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1. Introduction and summary

1.1. General remarks. The isometric embedding problem originates
from the historical development of differential geometry: Early works
considered the relatively concrete situation of curves and surfaces in
space, and submanifolds of Euclidean spaces of higher dimension. The
more abstract notion of a Riemannian manifold arose later, follow-
ing Gauss’s Theorema Egregium stating that the Gauss curvature of a
surface depends only on the induced metric, and Riemann’s work ex-
tending this to higher dimensions and developing the intrinsic geometry
associated with a metric tensor prescribed in local coordinates.

Schläfli [44] discussed in 1873 the (local) question of whether a
metric given in local coordinates always comes from an embedding into
some Euclidean space, and conjectured that it should be possible to do

so into R
n(n+1)

2 . This dimension seems plausible, since the number of
independent components of the metric tensor at each point is equal to
n(n+1)

2
.

The local question (at least for real-analytic metrics) was solved for
the 2-dimensional case in 1926 by Janet [25] , and Cartan [4] extended
this to all n in 1927 as an application of his work on exterior differen-
tial systems. I should point out that the corresponding problem for Ck

metrics is quite different — there is a counterexample due to Pogorelov
[43], giving a C1,1 metric on the plane which cannot be locally isometri-
cally embedded into R3. If the metric has positive or negative curvature
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at a point, then local isometric embedding is possible, and C. S. Lin
has proved that it is still possible if the curvature near the point is non-
negative [29] or if the curvature is zero but the derivative is non-zero
[30]. A very recent preprint of Nadirashvilli gives an example of a C∞

metric which cannot be locally isometrically embedded into R3, which
seems to close the question.

The question of globally embedding a manifold is a natural exten-
sion of the local question, but could not have been formulated precisely
until after Weyl’s precise definition of differentiable manifolds [48] in
1912, brought into common use after the work of Whitney in the 1930s.
Whitney ([50]–[52]) proved that any compact manifold of dimension n
can be embedded (without requiring isometry) into R2n, and immersed
into R2n−1.

The general result was finally proved by John Nash [37] in 1954
using methods that seem to be entirely without precedent. He showed
that any compact manifold with a metric of class Ck, k ≥ 3, can be

isometrically embedded in RN where N = n(3n+11)
2

. The dimension
requirement has been gradually reduced over the years, particularly
through work of Gromov [9], who proved one can take N = n2+10n+3
for k > 2, or N = (n+ 2)(n+ 3)/2 if k ≥ 4.

The hard analytic part of Nash’s proof was taken up by others
and fashioned into a more general theorem (or method) now called
the Nash-Moser implicit function theorem. This was done by several
authors including J. Schwartz ([45],[46]), J. Moser ([33]–[34]), L. Niren-
berg [40], L. Hörmander [21]–[23], H. Jacobowitz [24], E. Zehnder [54]–
[55], and R. Hamilton [16]. The results apply to a range of problems,
including the solution of a wide variety of nonlinear elliptic and para-
bolic equations, and most famously to the proof of the KAM theorem
on existence of invariant tori in Hamiltonian systems obtained by per-
turbations of integrable systems.

There is an interesting postscript to this story: Matthias Günther
[12]–[14] discovered in around 1987 that one can circumvent the difficul-
ties which Nash encountered, so that the remarkable Nash-Moser itera-
tion method is not required. Using this observation he achieves isomet-

ric embeddings into Euclidean space of dimension N = max{n(n+3)
2

+

5, n(n+5)
2

}.
Note that in the case n = 2, Nash gives an isometric embedding of

a compact surface into R17, Gromov (and Günther) into R10. Gromov
used different methods particular to the two-dimensional case to show
that every compact surface isometrically embeds in R5. This cannot be
improved in general, since the standard metric on the real projective
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plane cannot be embedded isometrically in R4. Conceivably it might
be possible to reduce this to R4 for oriented surfaces, but again no
better since compact surfaces with non-positive curvature cannot be
embedded in R3. Spheres with non-negative curvature can always be
embedded in R3 as ovaloids (boundaries of convex bodies), thanks to
the Weyl embedding problem proved by Weyl [49], Lewy [28], Aleksan-
drov [1], Pogorelov [42], Nirenberg[39], E. Heinz [17]–[18], P.-F. Guan
and Y.-Y. Li [15].

