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ABSTRACT. In the realization of a dynamical system on a computer, all com
putational processes are of a discretization, where continuum state space is 
replaced by the finite set of machine arithmetic. When chaos is present, 
the discretized system often manifests collapsing effects to a fixed point or 
to short cycles. These phenomena. exhibit a statistical structure which can 
be modelled by random mappings with an absorbing centre. This model 
gives results which are very much in line with computational experiments and 
there appears to be a type of uniVersality summarized. by an Arcsine Law. 
The effects are discussed with special reference to the family of mappings 
fe(x) = 1 - 11 - 2xll, x E [0, 1], 1 < l :S: 2. Computer experiments display 
close agreement with the predictions of the modeL 

1. INTRODUCTION 

Chaotic systems challenge scientific computation. Consider the simple scenario of 
a chaotic dynamical system generated by a mapping 

f : X -+X, X c Rn, 

with trajectories {xo, x1, x2, ... }, Xk+l == f(xk)· Because of sensitivity to ini
tial conditions, trajectories from nearby initial values diverge exponentially. So, 
whether the computed system is treated as a mapping on a finite set, or as a 
rounded off computation, a computational trajectory rapidly diverges from the 
theoretical orbit starting from the same initial value. The well known shadowing 
lemma [1, 11) is often interpreted as stating that every computed orbit is approxi
mated by a true orbit, albeit from a different initial value, for some length of time. 
Too, unshadowab!e orbits exist. For these reasons, individual numerical trajectories 
cannot be treated as accurate system properties and in a simulation their statis
tical or ergodic properties are usually studied instead. For example, the invariant 
measure f./, is often calculated from computed orbits by histogram methods. 

However, collapsing effects exist which can distort the histogram as an estimator of 
f./, [5, 6, 7, 8, 9, 4). In computation, there is a tendency for computed trajectories to 
collapse onto fixed points of the realized f (like zero) or low order periodic numerical 
trajectories. In the first, the computed measure has an atom at the origin, while 
in the second it is a measure concentrated on the short cycles. 

These collapsing effects are not readily described. They seem to have a random 
character, apparently generated from the structure of finite computer arithmetic 
rather than operations of roundoff and truncation. For this reason, we treat the 
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computational dynamical process as a discrete function on a finite set. This ap
proach offers somewhat different insights from a more conventional description in 
terms of roundoff errors. 

2. MAPPINGS ON LATTICES L., 

As a prime example of chaotic behaviour, consider the dynamical system generated 
by the mapping 

z E (0, 1) 

where i E (1, oo) is a parameter. The logistic mapping h(z) = 4z(1- z) corre
sponds to i = 2. Note that each mapping ft has fixed point zero and that the modal 
point z = 1/2 is the second preimage of this fixed point. These two properties play 
a major role in establishing the existence of an ergodic absolutely continuous invari
ant measure for ft. Let 'P~t) be the discretization of the mapping ft on the lattice 
L., = {0, 1/v, ... , (v- 1)/v, 1}. The relationship between the original system ft 
and discretizations 'Pt has some unexpected features as v -+ oo. 

Note one such key property for what follows. For each mapping 'P of a finite set 
L into itself, let A( 'P) be the totality of points of L which are eventually absorbed 
by fixed points of the mapping 'I'· Denote by C('P) the proportion of absorbed 
points #(A('P))/#(L). Here, #( ·) denotes the cardinality of a finite set. The 
sequence {C('P~t))} varies very irregularly with v and has virtually zero autocorre
lation. Nonetheless, for a long series oflattices LN, ... , LN+n• with N, n large, the 
average value 

1 N+n 

Et(N, n) = ;:;: L C('P~t)) 
v=N 

approaches a nonzero limit as n -+ oo for each i E (2, oo). For 1 < i ~ 2 this average 
decreases to zero as n -+ oo, but rather slowly. Figure 1 shows the proportion of 
points absorbed by zero for the logistic on a sequence of lattices. 

This paper highlights some peculiarities of scaling, with respect to v, in the limiting 
behaviour of various statistics associated with collapsing effects when 1 < i < 2. 
In particular, the mean Et(N, n) decreases to zero as N 112-lft for N » n j;: 1, 
whereas the corresponding median scales as N 1- 2/l. 

