-l)v at 
on some time interval. Here, H = div M, v denotes the mean curvature of the hypersurface 
Mt and 1-l depends on the position and the normal vector of Mt. In view of the geometric 
identity .6.X = H v where .6. denotes the Laplace-Beltrami operator on A1t, equation (3) 
can also be written as 

oX = .6.X - 1-l v at 
which exhibits the parabolic structure of equation (3). Each Mt is the graph of a function 
u( ·, t) satisfying IDu( ·, t) I < 1. In fact, u is equivalent up to a tangential diffeomorphism 
of Rn to the function -(X, eo) and equation (3) is therefore equivalent to the equation 

(4) ~u =}1-IDul 2 (div ( Du ) -11.(-,u,Du)) 
ut )1-IDul2 

122 



This is the parabolic analogue of the prescribed mean curvature equation (1). 

Note in particular that spacelike hypersurfaces of prescribed mean curvature 1-l arise as 
stationary limits of equation ( 4). This fact was used in [EHl] and [El] to give new existence 
proofs for such hypersurfaces in a very large class of spacetimes based entirely on heat flow 
techniques. The existence proofs in [G] and [Bl] instead rely on topological fixed point 
arguments. 

For 1i = 0, equation ( 4) arises as the steepest ascent flow for the area functional of spacelike 
hypersurfaces. The analogue of equation (4) with 1-l = 0 in Riemannian manifolds is the 
so-called mean curvature flow which has been the focus of an extensive study for more 
than a decade (see [Hl]). The flow for nonzero 1i is not well behaved there in terms of 
convergence to stationary solutions even in the case of constant 1-l. However in Lorentzian 
manifolds this flow is very robust as we will see below. 

Equation ( 4) satisfies parabolic maximum and comparison principles. We state them next 
as they will greatly facilitate the discussion of the qualitative behaviour of solutions of ( 4) 
in comparison to some explicit examples given below. 

Comparison Principle. Let U} and U2 be solutions of ( 4) on a bounded domain n c R n. 

Suppose that ul(x,O)::; Uz(x,O) for all X En and ul(x,t)::; u2(x,t) for all X Eon and 
t;?: 0. Then ul(x, t)::; Uz(x, t) for all X En and t;?: 0. 

Maximum Principle. Let Mt =graph u(-, t) where u : Q x [0, T) -+ R solves (4) for 
t E (0, T). Suppose the function f: Q x [0, T) -+ R satisfies the equation 

(!- f:...) f =(a, \1 f)+ bf 

for t E (0, T) where \1 and /:_.. denote the tangential gradient and the Laplace-Beltrami 
operator on Mt respectively and where we assume that a : Q x [0, T) -+ Rn,l and b : 
Q x [0, T) -+Rare bounded. If sptj(-, t) is compact for every t E [0, T) then 

f(·,O)::; 0 =? f(·,t)::; 0 Vt E [O,T]. 

If 

(!- ~) .f::; (a, 'Vf) 

then 
sup .f ::; sup f. 
M, Mo 

The comparison and the maximum principle continue to hold for the flow of noncompact 
hypersurfaces as long as the hypersurfaces Mt have bounded second fundamental form and 
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the function f evolving on them satisfies certain conditions regarding its growth at infinity 
(see [EH2]). 

3. Flow with 1i = 0 

Homothetic solutions. The simplest nontrivial example consists of the spacelike hyper
boloids of constant mean curvature n / ..j p2 + 2nt given by the functions 

up(x, t) = Vlx- yl 2 + p2 + 2nt 

where y E Rn is fixed. They are homothetic solutions with initial data given by the 
constant mean curvature hyperboloids Up. For p = 0 the initial hypersurface is the upper 
light cone at (y, 0). These solutions remain asymptotic to their initial data for all t > 0 
that is do not move at null infinity. Comparison of a general solution to these homothetic 
ones is used to obtain height estimates. As long as an entire solution of ( 4) is controlled at 
infinity we can use the comparison principle to infer that it stays underneath a homothetic 
solution if it does so initially. We can conclude the same from the maximum principle: 