The plan is to start by outlining Nash’s proof of the isometric
embedding problem, which includes a number of good ideas beyond
the perturbation result: Important aspects of this are setting up a
framework so that the local perturbation result can be applied, and
proving existence of approximate isometric embeddings. Then we will
return to the proof of the perturbation result, by two different methods:
First using a method of Hörmander which essentially provides a model
for the Nash-Moser method, and a second, more special to the isometric
embedding problem, due to Günther.

1.2. The isometric embedding problem. Let (M, g) be a (com-
pact) Riemannian manifold of dimension n. Given any map F =
(F 1, . . . , FN) : M → RN , there is an induced metric tensor on M
given in any local coordinates by

(gF )ij =
∂F

∂xi
· ∂F
∂xj

=
N∑

r=1

∂F r

∂xi

∂F r

∂xj
.

This is a Riemannian metric provided F is an immersion. The isometric
embedding problem, simply stated, is to find a one-to-one function F
such that gF = g.

1.3. Perturbation of embeddings. Nash’s strategy, which is also
the strategy of later authors, is to consider the problem of perturbing
a given isometric immersion (or embedding) to achieve some desired
(suitably small) change in the metric.

Suppose h is the desired change in the metric (i.e. a symmetric
tensor on M). Then we can try to choose a map V : M → RN such
that gF+V = gF + h, which means

N∑
r=1

∂F r

∂xi

∂V r

∂xj
+

N∑
r=1

∂V r

∂xi

∂F r

∂xj
+

N∑
r=1

∂V r

∂xi

∂V r

∂xj
= hij.

This gives a first order system of partial differential equations which
must be satisfied by the variation V . Nash simplified this to some
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extent by considering variations that are normal to the embedding F ,
which means imposing the extra equations

N∑
r=1

V r ∂F
r

∂xj
= 0

for j = 1, . . . , n. The simplification results from differentiating this
equation with respect to xi, to give

N∑
r=1

∂V r

∂xi

∂F r

∂xj
= −

N∑
r=1

V r ∂2F r

∂xi∂xj
.

Substituting this into the perturbation equation gives the rather sim-
pler result

−2
N∑

r=1

V r ∂2F r

∂xi∂xj
+

N∑
r=1

∂V r

∂xi

∂V r

∂xj
= hij.

Note that the last term on the left is quadratic in V , so if V is small then
this should be insignificant. The key observation is that the remaining
terms form an (algebraic, not differential) linear system of equations for
the components of V . In particular, if we write down the corresponding
infinitesimal problem coming from considering the above perturbation
problem for thij as t→ 0, then the infinitesimal variation W = ∂V

∂t
|t=0

satisfies the equations

N∑
r=1

W r ∂2F r

∂xi∂xj
= −1

2
hij

and
N∑

r=1

W r ∂F
r

∂xj
= 0.

We therefore have at each point of M a system of n(n + 3)/2 linear
equations in the N unknowns W r (n of these come from the normal
variation condition, and the remaining n(n + 1)/2 from the equation
for each component of the symmetric tensor hij). Clearly the system

cannot be solved in general if N < n(n+3)
2

, while if N > n(n+3)
2

then

any solution will be non-unique. If N ≥ n(n+3)
2

then a solution exists
provided the n(n+ 3)/2 vectors

∂F

∂xi
, i = 1, . . . , n

and
∂2F

∂xi∂xj
, 1 ≤ i ≤ j ≤ n
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are linearly independent.