These scaling phenomena seem to be of a universal nature. In particular, our 
experiments indicate that either the Arcsine Law or straightforward modifications 
are valid for both one-dimensional mappings, such as the .8-mapping, and two
dimensional maps like the Henon mapping, Lozi mapping, Belykh mapping and so 
on. 

The paper is organized as follows. In the next section random mappings with 
an absorbing centre are introduced. This concept is the main technical tool that 
is used. Asymptotic results for these mappings are formulated in this section. 
Section 4 is devoted to the correspondence between properties of discretizations of 
chaotic dynamical systems and analogous properties of random mappings with a 
single absorbing centre. Results of numerical experiments with mappings ft are 
discussed. A slightly lengthy proof is relegated to the final section. 
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3. RANDOM MAPPINGS WITH A SINGLE ABSORBING CENTRE 

Let ~. K > 0 be positive integers and let 

X(~,K) = {-~+ 1, ... , -1,0, 1, ... ,K}. 

Define the set W'(~,K) of all mappingst/1: X(~,K)-+ X(~,K) satisfying,P(i) = 0 
for i ::; 0. This collection is called a random mapping, with an absorbing centre. 
The set {e E X(~, K) : e ::; 0} is the absorbing centre: once a trajectory of tp 

enters this set it cannot leave. If S is a subset of w(~, K) associated with some 
given property A, then the proportion of elements of W which belong to S will be 
called the probability of the event A and is denoted by P(A). 

These mappings are similar to, though differ from mappings with a single attracting 
centre [2, 3]. It is convenient to define w(O, K) as a completely random mapping on 
the set 

X(O,K) = {1, ... ,K}, 
that is, as the totality of all possible mappings X(O, K) -+ X(O, K). Properties of 
basins of attraction of the short cycles of such random mappings will be investigated 
in detail. Let P(s; ~. K), ~ ::; s::; ~ + K denote the probability of the event that 
exactly s elements from the set X(~, K) are absorbed by fixed points of a mapping 
,P E w(~, K). Most importantly, this includes the zero fixed point. 

Write 

d( k )( s )'-d(k+d-s-1)k+d-• 
p(s,d,k)=-; s-d d+k-1 d+k-1 

where d, k, s are non-negative integers with d::; s ::; d + k. 

Theorem 1. 
•-!!>. 

P(s; ~. K)) = L a(m)p(s, ~ + m, K- m), 
m=O 

where 

This theorem is not dissimilar to some well known formulas, in particular that of 
Burtin [3], p. 407 (3), but does not seem to have appeared in the literature. 

The asymptotics which are used below follow in the usual way from Theorem 1 
and Stirling's formula. LetS be a finite set of non-negative real numbers and define 
the empirical distribution function of the setS, 'D(·; S): [0, oo)-+ [0, 1], by 

'D(x·S)= #({sES:s<x}) O<_x<oo. 
' #(S) ' 

The statistical distributions to be studied are 

D(x; ~. K) = 'D(x; {C(,P) :,PEW'(~, K)}). 

Observe, that by the definition D(x; ~. K) =: 1 for x ~ 1. Statistics of special 
interest are the mathematical expectation 

E(~,K)=#(W'(~,K))- 1 L C(t/1)= [(1-D(x;~,K))dx 
t/IE'ii(t>.,K) 0 , 
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and the median M (D., K), defined for a given .6.., K by a number a 2:: 0 such that 

#({¢ E 'li(L!..,K): C(tf;) :'Sa})=#({¢ E 'li(L!.., K): C(tf;) 2:: a}). 

Denote the complementary error function by 
00 

2 J 2 erfc (t) = V7f e-• ds. 

t 

Corollary 1. 

(a) : For each e > 0 there exists a (small) positive o(e) such that the inequality 

(1) .6.. 2 < o(e)K 

implies that 

~~ E(L!..,K)- Vi\< e. 

(b) : For each e > 0 there exists (small) 8 (e) > 0 such that the relations 

(2) a(e)- 1 < D. 2 < a(e)K, 

imply that 

Observe that different scalings for the mean value and the median arise here. If 
Q is the median of the complementary error function, namely the unique positive 
number satisfying 

e-t dt = -. 1Q 2 V7f 
0 4 

Corollary 2. For each e > 0 there exists a positive a(e) such that the relations 
(2) imply that 

That mean values and medians admit different scalings reflects the fact that a 
very small proportion of fixed points of all the mappings in the family \li(D., K) 
absorb a quite disproportionate share of all those points absorbed. A rigorous 
formulation of this observation is as follows. Write 

Cu('if;) = { C(t/J), 
0, 

ifC('if;):=;u, 
otherwise. 