Note first that the Lorentz distance function z = (X, X) satisfies the evolution equation 

(!- Ll) (z + 2nt) = 0. 
This can be seen directly from (3') or by calculating -Jtz = 2H(X, v) and using Llz = 
2(n + H(X, v)) (see for example [BS]). Assume now that M0 lies initially underneath a 
hyperboloid given by up. This says z > -p2 at timet= 0. The maximum principle applied 
to z then yields z > -p2 - 2nt on Mt which translates into the statement 

By comparing a solution of ( 4) to the homothetic solutions flowing out of light cones at 
every point on M 0 we obtain the following height estimate (see [E2]) which we state only 
in the compact case: 

Height Estimate. Let n be a bounded domain in Rn and Uo : n -+ R be spacelike. 
Let u be a solution of (4) with 1i = 0 inn X (O,T) which satisfies u(·,O) = Uo inn and 
u(·, t) = Uo on an fort 2:: 0. Then for all X En and t E [0, T] we have the inequality 

lu(x, t)- uo(x)l :::; ..n;;;:i. 

For the proof we notice that since u0 is spacelike the inequality 

uo(y) -lx- Yl < uo(x) < uo(Y) + lx- Yl 
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holds for all X) y E n. For every y E n we use the comparison principle to control the 
solution u by the homothetic solutions given by 

uo(Y) ± Jlx- Yl 2 + 2nt. 

These solutions have initial data uo(Y) ± lx - Yl· Therefore the inequality 

uo(y)- Jlx- yl 2 + 2nt::; u(x, t) ::; uo(y) + Jlx- yl 2 + 2nt 

holds for every X E n. Setting X = y implies the estimate. 

'Iranslating solutions. Height estimates such as the above can no longer be expected 
for entire solutions unless we impose restrictions on their behaviour at infinity. In fact, 
there are solutions of ( 4) moving by vertical translation which provide a counterexample: 
Let u 0 : R n ---+ R be an initial spacelike hypersurface which satisfies the elliptic equation 
(2) above. Then u defined by 

u(x, t) = u0 (x) + t 

solves equation ( 4). Note in particular that the comparison principle does not apply in 
this case. In fact, the translating solution given by u(x,t) = logcoshx + t lies initially 
underneath the homothetic solution given by V x 2 + 2t but crosses it at infinity at time 
t = log2. 

We are currently investigating the longterm behaviour of solutions of ( 4) with H = 0 in 
asymptotically flat spacetimes with particular focus on trying to find geodesically incom
plete solutions which for t ---+ oo exhibit similar behaviour to the translating solutions 
introduced here. Note that such solutions suggest a canonical choice of compact coordi
nates on a spacetime. 

4. Flow for general H. 

In the following discussion we will always consider a class of entire solutions to which the 
noncompact maximum and comparison principles apply. For a more precise discussion of 
sufficient conditions in some special situations we refer to [El]. 

We particularly would like to keep the cases H = 0, H = ~ and H = v in mind. The flow 
with H = 0 does not move spacelike hyperplanes, in fact by the Cheng and Yau result 
([CY]) stated above these are the only stationary solutions of this flow. The nj p - flow 
preserves the spacelike hyperboloids and the v - flow does not affect solutions of the elliptic 
equation (2). We therefore expect a general solution of (4) with appropriate restrictions 
on their initial data to behave like the stationary solutions for t ---+ oo. They may not 
always converge to the stationary solution as is exemplified by the homothetic solutions of 
the H = 0 - flow which flatten out since their mean curvature satisfies 

n 
H(t) = ~ 0 Jp2 + 2nt 
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as t-+ oo but where the solutions become unbounded. The translating example does not 
even become flat but due to its exponential curvature growth this is outside the class of 
solutions we consider anyway. 