1.4. Freeness of embeddings and immersions. A map satisfying
this condition everywhere is called a free immersion. Recall the defini-
tion of the second fundamental form,

∂2F

∂xi∂xj
= −IIα

ijνα + Γij
k ∂F

∂xj
,

where να, α = 1, . . . N − n are a basis for the normal space of the
map F , and Γij

k are the connection coefficients. From this we see that
the condition that F is free is equivalent to saying that the second
fundamental form is an injective map from the bundle of symmetric 2-
tensors on M to the normal bundle of M at each point. In particular,
freeness is independent of the choice of local coordinates.

If F is free, then there exists a solution W of the infinitesimal

perturbation problem. If N > n(n+3)
2

then this solution is not unique,
but we can pick out a preferred solution by asking that W have the
shortest length possible at each point. The solution W at each point is
unique up to an element of the orthogonal complement of TM⊕spanII,
so the shortest length is achieved precisely when W is in spanII. Then
we can write

W =
1

2

(
G−1

)ij,kl
hijIIkl

ανα.

Here

Gij,kl = II ij
αIIkl

βνα · νβ,

and by assumption Gij,kl is a positive definite bilinear form on the
space of symmetric (0, 2)-tensors, and so has an inverse G−1 which is a
positive definite bilinear form on the space of symmetric (2, 0)-tensors.
Note that G−1 is a rational function of the coefficients of G, which is
itself quadratic in the components of the second fundamental form. It
follows that W is as regular as h and II are.

1.5. Nash’s perturbation result. I will now state Nash’s perturba-
tion result, but defer the proof until later (this is the part of the proof
which contains the hard analysis).

Theorem 1.1. Let M be a compact manifold with a free real-analytic
embedding F into RN . If h is a Ck symmetric (2, 0)-tensor field on M
with k ≥ 3, which is sufficiently small in C3, then there exists a Ck

map V : M → RN such that gF+V = gF + h.

Thus we can perturb about real-analytic free embeddings. In fact
real-analyticity is not at all necessary, we can take F to be C∞, or
less regular if the metric we are trying to attain is less regular (see the
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precise statements in Lectures 5–6). Also, the closeness condition can
be weakened to C2,α instead of C3.

The regularity of V given in the Theorem seems at first sight to
be worse than could be expected — roughly speaking, the metric g is
constructed from first derivatives of the embedding F , so if the metric
is Ck then we might expect the embedding to be Ck+1. However this
is not true in general, and the regularity cannot be improved without
further assumptions.

To see this, consider the expressions for the intrinsic curvature
tensor of the induced metric. This can be computed from the metric
tensor itself, as follows: By definition, the covariant derivatives of the
coordinate vector field ∂i = ∂

∂xi are given by

∇∂i
∂k = Γik

p∂p,

where the Christoffel symbol Γik
p is given by

Γik
p =

1

2
gpq

(
∂

∂xi
gkq +

∂

∂xk
giq −

∂

∂xq
gik

)
.

The curvature tensor is then given by

Rijkl = g
(
∇∂j

∇∂i
∂k −∇∂i

∇∂j
∂k, ∂l

)
=

(
∂

∂xj
Γik

q − ∂

∂xi
Γjk

q + Γik
pΓjp

q − Γjk
pΓip

q

)
gql

This involves second derivatives of the metric tensor, so can be expected
to be Ck−2 if the metric is Ck.

Alternatively, we can compute the intrinsic curvature from the ex-
trinsic curvature via the Gauss equation:

Rijkl =
(
IIα

ikII
β
jl − IIα

jkII
β
il

)
να · νβ.

The second fundamental form is defined in terms of second derivatives
of the embedding, and so is no worse than Ck−1 if the embedding is
Ck+1. Therefore to show the embedding cannot be Ck+1, we simply
need to find a metric for which the intrinsic curvature is indeed no more
regular than Ck−2 (it is possible that one could get miraculous cancel-
lations in the first expression so that the result was in fact Ck−1 for a
Ck metric). In two dimensions, take the metric g = e2f(x) (dx2 + dy2),
where f is Ck. Then we find the scalar curvature is given by

R = −e−2ff ′′

which is no better than Ck−2. In higher dimensions take the product
of this with a flat metric.
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1.6. Loss of differentiability. I will try to indicate where the dif-
ficulties lie in proving the perturbation result. We have set up the
equations for the perturbation problem, and showed (at least if the
immersion we are perturbing about is free) that there exists a solution
of the infinitesimal problem. Usually in such circumstances we would
hope to apply an implicit function theorem to show that there is in
fact a solution.