0:::; u:::; 1, 

and consider the function 

0:::; u:::; 1, 

that is, 

H(u; ~. K) = E(L!.., K)- 1 ( uD(u; D., K) -1u D(s; .6.., K) ds), 0 < u < 1. 
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Corollary 3. (Arcsine Law)(Arcsine Law) For each e > 0 thereexist a positive 
6 (e) such that the inequality ( 1) implies that 

IH( u; Ll, K)- ~arcsin( vu) I < e. 

Briefly consider the rate of convergence in each of these Corollaries. In Corollary 
1(a) and in Corollary 3 the value o(c) can be chosen to be of the same order as e. 
Corollary 1 (b) is more interesting. As stated, for each 1 < xo ::; oo there exists 
&(c, x 0 ) such that the inequalities o(c, xo)- 1 < .6. 2 < <l(c, xo)K imply 

\n(x;;Ll,K)-erfc (~)\::;c, o::;x::;x0 • 

Clearly, 

D (x; ;Ll,K) = 1, 

Hence, for x 0 of the order K / L1 2 , the discrepancy 

is no less than erf(Ll/VK) ~ .6./VK. That is, o(c,xo) can be no better than of 
O(c2 ). 

4. INTERPRETATION 

Now consider the family of mappings ft, specifically for 1 < .e. ::; 2. There is com
pelling experimental computational evidence to suggest that properties of the flow 
of discretizations <p~l), v = 1, 2, ... are statistically similar to the flow of mappings 
'¢v independently sampled from lli(Lle(v), Ke(v)) for appropriate Kl(v), tle(v). This 
is strongly supported by heuristic and physical reasoning which also justifies appro
priate choice of the parameters Lle(v) and Ke(v), which are not ad hoc parameters 
merely fixed to give a best fit. 

The statement is rather informal and it will be made more precise below by 
specifying the nature of the statistical relationship between the discretizations <pSe) 
and the random mappings I!!(Lle(v), Ke(v)); then providing arguments for the choice 
of Ke(v), Lle(v); and finally providing experimental evidence. 

First, we will very briefly sketch the reasons behind the choice of Lle, Ke and 
formulate a Hypothesis linking the behaviour of discretizations to that of the set 
of random graphs lli{Lle(v), Ke(v)). The mapping h has an absolutely continuous 
invariant measure J-Ll and so a cell [(i- 1)/v, i/v] of the lattice L.., may be given a 
natural weight w; = J-Le([(i- 1)/v, ifv]). Similar reasoning to that of (10] suggests 

that K(v) should increase at the same rate as Y(v) = (E w?) - 1 . This gives K(v) = 
bv when 1 <.e.< 2 and K(v) = bvjlnv when f.= 2, for a constant b = b(£). 

Turning to Ll(v), it is unnatural and, more importantly, inadequate to choose as a 
model the completely random mapping Q(Ke(v)), that is, the totality Of mappings 
defined on the set { 1, 2, ... , Ke ( v)} and endowed with the uniform measure. Indeed, 
one point of the lattice L..,, namely the modal point c = [1/2],.,, is quite untypical. 

The value 'PSl)(c) has as preimage under 'PSl) a number of order O(v1- 1fi) of the 
other points of the lattice. This is because of the flatness of fe near c so that the 
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images of nearby points are identified with 1 in L.,. Besides, it is the second preim
age of the zero fixed point of the mapping. Consequently, in these circumstances, it 
is more accurate to prescribe to one point of the lattice L., a weight w of the order 
.6.t(11) = 0(111- 1/t) relati~e to other weights w; and to regard this more heavily 
weighted point as absorbing. A natural way of realizing these rather informal con
siderations in a technical framework leads to mappings with an absorbing centre as 
defined in the previous section. Then, fo~ 1 < £ < 2, Kt(ll) ~ b11, .6.t(11) ~ a11 1- 1lt, 
while for£= 2, K2(11) ~ b11jln11,' .6.2(11) ~ a.,foflnll. See [5], 1995], pp.562-564, 
for a more detailed account. 

For a positive integer N and 7 > 0, denote by ~;t) (N) the set of discretized 
mappings 

{cp~t) : N ~II~ (1 +7)N}. 

