ON THE BLOW-UP BEHAVIOR OF SOLUTIONS OF SCALAR CURVATURE EQUATION AND ITS APPLICATION

CHANG-SHOU LIN

1. Introduction

In this expository article, I want to report the recent joint work with Chiun-Chuen Chen. Condider positive smooth solutions of the scalar curvature equation

$$
\begin{equation*}
\Delta u+K(x) u^{\frac{n+2}{n-2}}=0 \quad \text { in } \Omega \subseteq \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

where Δ is the Laplace operator, $K(x)$ is a positive \mathbf{C}^{1} function and $n \geq 3$. Throughout the paper, we always assume that $K(x)$ is bounded between two positive constants. One of the motivations in studying equation (1) arises from the problem of prescribing scalar curvature in conformal geometry. Let $\left(M, g_{0}\right)$ be a n-dimensional Riemannian manifold and $K(x)$ be a given smooth function on M, we would like to find a metric g conformal to g_{0} such that K is the scalar curvature of g. Set $g=u^{\frac{4}{n-2}} g_{0}$ for some positive function u, then the problem above is equivalent to finding positive smooth solutions of

$$
\begin{equation*}
\frac{n-1}{4(n-2)} \Delta_{0} u-k_{0} u+K(x) u^{\frac{n+2}{n-2}}=0 \text { in } M \tag{2}
\end{equation*}
$$

where Δ_{0} denotes the Beltrami-Laplace operator of $\left(M, g_{0}\right)$ and $k_{0}(x)$ is the scalar curvature of g_{0}. When $\left(M, g_{0}\right)$ is the n-dimensional Euchidean space \mathbf{R}^{n}, then we have $k_{0} \equiv 0$ and equation (2) reduces to (1) after an appropriate scaling.

For the case $K(x) \equiv$ a positive constant, say $K(x) \equiv n(n-2)$, and $\Omega \equiv \mathbf{R}^{n}$, all slutions of equation (1) can be completely classified.

Theorem 1.1. (Caffarelli-Gidas-Spruck) Any positive smooth solution u of

$$
\Delta u+n(n-2) u^{\frac{n+2}{n-2}}=0 \quad \text { in } \mathbf{R}^{n}
$$

must satisfy

$$
u(x)=\left(\frac{\lambda}{1+\lambda^{2}\left|x-x_{0}\right|^{2}}\right)^{\frac{n-2}{2}}
$$

for some $\lambda>0$ and $x_{0} \in \mathbb{R}^{n}$.
It is not difficult to see that
(i) The total energy, which is defined by

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}|\nabla u|^{2} & =n(n-2) \int_{\mathbb{R}^{n}} u^{\frac{2 n}{n-2}} d x \\
& =[n(n-2)]^{1-\frac{n}{2}} S_{n}^{\frac{n}{2}}
\end{aligned}
$$

is independent of λ. Here S_{n} is the Sobolev best constant. And the energy is concentrated in a small neigh of x_{0} (say $x_{0}=0$), i.e., for any $\delta>0$

$$
\int_{|x| \geq \delta} u^{\frac{2 n}{n-2}}(x) d x=O\left(\lambda^{-\frac{n-2}{2}}\right)
$$

as $\lambda \longrightarrow+\infty$.
(ii) Denote $M=\max _{\mathbf{R}^{n}} u=\lambda^{\frac{n-2}{2}}$. Then

$$
u(x) \leq M^{-1}|x|^{2-n}
$$

i.e.,

$$
\min _{|x| \geq \delta} u=O\left(M^{-1}\right) .
$$

(iii) Let $w(r) \equiv u(r) r^{\frac{n-2}{2}}=\left(\frac{\lambda r}{1+\lambda^{2} r^{2}}\right)^{\frac{n-2}{2}}$. Then $w(r)$ has a unique critical point in $r>0, \mathrm{i}, \mathrm{e}$, the maximum point $r=\lambda^{-1}$. (the property (iii) was first observed by R. Schoen. It is an important notion concerning the below-up behavior.)

Obviously, the difficulty for studying equation (1) comes from the concentration phenomenon mentioned above. Of course, it is of great interest to study the blow-up behavior of solution of (1) when $K(x)$ is not a constant function. (or even $K(x) \equiv$ a constant, but solutions u is not defined in the whole space \mathbf{R}^{n}.) In the following sections, we will discuss the blow up behavior and see what is the property of K affecting the blow-up behavior of a sequence of solutions of (1). Before going into the next section, we would like to point out that a Harnacktype inequality holds for solutions of equation (1) with a constant $K(x)$.