Let us formalise things a little more: We have a fixed starting
embedding F which is free and can be assumed to be quite regular
(even real analytic). Consider the map which takes a Ck section V
of the normal bundle of F (M) to the Ck−1 symmetric tensor h =
g(F+V )−gF . This is a smooth map from the Banach space Ck(NM) to
the Banach space Ck−1(S2M), where S2M is the bundle of symmetric
2-tensors on M . We have computed the derivative of this map about
the zero section. It looks like we have just shown that the derivative
is surjective, but look more closely: What we have shown is that any
infinitesimal perturbation h of the metric can be obtained by some
infinitesimal variation W in the normal bundle, but our expression
above shows that if h is Ck−1 then the variation W is also Ck−1, not
Ck. So in fact the derivative of the above map between Banach spaces
is not surjective, and we cannot apply the implicit function theorem
for Banach spaces to find a local inverse for the map. Instead we
have shown that the derivative maps onto the smaller subspace of Ck

variations of the metric, but that is no good because the map does not
give us a Ck variation of the metric in general.

This is the phenomenon of loss of differentiability which is the
key analytic difficulty which Nash managed to overcome, and which
is addressed in the Nash-Moser implicit function theorem, or ‘hard
implicit function theorem’ as it is also known.

2. Setting up the isometric embedding

In this section I will show how the local perturbation result can
be used to prove the global isometric embedding theorem. The results
here are largely geometric, and involve a number of nice tricks.

2.1. Difficulties in applying the perturbation result. In order to
apply the local perturbation result to obtain an isometric embedding
of a given metric, the obvious thing to try to do is find embeddings
for which the induced metric is close to the given one. But this is a
tall order: We would need the embedding to be real analytic, and the
induced metric would have to be sufficiently close in C3 to the desired
one so that we could apply the perturbation result. Unfortunately,
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‘sufficiently close’ is not spelled out. If one inspects the proof of the
perturbation result, it becomes clear that ‘sufficiently close’ depends
on some estimate for the freeness of the initial embedding. But the
approximate isometric embeddings that we will construct (in the next
lecture) have very poor control on their freeness: These are obtained
by ‘twisting’ a collection of maps around very tight circles, with better
approximations being produced by tighter and tighter circles. So to
get a good approximation to the metric, the embedding will typically
have very large second fundamental form.

2.2. Nash’s y and z embeddings. Nash uses the following trick to
get around the problem, at the expense of increasing the dimension of
the Euclidean space we embed into: Suppose we have two embeddings,
Fy and Fz, into Euclidean spaces RN and RN ′

. Then consider the map
(Fy, Fz) : M → RN+N ′

. The induced metric of this is equal to gFy +gFz .
The idea is this: First choose an embedding Fz, which Nash calls

the ‘z-embedding’, which is real analytic and free, and so can be per-
turbed locally to get any nearby metric which is sufficiently close in C3

(here ‘sufficiently close’ means within some fixed distance which will
not change from now on, since we will always be perturbing about this
fixed embedding). By scaling, ensure that the induced metric gFz is
strictly less than the desired metric g (Gromov and Rokhlin call this a
‘strictly short’ embedding).

Then we try to choose an embedding Fy (the ‘y-embedding’) for
which the induced metric is close to g̃ = g − gFz — in fact, what we
need is that it is ‘sufficiently close’ in C3 to g̃, in precisely the sense of
the previous paragraph.