To obtain a better understanding let us consider the behaviour of the quantities v and 
H -1-l on the evolving hypersurfaces Mt. In (EHl], the evolution equations 

(5) (! -6.) v = -viAI 2 +(eo, \11-l) 

(6) (! -6.) (H -1-l) = -(H -1-l)(IAI 2 + (D1-l, v)) 

were derived, where D denotes differentiation in Rn,l and IAI 2 is the squared norm of the 
second fundamental form of Mt. 

Let us discuss the case of constant 1-l. For the purpose of this talk, the additional as
sumption that our initial hypersurface satisfies H ;:::: 1-l will help us keep technicalities to 
a minimum. A more general result without this condition on Mo was proved by Stavrou 
[St] in the case 1-l = 0 and generalized to flow in asymptotically flat spacetimes in [El]. In 
the case of cosmological spacetimes where we evolve compact Cauchy surfaces analogous 
results were proved in [EHl] for more general 1{ than the constant one considered here. 

Proposition. Let 1{ = const. Suppose that M 0 lies underneath an entire spacelike 
hypersurface M+ satisfying HM+ ::; 1-l. Suppose furthermore that supMo v < oo and 
supMo IAI < oo and that HMo ;:::: 1-l. Then (3) has a solution Mt which will move towards 
Nf+ and which fort -+ oo converges to a hypersurface M= satisfying H = 1-l. In tile case 
of nonzero 1-l this convergence occurs at an exponential rate. 

In particular, for 1-l = :;; an initial hypersurface M0 which lies underneath the hyperboloid 
up and satisfies H ;:::: :;; will move towards Up and converge to a spacelike hypersurface with 
constant mean curvature .!!:. • 

p 

Proof of Proposition. The condition supMo IAI < oo guarantees that (3) has a smooth 
solution for a short time interval. Since 1-l is constant equations (5) and (6) have the form 
required for the maximum principle. We can therefore immediately conclude that 

supv::; supv 
M, Mo 

and that H ;:::: 1-l on Mt for t > 0. Moreover, one easily calculates from (5) using the 
inequality IAI 2 2 ~H2 that H -1-l satisfies 

(7) ( d ) 2 2 2 2 dt - 6. (H -H) ::; -;H (H -1-l) . 
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The estimate on v guarantees that equation ( 4) is uniformly parabolic for all times. There
fore, the solution stays smooth (which follows from standard parabolic theory or from direct 
curvature estimates in [EHl] and [El] using the initial bound on IAI). If IHI = Ho > 0 we 
have H 2 2: ?-L6 and therefore obtain from (7) that 

Hence by the maximum principle ( H -H) -+ 0 at an exponential rate. Since H -H is the 
speed for the height function u of Mt this implies exponential convergence of lvft to some 
spacelike hypersurface satisfying H = H. When H = 0 we cannot use this argument but 
observe that equation ( 4) actually says that 

a ( ) -1 Btu= H-H v . 

We now integrate this equation with respect to time and observe that due to the nonnega
tivity of H -Hand the comparison principle (which also holds for super- and subsolutions 
of ( 4) such as M+ ) we have the inequality 

for all x E Rn and t 2: 0 where M+ = graph u+. Convergence then follows in view of the 
uniform estimates and the fact that the solution always moves in the same direction. In 
fact, we see that H -H has to converge to zero. 

For more general H the situation is not as straightforward. We first need to estimate 
the terms involving the gradients of 1l. If HE C1(Rn,l) we estimate I(DH, v)l S ID1llv 
and l(e0 , 'VHI S IDHiv. If 1i also depends on future directed timelike vectorfields these 
terms will be even more unpleasant as they will then also depend on the norm of the 
second fundamental form IAI. For example for 1i = v we have I(DH, v)l S 1Aiv2 and 
l(eo, 'VH)I S 1Aiv2 . 