Theorem 1.2. There exists a constant $c>0$ such that for any solution u of

$$
\Delta u+u^{\frac{n+2}{n-2}}=0 \quad \text { in }|x| \leq 2 R
$$

the inequality,

$$
\left(\max _{|x| \leq R} u\right)\left(\min _{|x| \leq 2 R} u\right) \leq \frac{c}{R^{n-2}}
$$

holds.

Theorem 1.2 was proved in [CLn1], where a more geneal nonlinear term was considered.

2. Simple blow-ups

Let u_{i} be a sequence of solutions of equation (1). A point x_{0} is called a blow up point if there exists a sequence of x_{i} such that $x_{0}=\lim _{i \rightarrow+\infty} x_{i}$ and $\varlimsup_{i \rightarrow+\infty} u_{i}\left(x_{i}\right)=+\infty$. Following R. Schoen, a blow-up point x_{0} is called isolated if there exists a local maximum x_{i} of u_{i} such that

$$
\begin{equation*}
u_{i}\left(x_{i}+x\right) \leq c|x|^{-\frac{n-2}{2}} \text { for }|x| \leq \delta_{0} \tag{3}
\end{equation*}
$$

where both constants c and δ_{0} are independent of i. Note that if x_{0} is an isolated blow up point, then u_{i} is uniformly bounded in any compact set of $B_{\delta_{0}}\left(x_{0}\right) \backslash\left\{x_{0}\right\}$. Thus we let $M_{i}=\max _{\left|x-x_{0}\right| \leq \delta_{0}} u_{i}(x)=u_{i}\left(x_{i}\right)$. Obviously, $x_{i} \longrightarrow x_{0}$ as $i \longrightarrow+\infty$. The blow-up point x_{0} is called simple if

$$
\begin{equation*}
u_{i}\left(x_{i}+x\right) \leq c M_{i}^{-1}|x|^{2-n} . \tag{4}
\end{equation*}
$$

Another notion of the simple blow up is defined originally by R. Schoen in the following. (See [L1]). Let

$$
\begin{equation*}
w_{i}(r)=\bar{u}_{i}(r) r^{\frac{n-2}{2}}, \tag{5}
\end{equation*}
$$

where $\bar{u}_{i}(r)=f_{|x|=r} u$ is the average of u over the sphere $|x|=r$ (for the simplicity of notations, we assume $x_{0}=0$). Then we have

Proposition 2.1. Let u_{i} be a sequence of solutions of equation (1). Assume that 0 is an isolated blow-up point of u_{i}. Then 0 is a simple isolated blow-up point if and only if there exists $r_{0}>0$ such that $w_{i}(r)$ has a unique critical point in $\left(0, r_{0}\right)$.

Proof. The sufficient part was proved by Y. Y. Li, [L1]. We will give a proof for this part which is different from the one in [L1]. For the proof of Proposition 2.1, we need the following lemma, which can be derived by integrating the differential inequality hold for w. For a proof of Lemma 2.2 below, we refer the reader to [CLn3].

Lemma 2.2. Let $w(r)$ be defined as in (5) and $r=e^{t}$. (The index i is omitted for the simplicity.) Then
(i) Suppose that w is nonincreasing in $\left(t_{0}, t_{1}\right)$ and t_{1} is a local minimum of w, then

$$
\begin{equation*}
\frac{2}{n-2} \log \frac{w\left(t_{0}\right)}{w\left(t_{1}\right)} \leq t_{1}-t_{0} \leq \frac{2}{n-2} \log \frac{w\left(t_{0}\right)}{w\left(t_{1}\right)}+C . \tag{6}
\end{equation*}
$$

(ii) Suppose that w is nondecreasing in $\left(t_{1}, t_{2}\right)$ and t_{1} is a local minimum of w. Then

$$
\begin{equation*}
\frac{2}{n-2} \log \frac{w\left(t_{2}\right)}{w\left(t_{1}\right)} \leq t_{2}-t_{1} \leq \frac{2}{n-2} \log \frac{w\left(t_{2}\right)}{w\left(t_{1}\right)}+C \tag{7}
\end{equation*}
$$

where C are a constant depending on n onely.
Return now to the proof of Proposition 2.1.
First, we assume that 0 is a simple blow up point. Let $T_{i}<t_{i}$ denote the first local maximum point and the first local minimum point respectively. Suppose the conclusion of Proposition 2.1 does not hold, i.e., $\lim _{i \rightarrow+\infty} t_{i}=-\infty$. By a simple argument of scaling, we have

$$
\begin{gather*}
T_{i}=-\frac{n-2}{2} \log M_{i}+O(1), \text { and } \tag{8}\\
\lim _{i \longrightarrow+\infty} w_{i}\left(t_{i}\right)=0 \tag{9}
\end{gather*}
$$