It is clear that this would suffice to prove the existence of an iso-
metric embedding. This leaves us with two problems to tackle: Ap-
proximate isometric embeddings, and existence of free embeddings.

2.3. Existence of free embeddings. We will prove the following:

Theorem 2.1. A compact manifold M of dimension n has a C∞ free

embedding into RN , where N = n(n+5)
2

.

This was proved by Nash [37], but we will use different methods
following Gromov-Rokhlin [11], with an argument essentially following
the proof of Whitney’s ‘easy’ embedding theorem [50]. Let us recall
this first:

Theorem 2.2. A compact manifold M of dimension n has a C∞ em-
bedding into R2n+1 and an immersion into R2n.

Whitney’s proof follows the following steps: First, show that M
can be embedded into some Euclidean space, without controlling the
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dimension. Then show that the projection of the resulting submanifold
onto some space of one dimension lower is an embedding (or immersion)
if the dimension is not too small.

The first step is easy: Take a finite cover of M by charts xi =
(x1

i , . . . , x
n
i ) : Ui → B1(0) ⊂ Rn, i = 1, . . . , r, such that the smaller

sets Wi = x−1
i (B1/3(0)) also cover M . Let f be a smooth function on

Rn which is identically 1 on B1/3(0), identically zero outside B2/3(0),

and strictly between 0 and 1 on B2/3(0)\B1/3(0). Then for each i, f ◦xi

extends by zero to a smooth function on M . Define F : M → Rr(n+1)

by

F = (f ◦ x1, . . . , f ◦ xr, x1f ◦ x1, x2f ◦ x1, . . . , xrf ◦ xr).

F is one-to-one, since if F (x) = F (y) then there is some i such that
x ∈ Wi, but then f ◦ xi(x) = f ◦ xi(y) = 1, and therefore by definition
of f , y ∈ Wi. But also xi(x) = xi(y), so x = y since xi is one-to-one on
Wi. F is an immersion, since in Wi F has as some of its components
xif ◦xi = xi, which has derivative in the chart xi equal to the identity.
Therefore F is an embedding.

It remains to prove that if N > 2n + 1 and Mn is a compact sub-
manifold of RN , then there is some v ∈ SN−1 such that the orthogonal
projection πv onto the (N − 1)-dimensional subspace orthogonal to v,
given by

πv(x) = x− (x · v)v
is an embedding on M . Similarly in N > 2n then there is some v such
that πv is an immersion on M .

To see this, consider the map h from M ×M\∆, where ∆ is the
diagonal, given by

h(x, y) 7→ x− y

|x− y|
.

πv is one-to-one provided h never takes the value v. Also consider the
map k from the unit sphere bundle SM = {(p, w) : p ∈ M, w ∈
TpM, |w| = 1} to SN−1 given by

k(p, w) = w.

Then πv is an immersion provided k never takes the value v.
Note that M ×M\∆ is a manifold of dimension 2n, while SM is

a manifold of dimension 2n − 1. We use the fact that a smooth map
from a manifold M to a manifold N has image of measure zero if N has
larger dimension than M . It follows that there exists a point v ∈ SN−1

which is not in the image of h or k provided N − 1 > max{2n, 2n− 1}
(i.e. N > 2n+1) and there is v ∈ SN−1 not in the image of k provided
N > 2n.
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This completes the proof of Theorem 2.2. Note that this gives
a Cr embedding for r = 1, . . . ,∞, but does not extend to the real-
analytic case. Whitney [53] proved that any Cr manifold carries a
compatible real-analytic structure and has a real-analytic embedding
for that structure. The question of whether a manifold with a given
real-analytic structure has a real-analytic embedding was not resolved
until later, by Morrey in 1958 [32], after Nash’s proof of the isometric
embedding theorem. However, the case of interest to the isometric
embedding problem, that of embedding a real-analytic manifold which
carries a real-analytic Riemannian metric, was proved by Bochner [2]
in 1937 (it is a consequence of Morrey’s theorem that this is the general
case!).