In [B 1], Bartnik studied the elliptic equation ( 1) for hypersurfaces of prescribed mean 
curvature H. He obtained a priori estimates for v when 1i satisfied certain structure 
conditions. The case 1i = v is included in his analysis. An important step in his work 
which features also in other gradient estimate arguments (see [B1,2], [CY], [G]) is the use 
of the inequality 

(8) 

which holds for a general spacelike hypersurface. Let me indicate how one proceeds with 
Bartnik's argument in the flow case. If we also estimate 
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and choose € = €(n) > 0 appropriately then (5) and (8) imply 

(9) 

In Bartnik's case we only have the Laplace operator and the H 2 - term is bounded whenever 
1l is. The v3 - term can be controlled by calculating the Laplacian of the function e).uv 
where u = -(X,e0 ) noting that L1u = 1lv in view of equation (1). For sufficiently large 
>. > 0 depending on a bound of u (this only works for bounded solutions) the JV'vl- term 
can then be used to dominate the expression involving v3 . For details see [B 1]. 

In the case of the flow equation (4) the H 2 - term has to be estimated first before Bartnik's 
argument can be adapted. If we assume that (D1l, v) is nonnegative (see [EH1], this follows 
for example if 1l decreases into the future) then equation (5) (or inequality (7)) and the 
maximum principle can be used to derive a bound on H -1l which yields an a priori estimate 
for H. We are then in the same situation as in the elliptic case and can proceed to bound v 
as long as we have a priori control on the height function u. In the case of entire solutions, 
u is generally not bounded so some interior estimate arguments are required which we will 
describe later. However, in asymptotically flat spacetimes this process applied to bounded 
solutions can be used to flow to noncompact spacelike hypersurfaces which are asymptotic 
to a given reference time slice at spatial infinity (see [E1]). 

If we do not assume a sign condition on (D1l, v) the situation becomes more complicated. 
In [E1], the case of a general 1l = 1l( ·, u) was treated. The essential idea there was to 
suitably combine the evolution equations (5) and (6) above so that v and H -1l can be 
estimated simultaneously. . 

The case where 1l depends on u and Du is still open. In the case 1l = v one notices that 
(D1l, v) ?:: 0 on convex spacelike hypersurfaces. One could check whether equation ( 4) 
preserves convexity of an initial hypersurface and then work in this class. If we then started 
initially underneath a hypersurface M+ satisfying H :S v and our initial hypersurface M 0 

apart from being convex satisfied H ?:: v, the flow equation (4) with 1l = v should drive 
the solution Mt towards a hypersurface satisfying H = v. 

5. Interior estimates. 

In the previous section we made the major assumption that our solution hypersurfaces 
satisfy conditions at infinity which ensure that the noncompact maximum principle is 
applicable. As we have seen, the maximum and comparison principle are not applicable 
to some of the most interesting solutions such as the translating ones. Nevertheless we 
are able to prove that equation (4) in the case 1l = 0 always has a global smooth solution 
without making any assumptions on the initial data (see [E2]). In particular, we are 
allowed to start with geodesically incomplete hypersurfaces: 

128 



Theorem. Let u0 : R n --7 R be spacelike and smooth. Then the equation 

au= .j1-IDul2 div ( Du ) 
at J1-IDul2 

has a smooth solution for all t > 0 with initial data uo. Moreover, this solution satisfies 
the a priori height estimate 

iu(x, t)- uo(x )I :::; y'2;;i, 

A nonuniqueness example. An interesting consequence of the height estimate for the 
particular solution constructed in te theorem is that it implies that in general solutions are 
not unique. Consider for example the initial data given by u0 (x) = logcoshx. These give 
rise to the translating solution log cosh x + t which has distance t from its initial data. By 
the theorem there is another solution which only has distance y'2;j from its initial data 
and therefore has to be different from the translating one. 

The proof of the above theorem relies on the following new interior estimate ([E2]) which 
simultaneously controls the gradient function v and the mean curvature H of Mt inside 
the set 

KR(O) ={X E Ln+l, z = (X,X):::; R2 }. 

We will always assume. that the hypersurfaces Mt have no boundary inside the sets in 
which we are estimating. 