By (9), we always can find $t_{i}^{*}>t_{i}$ such that $w_{i}(t)$ is increasing in $\left[t_{i}, t_{i}^{*}\right]$ and $t_{i}^{*}-t_{i} \longrightarrow+\infty$ as $i \longrightarrow+\infty$. By (6), (7) and (8), we have

$$
\begin{align*}
\bar{u}_{i}\left(r_{i}^{*}\right) & \geq c_{1} \bar{u}_{i}\left(r_{i}\right) \geq c_{2} M_{i}^{-1} r_{i}^{2-n} \tag{10}\\
& =c_{2}\left(\frac{r_{i}^{*}}{r_{i}}\right)^{n-2} M_{i}^{-1} r_{i}^{* 2-n}
\end{align*}
$$

where $r_{i}^{*}=e^{t_{i}^{*}}$ and $r_{i}=e^{t_{i}}$. Since $\lim _{i \longrightarrow+\infty} \frac{r_{i}^{*}}{r_{i}}=+\infty$, applying the Harnack inequality, (10) yields a contradiction to (4).

The necessary part follows immediatly from the second inequality of (6) and (8).
Q.E.D.

To state our first result, we assume that for any critical point x_{0} of K, there exists a neighborhood U of x_{0} such that one of the following conditions is satisfied:
(K1) For $x \in U$, we have

$$
c_{1}|x|^{\alpha-1} \leq|\nabla K(x)| \leq c_{2}|x|^{\alpha-1}
$$

for some constant $\alpha \geq n-2$.
(K2) For $x \in U$ we have

$$
\left|\nabla^{k} K(x)\right| \leq c|\nabla K(x)|^{\frac{\alpha-k}{\alpha-1}}
$$

where $2 \leq k \leq \alpha=n-2$.
Theorem 2.2. Assume that (i) $K \in C^{1}$ for $n=3$, (ii) For $n \geq 4$, at any critical point of K, either (K1) or (K2) is satisfied. Suppose that u is a positive solution of

$$
\begin{equation*}
\Delta u+K(x) u^{\frac{n+2}{n-2}}=0 \quad \text { in } B_{1} \tag{11}
\end{equation*}
$$

Then for any $r \in\left(0, \frac{1}{2}\right)$, we have

$$
\begin{equation*}
\left(\max _{B_{r}} u\right)\left(\min _{B_{2 r}} u\right) \leq c r^{2-n} \tag{12}
\end{equation*}
$$

Furthemore, if u_{i} is a sequence of solutions of (12), then any blow up point is a simple blow up point.

When u is a global solution defined on S^{n}, then Theorem 2.2 was proved by Chang-Gursky-Yang for $n=3$, Schoen-Zheng, for $n=3,4$ and Y.Y. Li for $n \geq 4$. In [CLn2], the authors proved Theorem 2.2 via the method of moving planes. For the details, we refer the reader to [CLn2]. An immediate consequence of Theorem 2.2 is that any blow up point must be a critical point of K.

3. Main Theroems

In this section, we always assume $K \in C^{1}\left(\bar{B}_{1}\right)$ and satisfies the following conditions:
(K3) For any $\varepsilon>0$, there exists $c(\varepsilon)>0$ such that $c(\varepsilon) \leq$ $|\nabla K(x)| \leq c_{1}$ for $|x| \geq \varepsilon$ where c_{1} is a positive constant independent of i and ε.
(K4) The origin is a critical point of K and $K(x)=K(0)+Q(x)+$ $R(x)$ in a neighborhood of 0 where $Q(x)$ is a C^{1} homogeneous function of order $\alpha>1$ satisfying

$$
c_{1}|x|^{\alpha-1} \leq|\nabla Q(x)| \leq c_{2}|x|^{\alpha-1}
$$

and both $R(x)|x|^{-\alpha}$ and $|\nabla R(x)||x|^{1-\alpha}$ tend to zero as $|x| \longrightarrow 0$.
Let U_{0} be the positive solution of

$$
\begin{equation*}
\Delta U_{0}+K(0) U_{0}^{\frac{n+2}{n-2}}=0 \quad \text { in } \mathbf{R}^{n} \tag{13}
\end{equation*}
$$

