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1. INTRODUCTION 

In this expository article, I want to report the recent joint work with 
Chiun-Chuen Chen. Condider positive smooth solutions of the scalar 
curvature equation 

(1) 

where ,6. is the Laplace operator, I<(x) is a positive C 1 function and 
n 2: 3. Throughout the paper, we always assume that K(x) is bounded 
between two positive constants. One of the motivations in studying 
equation ( 1) arises from the problem of pre~cribing scalar curvature 
in conformal geometry. Let ( M, g0 ) be a n-dimensional Riemannian 
manifold and I<(x) be a given smooth function on M, we would like 
to find a metric g conformal to g0 such that I< is the scalar curvature 

4 
of g. Set g = un-2 g0 for some positive function u, then the problem 
above is equivalent to finding positive smooth solutions of 

n-1 r ~ • 

4(n _ 2).6.ou- kozt + li.(x)un-2 = 0 m M, (2) 

where .6.0 denotes the Beltrami-Laplace operator of (M,g0 ) and k0 (x) 
is the scalar curvature ofg0 . When (M,g0 ) is then-dimensional Eu
chidean space Rn, then we have k0 :::= 0 and equation (2) reduces to (1) 
after an appropriate scaling. 

For the case I<(x) :::=a positive constant, say I<(x) :::= n(n- 2), and 
n :::= Rn, all slutions of equation (1) can be completely classified. 

Theorem 1.1. (Caffarelli-Gidas-Spruck) Any positive smooth so
lution 1t of 

!!H. 
.6.u + n(n- 2)un-2 = 0 in Rn 
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must satisfy 
A n-2 

u(x) = ( 1 + ,VIx- xol 2)-2 

for some A> 0 and x 0 ERn. 

It is not difficult to see that 

(i) The total energy, which is defined by 

n(n-2){ un2:::2dx 
}Rn 

[n(n- 2}P-~ s!' 
is independent of A. Here Sn is the Sobolev best constant. And the 
energy is concentrated in a small neigh of x 0 (say Xo = 0), i.e., for any 
o>o 1 2n n-2 

un-2(x)dx = O(A--2 ) 
lxi:O:S 

as,\--+ +oo. 

(ii) 

J.e., 

n-2 

Denote M = maxu = A-2-. Then 
Rn 

n-2 Ar n-2 

(iii) Let w(r) = u(r)r_2_ = ( A2 2 )-2-. Then w(r) has a unique 
1 + r 

critical point in r > 0, i,e, the maximum point r = A -l. (the property 
(iii) was first observed by R. Schoen. It is an important notion con
cerning the below-up behavior.) 

0 bviously, the difficulty for studying equation ( 1) comes from the 
concentration phenomenon mentioned above. Of course, it is of great 
interest to study the blow-up behavior of solution of (1) when K( x) 
is not a constant function. (or even K(x) =a constant, but solutions 
u is not defined in the whole space R n.) In the following sections, we 
will discuss the blow up behavior and see what is the property of I< 
affecting the blow-up behavior of a sequence of solutions of (1 ). Before 
going into the next section, we would like to point out that a Harnack
type inequality holds for solutions of equation (1) with a constant I<( x ). 
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Theorem 1.2. There exists a constant c > 0 such that for any 
solution u of 

.!.!H. 
l:!.u + un-2 = 0 in lxl::; 2R, 

the inequality, 

( )( 
0 ) c maxu mm u < --

lxi::;R lxi::;2R - Rn-2 

holds. 

Theorem 1.2 was proved in [CLnl], where a more geneal nonlinear 
term was considered. 

2. SIMPLE BLOW-UPS 

Let u; be a sequence of solutions of equation (1). A point x 0 is called 
a blow up point if there exists a sequence of x; such that x0 = . lim x; 

•--++= 
and limi--++=u;(x;) = +oo. Following R. Schoen, a blow-up point x 0 

is called isolated if there exists a local maximum x; of u; such that 

n-2 
u;(x; + x)::; cixl--2 for lxl::; 5o, (3) 

where both constants c and 50 are independent .of i. Note that if x 0 is an 
isolated blow up point, then u; is uniformly bounded in any compact set 
of Bs0 (x0 )\{x0 }. Thus we let M; = max u;(x) = u;(x;). Obviously, 

lx-xoi::;So 
x; --+ x 0 as i ---+ +oo. The blow-up point x0 is called simple if 

(4) 