Compare the finite set of discretizations ~;t)(N) with independently sampled ele
ments 

(3) N ~ II~ (1 + 1)N, 

for increasing N, where 'Y > 0 is small. Then, because 'Y is small, 11 and 111- 1/t do 
not vary significantly in [N, (1 + 7)N] and so the distributions D(x; a11 1- 1lt, b11), 
N ~ 11 ~ (1 + 7)N, are all close to D(x;aN1- 11t,bN). On the other hand, the 
length of the interval [N, (1 + 7)N] increases sufficiently fast with N so that from 
standard estimates it can be deduced that, with probability 1, the distribution 
from sampling as in (3) will be close to the distribution D(x; aN1- 1fl, bN) for all 
sufficiently large N. Consequently, the distributions 

D~~k(x) = 'D (x; {~~2fl- 1 C(cp~): N ~ 11 ~ (1 + 'Y)N}), 1 < £ ~ 2, 

associated with the flow of discretizations should be qualitatively and quantitatively 
similar to the function 

(4) 

On the other hand, for sufficiently large N, all functions (4) satisfy the relation 

D(xN2ft- 1 ; aN1- 11t, bN) R:l erfc ( ~) 
by Corollary 1(b). That is, for all for all 'Y > 0 and for all sufficiently large N, 

(5) D~~~(x) R:l erfc (~vk). 
Similar reasoning using Corollary 1(a) leads to the conclusion that, for the means 

(l+"'I)N 
E(t) = _1_ "' 111/t-1/2C(cp<tl) 

..,,N 'YN L.. " 
v=N 

the asymptotic formula is 

E(t) R:l ~ ~ 
..,,N Vb v 2' 

for 7 > 0 and for all sufficiently large N. This last relation and (5) can be combined 
as 

(t) ( c ) D..,,N(x) R:l erfc .J2x where 

68 

- {f E(t) 
C- y; "'/,N. 



STABILITY AND SHADOWING IN CONVEX DISCRETE-TIME SYSTEMS 

Arguing in the same way from the Arcsine Law, 

H~l~(u) RJ _:arcsin(vfu) 
" 1T 

where 
"'(1+-y)N C ( (l)) 

H(l) ( ) _ L.v-N u V'v 
-y,N u - "'(1+-y)N C( (l)) ' 

L.v=N V'v 

These arguments motivate the following: 

O<u<l. 

Hypothesis 1. Suppose that 1 < £ < 2. For each"( > 0 and for sufficiently large 
N, the following asymptotic relations hold. 

(a): D~~~(x) RJ erfc (vk), where 

(b) : H~~~( u) RJ ~arcsin( y'u). 

This Hypothesis can be tested by straightforward, if lengthy computational exper

iments. In these, we took l = 3/2, N = 106 , 'Y = 0.01. The quantity E~~~ RJ 5.46 

computationally, giving an estimate c RJ 0.42. The function D~~{il(x) was con

structed and was compared with erfc ( Ji;;) for 0 :::; x :::; 14. Results are graphed 

in Figure 2. Agreement is excellent: the two curves are virtually coincident. Fig
ure 3 graphs the function H~~~2)(u) against ~arcsin(y'u) and agreement is again 
excellent, although not as spectularly so as in Figure 2. 

A similar statement can be drafted for£ = 2, the logistic mapping. However, since 
1:3.2 / K ~ ln(v)- 1 in this case, to obtain good approximations without taking a very 
large number of lattices to average over, a higher order asymptotic term is added to 
the asymptotics derived from Theorem 1. Without going into cumbersome details, 
we simply state the more accurate formulas and test by experiment. 

Define the functions 

(c.~2~' gN(x;c) =erfc V ~} 0 ::S x ::S ln(N), 

and 1U 1 c2 (1-•)/2• hN(u,c) = einV'TY ds, 
0~ 

0:::; u:::; 1, 

where cis a parameter. For each "(, N denote by c = c("f, N) the solution inc of 
the equation 

1 1ln(N) 
ln(N) 0 (1- gN(x, c)) dx = E~~1. 

Hypothesis 2. For each 'Y > 0 and for sufficiently large N the following 
asymptotic relations hold. 

(a): D~~~(x) RJ gN(x;C), 0 ::S x ::S ln(N). 