Then, Q in (K4) satisfies

$$
[\mathrm{Q}] \quad\binom{\int_{\mathbf{R}^{n}} \nabla Q(\xi+y) U_{0}^{\frac{2 n}{n-2}}(y) d y}{\int_{\mathbf{R}^{n}} Q(\xi+y) U_{0}^{\frac{2 n}{n-2}}(y) d y} \neq\binom{ 0}{0} \text { for all } \xi \in \mathbb{R}^{n}
$$

The first result in this section is
Theorem 3.1. Suppose $\left\{u_{i}\right\}$ is a sequence of positive solutions of (11). Assume (K3) and (K4) with $1<\alpha<n-2$. If Q satisfies

$$
\int_{\mathbf{R}^{n}} Q(\xi+y) U_{0}^{\frac{2 u}{n-2}}(y) d y>0
$$

whenever $\int_{\mathbf{R}^{n}} \nabla Q(\xi+y) U_{0}^{\frac{2 n}{n-2}}(y) d y=0$. Then u_{i} is uniformly bounded in $\bar{B}_{\frac{1}{2}}$.

Remark 3.2 If $\alpha \geq n-2$, then Theorem 3.1 does not hold in general. For a counter example, please see [LL].

Thoerem 3.3. Assume (K3) and (K4) hold. Suppose 0 is a blowup point of a sequence of solutions of (11). Then 0 is an isolated blow up point. Furthemore, the inequality

$$
\begin{equation*}
u_{i}(x)|x|^{\frac{n-2}{2}} \leq C \tag{14}
\end{equation*}
$$

holds for $|x| \leq \frac{1}{2}$.
Let $u_{i}\left(x_{i}\right)=\max _{\bar{B}_{\frac{1}{2}}} u_{i}$. Then, by (14), we have

$$
\begin{equation*}
\xi=\lim _{i \longrightarrow+\infty} M_{i}^{\frac{2}{n-2}} x_{i} \tag{15}
\end{equation*}
$$

In the proof of Theorem $3.3, \xi$ satisfies

$$
\begin{gather*}
\int_{\mathbf{R}^{n}} \nabla Q(\xi+y) U_{0}^{\frac{2 n}{n-2}}(y) d y=0, \text { and } \tag{16}\\
\int_{\mathbf{R}} \nabla Q(\xi+y) U_{0}^{\frac{2 n}{n-2}}(y) d y \leq 0, \tag{17}
\end{gather*}
$$

where U_{0} is the solution of (13).
By assuming [Q], we have more precise description of $u_{i}(x)$ near its blow up point.

Theorem 3.4. Suppose (K3), (K4) and $[Q]$ with $\frac{n-2}{2} \leq \alpha<n-2$ are satisfied. Assume 0 is a blow up point of a sequence of solutions u_{i}. Let $M_{i}=\max _{B_{\frac{1}{2}}} u_{i}$, and $m_{i}=\min _{\bar{B}_{\frac{1}{2}}} u_{i}$. Then there exists a constant $c>0$ such taht

$$
\begin{equation*}
u_{i}\left(x+x_{i}\right) \leq c M_{i}^{-1}|x|^{2-n} \quad \text { for }|x| \leq M_{i}^{-\beta}, \tag{18}
\end{equation*}
$$

where $\beta=\frac{2}{n-2}\left(1-\frac{\alpha}{n-2}\right)$.

$$
\begin{equation*}
u_{i}\left(x+x_{i}\right) \sim M_{i}^{1-\frac{2 \alpha}{n-2}} \text { for }|x| \geq M_{i}^{-\beta} \tag{19}
\end{equation*}
$$

In particular,

$$
\begin{cases}\lim _{i \rightarrow+\infty} m_{i}=0 & \text { if } \alpha>\frac{n-2}{2} \\ m_{i} \sim 1 & \text { if } \alpha=\frac{n-2}{2}\end{cases}
$$