Proposition. Suppose that Mt n KR(O) is compact in Rn,l fort E [0, ~~]. Let A > 
supMonKR(O) H 2 . There are constants p, q > 0 which only depend on n such that for all 

R2 
t E [0, 2n] 

( 2 1 (R2 2 t)P) < c(n)qAt ( 2 1 (R2 )P) 
s~; v (A- H2)1fq - z- n - e s~~ v (A- fl2)1fq - z . 

This estimate can be thought of as a parabolic analogue of a local estimate for v for 
solutions of the maximal surface equation (see [B3]). One can show that this interior 
estimate still holds in the case of a general forcing term 1i = 1i( ·, u) and that the existence 
result carries over to equation ( 4) for this case. 

The proposition implies that 

sup (v + IHI):::; c1 
M,nKR(O) 

fort:::; c(n)R2 where c1 depends on n,R and supMon.K2R(o)(v + IHI). We can then pro
ceed to derive similar bounds for the second fundamental form of Mt and its covariant 
derivatives, see [E2]. 

To prove existence of an entire solution of ( 4) we also need the following result ensuring 
the existence of a solution to the initial-boundary value problem on bounded domains in 
Rn ([E2]): 
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Proposition. Let n c R n be a bounded domain with smooth boundary. Let Uo : n -+ R 
be smooth and strictly spacelike in the sense that sup0 IDuol < 1. Then the equation 

ou = Jl-IDul2 div ( Du ) 
&t JI-1Dul2 

bas a smooth solution in f2 for alJ t > 0 wbicb satisfies u(·, 0) = Uo in f2 and u(·, t) = Uo on 
on. Moreover, as t-+ oo, u(·, t) converges smoothly to the unique solution oftbe maximal 
surface equation with boundary data uo. 

The proof of this proposition is a straightforward adaptation of arguments in [BS] and 
[H2]. 

The existence theorem is now proved in the following way: 

Suppose without loss of generality that uo(O) = 0. Fork E N, we let Uk be the smooth 
solution of the initial-boundary value problem 

OUk = Jl -1Dukl 2 div ( Duk ) 1n 
ot Jl -1Dukl2 

Bk(O) X (0, 00) 

uk(-, 0) = uo m Bk(O) 

Uk(-, t) = Uo on oBk(O) X (0, oo ). 

Fix R > 0. Since u0 is spacelike and uo(O) = 0 we have that 

lxl 2 - u~(x)-+ oo 

as I xI -+ oo. Hence for sufficiently large k depending on R we have that I x 12 - u5 ( x) > 16R2 

for lxl = k. For Mtk =graph Uk(·, t) this implies that oMf nK4R(O) = 0 for all t ~ 0. Also, 
Mf n K4R(O) is compact fort~ 0 as these sets are contained in the cylinders Bk(O) x R. 
We can therefore apply the interior estimates stated above t~ the solution (Mn inside 
J{4R(O) to obtain fort~ c(n)R2 

sup (v + IHI) ~ c1. 
M,knc2R(o) 

We also employ the uniform estimates for the second fundamental form and its covariant 
derivatives (see [E2]) to obtain 

sup IV'm Al 2 ~ Cm 

Mt'nCR(O) 

fort E [O,c(n)R2 ] and for all m ~ 0. These estimates translate into uniform bounds 
(independent of k) on BR(O) x [O,c(n)R2] for v(uk) and derivatives of all orders of Uk 
The height estimate yields for every k that 

( 10) 
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for all x E B k ( 0) and t 2: 0 This implies the estimate 

sup lukl :S c(n, R, sup luol) 
BR(O) x[O,c(n)R2] BR(O) 

which is independent of k. 

Since R is arbitrary we can now select a subsequence of (uk) fork-+ oo which converges 
smoothly on compact subsets of Rn x [0, oo) to a solution u of (4). In view of the uniform 
convergence the desired height estimate follows from (10). 
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