Another notion of the simple blow up is defined originally by R. Schoen 
in the following. (See [Ll]). Let 

n-2 

w;(r) = u;(r)r-2-, (5) 

where u;(r) = f u is the average of u over the sphere lxl = r (for 
lxl=r 

the simplicity of notations, we assume x 0 = 0). Then we have 

Proposition 2.1. Let u; be a sequence of solutions of equation {1). 
Assume that 0 is an isolated blow-up point of u;. Then 0 is a simple 
isolated blow-up point if and only if there exists ro > 0 such that w;( r) 
has a ·unique critical point in ( 0, r 0 ). 
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Proof. The sufficient part was proved by Y. Y. Li, [L1]. We will 
give a proof for this part which is different from the one in [L1]. For 
the proof of Proposition 2.1, we need the following lemma, which can 
be derived by integrating the differential inequality hold for w. For a 
proof of Lemma 2.2 below, we refer the reader to [CLn3]. 

Lemma 2.2. Let w(r) be defined as in (5) and r = et. (The index 
i is omitted for the simplicity.) Then 

(i) Suppose that w is nonincreasing in (to, ti) and it is a local mini
mum of w, then 

2 w(to) 2 w(to) 
--log--< t 1 - t0 <--log--+ C. (6) 
n-2 w(t1)- - n-2 w(t1 ) 

(ii) Suppose that w is nondecreasing in (it, t 2 ) and t 1 is a local min
imum of w. Then 

2 w(t2) 2 w(t2 ) 
--log--< t 2 - t 1 <--log--+ C (7) 
n-2 w(tt)- - n-2 w(it) ' 

where C are a constant depending on n onely. 

Return now to the proof of Proposition 2.1. 

First, we assume that 0 is a simple blow ~p point. Let T; < t; 
denote the first local maximum point and the first local minimum point 
respectively. Suppose the conclusion of Proposition 2.1 does not hold, 
i.e., . lim t; = -oo. By a simple argument of scaling, we have 

·~+oo 

n-2 
T; = --2-logM; + 0(1), and (8) 

. lim w;(t;) = 0. 
·~+oo 

(9) 

By (9), we always can find ti > t; such that w;(t) is increasing in [t;, ti] 
and ti-t; --'---t +oo as i --'---t+oo. By (6), (7) and (8), we have 

- ( *) > - ( ) > M-1 2-n u; r; c1u; r; _ c2 ; r; (10) 

( ri)n-2M-t *2-n = c2- i ri , 
r; 
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where ri = eti and r; = et;. Since . lim ri = +oo, applying the Har
•--++oo r; 

nack inequality, (10) yields a contradiction to (4). 

The necessary part follows immediatly from the second inequality of 
(6) and (8). 

. Q.E.D. 

To state our first result, we assume that for any critical point x0 of 
K, there exists a neighborhood u of Xo such that one of the following 
conditions is satisfied: 

(K1) For x E U, we have 

c1lxl"'-1 ~I '\l K(x)l ~ c2lxl"'-1 
for some constant a 2::: n - 2. 

(K2) For x .E U we have 

I '\Jk K(x)l ~ cl '\l K(x)l~=~, 
where 2 ~ k ~ a = n - 2. 

Theorem 2.2. Assume that {i} K E C1 for n = 3, {ii} For n 2::: 4, 
at any critical point of K, either (K1} or {K2) is satisfied. Suppose 
that u is a positive solution of 

!!H. 
~u + K(x)un-2 = 0 in B1• (11) 

1 
Then for any r E (0, 2), we have 

(maxu)(minu) ~ c r 2-n. 
Br B2r 

(12) 

Furthemore, if u; is a sequence of solutions of {12}, then any blow up 
point is a simple blow up point. 

When u is a global solution defined on sn, then Theorem 2.2 was 
proved by Chang-Gursky-Yang for n = 3, Schoen-Zheng, for n = 3, 4 
and Y.Y. Li for n 2::: 4. In [CLn2], the authors proved Theorem 2.2 via 
the method of moving planes. For the details, we refer the reader to 
[CLn2]. An immediate consequence of Theorem 2.2 is that any blow 
up point must be a critical point of K. 
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3. MAIN THEROEMS 

In this section, we always assume I< E C1(Bl) and satisfies the 
following conditions: 

(K3) For any c; > 0, there exists c( c;) > 0 such that c( c;) ::; 
I \7 K(x)l ::; c1 for lxl 2:: c where c1 is a positive constant indepen
dent of i and c. 