Furthemore, we have

$$
\lim _{i \longrightarrow+\infty} \int_{B_{1}} K(x) u_{i}^{\frac{2 n}{n-2}} d x=S_{n}^{\frac{n}{2}} \quad \text { if } \alpha>\frac{n-2}{2}
$$

and

$$
\lim _{i \longrightarrow+\infty} \int_{B_{r}} K(x) u_{i}^{\frac{2 n}{n-2}} d x=S_{n}^{\frac{n}{2}}(1+o(1)) \quad \text { if } \alpha=\frac{n-2}{2}
$$

where $K(0)=n(n-2)$ is assumed.
For $\alpha<\frac{n-2}{2}$, we have
Theorem 3.5. Suppose the assumption of Theorem 3.4 holds except that α satisfies $1<\alpha<\frac{n-2}{2}$. Then

$$
\lim _{i \rightarrow+\infty} \int_{\bar{B}_{\frac{1}{2}}} u_{i}^{\frac{2 n}{n-2}}(x) d x=+\infty
$$

Furthemore, there exists a subsequence of u_{i} (still denoted by u_{i}) such that u_{i} converges to a singular solution u of (11) with 0 as a nonrremovable singularity. The conformal metric $d s^{2}=u^{\frac{4}{n-2}}|d x|^{2}$ is complete in $\bar{B}_{\frac{1}{2}} \backslash\{0\}$. If we assume 0 is the only zero of

$$
\int_{\mathbb{R}^{n}} \nabla Q(\xi+y) U_{0}^{\frac{2 n}{n-2}}(y) d y=0
$$

Then $u(x)=\bar{u}(|x|)(1+o(1))$ as $|x| \longrightarrow 0$.
For the proofs of Theorem $3.1 \sim 3.5$, we refer the reader to [CLn3]. As an application, we have

Theorem 3.6. Let $K(x)$ be a Morse function on S^{5}, and satisfy $\Delta K(P) \neq 0$ for any critical point P of K. Then there exists a constant $C>0$ such that for any conformal metric $g=u^{\frac{4}{3}} g_{0}$ with $K(x)$ as the scalar curvature, we have

$$
C^{-1} \leq u(x) \leq C \quad \text { for } x \in S^{5}
$$

Let d denote the Leray-Schauder degree among all solutions. Then $d=0$.

References

[CGS] Caffarelli, L.A., Gidas, B., and Spruck, J., Asymptotic Symmetry and Local Behavior of Semilinear Eilliptic Efquations with Critical Sobolev Exponent, Comm. Pure Appl. Math. vol 42, 1989, p.p. 271-297.
[CGY] Chang, S.Y., Gursky, M.J., Yang, P., The scalar curvature equation on 2 and 3 -splere, Calculus of variations and partial Differential Equations 1, 1993, pp. 205-229. exponent, Duke Math. J. 78, 1995, pp. 315-334.
[CL] Chen, W., and Li, C., Classification of Solutions of some nonlinear elliptic equations, Duke Math. J. vol 63, no.3, 1991, 615-622.
[CLn1] Chen, C. C. and Lin, C. S., Local behavior of singular positive solutions of semilinear elliptic equations with Sobolev exponent, Duke Math. J. vol 78, 1995, 351-354.
[CLn2] Chen, C. C. and Lin, C. S., Estimates of the conformal scalar curvature equations via the method of moving planes, Comm. Pure Appl. Math., to appear.
[CLn3] Chen, C. C. and Lin, C. S., Estimates of the conformal scalar curvature equations via the method of moving planes, II. preprint.
[L1] Li, Y.Y., Prescribing scalar curvature on S^{n} and related problems, Part I. J. Diff. Eqns. 120, 1995, pp. 319-410.
[L2] Li, Y.Y., Prescribing scalar curvature on S^{n} and related problems, Part II: Existence and compactness, Comm. Pure Appl. Math. 49, 1996, pp. 541-597.
[LL] Lin, C.S. and Lin, S.S., Positive radial solutions for $\Delta u+$ $K(r) u^{(n+2) /(n-2)}=0$ in \mathbf{R}^{n} and related Topics, Appl. Anal. 38, 1990, pp. 121-159.
[S] Serrin, J., A symmetry problem in potential theory, Arch. Rat'l. Mech. Anal. 43, 1971, pp. 304-318.
[SZ] Schoen, R. and Zhang, D., Prescribing scalar curvature on S^{n}, Calculus of Variation and PDEs 4, 1996, pp. 1-25.

Department of Mathematic
National Chung Cheng University
Minghsiung, 621, Chia-Yi
Taiwan
e-mail address: cslin@math.ccu.edu.tw