(b): H~~1(u) RJ hN(u;C)/hN(1;C), 1 < u < 1. 

Note that as N-+ oo, gN(x;c) tends to erfc (vk) and hN(u;c)/hN(l;c) tends to 

~ arcsin(u). Therefore, for very large N, the second hypothesis captures the Arcsine 
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Law. The role of the higher order asymptotics is to give accuracy for middle values 
of N in the slow growth of InN. In particular, for N = 107 ,')' = 0.001 as before, 

the parameter c = c(O.OOl, 107) RJ 0.9. Figure 4 graphs H~~J01 , 107 (u) against 
h107(u;C)/hN(l;C). The agreement between experiment and theory is very good 
indeed, as is also that for fl(2)o.OOl,I07(X) (see (9) for further details). 

5. PROOF OF THEOREM 1 

Let S be a subset of {1, ... , K}. Denote by \f!(A, K, S) the subset of \f!(A, K) 
consisting of mappings 1/J, each of whose fixed point set coincides with S. Let 
Go(t>, K) be the set of all mappings on X(t., K) with no fixed points at alL For 
each !/! E \f!(A, K, S) denote by 9o( !/!) the set of all mappings g E G0 (A, K) which 
coincide with 1/J on {1, ... , K} \ S 

Let g-- 1 (5) be the transitive closure of the set Sunder g- 1 , that is, 

K 

g--l(S) = ug-i(S). 
i=O 

For each !/! E \I!( A, K, S), and g E 9o(I/J), the transitive closure g-- 1 (5) coincides 
with the set A( ?,b) of all those points eventually absorbed by fixed points. Observe 
that each set 9o(?,b) contains the same number of elements, namely (A + K -
l)LI.+#(S). Therefore, writing P(A I B) as the probability of A conditioned on the 
event B, 

P (C(I/J) = s) I '1/J E \f!(Ll, K, S)) = P ( #(g- 1 (X_ US))= s lg E Go(A, K)). 

For ?,b E w(A, K) let fp(I/J) be the number of strictly positive fixed points of 1/J. 
From the last equality it follows that 

where 

and 

K 

P(s; Ll, K)) = L CLmPm (s), 
m=O 

CLm = P(fp(I/J) = m) = #({!/! E \f!(A, K): fp(I/J) = m}) 
\f!(Ll,K) 

Pm(s) = P ( #(g- 1 ( {-A, ... , -1, 0, 1, ... , m} )) = s I g E 9o(A, K)) . 

Clearly, 

CLm = ( ~) (A::; 1) K-m 

That is, CLm is the same as a(m) in Theorem l. 

It remains to establish that 

(6) Pm(s) =p(s,A+m,K -m) ( K-m ) 
s- ,6.- m qm(s), 

where 

8 = Ll+m ( S )s-t>.-m (A+K-s-l)tl.+K-s 
(?) qm ( ) s Ll + K - 1 Ll + K - 1 
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Let Am = {-~- 1, ... , m} and let B be some subset from X ( ~. K) \Am consisting 
from s - ~ - m elements. Following the proof of Theorem 38, [2], p.372, write 

(8) 

where P1 is the probability of the event g(B) C Am U B, P2 is the probability of 
the event g (X\ (AU B)) C X\ (AUB), and P2 is the proportion of elements from 
g(~, K) such that for every bE B there exists an oriented path beginning at band 
ending in A. Then 

p3 

( 
8 _ 1 )•-A-m 

~+K-1 

(
K + ~- s- 1)K+A-• 
~+K-1 

~ + m (-s-) •-A-m 
s s- 1 

The first two equalities are clear, and the third one follows immediately from 
Burtin's Proposition 1, case c; = 1, see [3], page 404. Hence 

and, by (8), 

( s-m )•-A-m(K+~-s-1)K+A-• p·p. p -
1 2 3 - ~+K-1 ~+K-1 

where qm(s) is defined by (7). The set B may be chosen in ways ( K-m ) 
s-~-m · 

Therefore, 

Pm(s) = ( 8 ~ ~ ~ m ) qm(s), 

which coincides with (6). The theorem is proved. 0 
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Figure 1. Proportion of elements of Lv collapsing to zero, 227 :S v :S 227 + 500, for the 
logistic h(x) = 4x(l- x). 

Figure 2. Experimental results D~"t~/. 105 (x) against the theoretical prediction erfc ( *). 
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