(K4) The origin is a critical point of I< and I<(x) = K(O) + Q(x) + 
R( x) in a neighborhood of 0 where Q( x) is a C 1 homogeneous function 
of order a > 1 satisfying 

c1lxl"'- 1 ::; I \7 Q(x)l::; c2lxl"'- 1, 

and both R(x)lxl-a and I \7 R(x)llxll-a tend to zero as lxl--+ 0. 

Let U0 be the positive solution of 

.!!.±1. 
L::,Uo + K(O)Uon-2 = 0 in Rn. (13) 

Then, Q in (K4) satisfies 

[Q] ( fRn \lQ(~ + y)~/:!:2 (y)dy ) # ( O ) for all~ ERn. 

fRnQ(~+y)Uon-2 (y)dy O 

The first result in this section is 

Theorem 3.1. Suppose { u;} is a sequence of positive solutions of 
(11). Assume (K3) and (K4) with 1 <a< n- 2. IfQ satisfies 

f Q(~ + y)U/:2 (y)dy > 0 
}Rn 

whe~1ever JRn \lQ(~ + y)Ucf::2 (y)dy = 0. Then u; is uniformly bounded 

in B1. 
2 

Remark 3.2 If a 2:: n - 2, then Theorem 3.1 does not hold in 
general. For a counter example, please see [LL]. 

Thoerem 3.3. Assume (K3} and (K4) hold. Suppose 0 is a blow
up point of a sequence of solutions of (11}. Then 0 is an isolated blow 
up point. Furthemore, the inequality 

n-2 

u;(x )lxl-2 ::; C (14) 
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1 
holds for lxl ::::; 2· 

Let u;(xi) = maxu;. Then, by (14), we have 
Bj_ 

2 

_2_ 
(: }" Mn-2 '> =. liD i X;, 

•--++oo 

In the proof of Theorem 3.3, e satisfies 

r \lQ(e + y)ul:::2 (y)dy = 0, and }Rn 

JR vQ(e + y)Ut~2 (y)dy::::; o, 
where U0 is the solution of (13). 

(15) 

(16) 

(17) 

By assuming [ Q], we have more precise description of u; ( x) near its 
blow up point. 

n-2 
Theorem 3.4. Suppose (K3), (K4) and {Q} with - 2 -::::; a< n-2 

are satisfied. Assume 0 is a blow up point of a sequence of solutions 
u;. Let M; = max u;, and m; = min u;. Then there exists a constant 

B! .8! 
c > 0 such taht 

u;(x + x;)::::; cM;-1 Ixl2-n for lxl::::; M;-!3, (18) 

2 a 
where f3 = --(1- --). 

n-2 n-2 

In particular, 

Furthemore, we have 

n-2 
if a> - 2-, 

n-2 
if a= -2-. 

1 2!!... !!. n-2 
. lim K(x)ur-2 dx = SJ if a>--, 
>--++oo B 1 2 

and 
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where K(O) = n(n- 2) is assumed. 

n-2 
For a< - 2-, we have 

Theorem 3.5. Suppose the assumption of Theorem 3.4 holds except 
n-2 

that a satisfies 1 < a < - 2-. Then 

. lim f_ uP2 (x)dx = +oo. 
•-++oo 1st 

Furthemore, there exists a subsequence of u; (still denoted by u;} such 
that Ui converges to a singular solution u of {11} with 0 as a nonrre

movable singularity. The conformal metric ds2 = un~2idxi 2 is complete 
in Eh \{0}. If we assume 0 is the only zero of 

2 

1 2n 
'VQ(~ + y)Uon-2 (y)dy = 0. 

Rn 

Then u(x) = u(ixi)(1 + o(1)) as lxl--+ 0. 

For the proofs of Theorem 3.1 ,...... 3.5, we refer the reader to [CLn3]. 
As an application, we have 

Theorem 3.6. Let K(x) be .a Morse function on S5 , and satisfy 
!:l.K(P) =/= 0 for any critical point P of I<. Then there exists a constant 

4 

C > 0 such that for any conformal metric g = ua g0 with I<( x) as the 
scalar curvature, we have 

c-l :::; u(x):::; c for X E S5, 

Let d denote the Leray-Schauder degree among all solutions. Then 
d = 0. 
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