To prove Theorem 2.1 we use the same steps: First find a free
embedding into some Euclidean space of large dimension, then show
that the dimension can be reduced if it is too large.

To accomplish the first step, first note that we can find a free

embedding of an open set in Rn into R
n(n+3)

2 as follows: Take an or-

thonormal basis {ei}1≤i≤n ∪ {eij}1≤i≤j≤n for R
n(n+3)

2 , and define

F (x1, . . . , xn) =
n∑

i=1

xiei +
∑

1≤i≤j≤n

xixjeij.

This is clearly an embedding since the first n components are. To see
that it is free, note that

ei =
∂F

∂xi
−

n∑
j=1

xj ∂2F

∂xi∂xj
; eij =

∂2F

∂xi∂xj
, (i 6= j); eii =

1

2

∂2F

(∂xi)2
.

Therefore the first and second derivatives of F span the whole space,
and hence give an isomorphism at each point.

The first step is easy, given Theorem 2.2, since we can embed M
as a submanifold of some Euclidean space, then take a free embedding
of that Euclidean space in a higher-dimensional Euclidean space. The
restriction of a free map to a submanifold is clearly free.

It remains to prove that some projection πv is a free embedding if
the dimension is large. The embeddedness condition holds provided v
is not in the image of the maps h and k defined above.

Define the 2-jet space J2
pM

∗ at p ∈M to be the set of equivalence
classes of germs of smooth functions about p, where two function germs
are equivalent if their first and second derivatives agree at p in any

chart. This is a vector space of dimension n(n+3)
2

, and has a natural
basis in any chart (x1, . . . , xn) for M about p, given by the equivalence
classes of the functions xi for i = 1, . . . n and xixj for 1 ≤ i ≤ j ≤ n.
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There is a corresponding dual basis for the dual space J2
pM , which we

denote ei, 1 ≤ i ≤ n and eij, 1 ≤ i ≤ j ≤ n.
Let SJ2M be the unit sphere bundle of J2M . This is a manifold

of dimension n + n(n+3)
2

− 1. Consider the map j : SJ2M → SN−1

given by restricting the map above. Then it is clear that πv is a free
map provided v is not in the image of j, so πv is a free embedding
provided v is not in the image of h, k or j. This can be guaranteed
for some v as long as the target has higher dimension than the source,

which means N − 1 > max{2n, 2n − 1, n + n(n+3)
2

− 1}, which means

N ≥ n+ n(n+3)
2

= n(n+5)
2

.
This proves Theorem 2.1. The proof works without change to give

Cr free embeddings of Cr manifolds, r ≥ 1, and also for real-analytic
manifolds as long as we assume Morrey’s embedding result.

Other methods (more closely related to those of Whitney’s first
proof) give a somewhat more powerful result: First consider the simpler
embedding and immersion problems: The condition that a map F be
an immersion can be expressed in terms of its 1-jet J1F , which is a
section of the 1-jet bundle j1(M,RN) '

⊕N T ∗M . The requirement is
that the one-jet avoid the submanifolds Ak consisting of 1-jets which
are rank k, for each k = 0, . . . , n − 1. The largest of these is An−1,
which has dimension nN + n − 1 − N at each point, so dimension
nN + 2n − 1 − N within the 1-jet bundle. If the dimensions of the
section j1F and An−1 sum to less than the total dimension of the 1-jet
space, then transversality implies that they are disjoint. This is true
provided n + nN + 2n − 1 −N < n + nN , which means N > 2n − 1,
or N ≥ 2n. The transversality theorem (see [20]) then implies that the
set of Ck immersions is residual in Ck(M,RN), which means it is an
intersection of open dense sets, which by the Baire category theorem
is dense. Thus every Ck map into RN can be approximated in Ck by
immersions if N ≥ 2n.

Similarly, the one-to-one condition amounts to the map from M ×
M\∆ to RN given by (x, y) 7→ F (x) − F (y) avoiding zero, which is
generically true if its dimension is less than N , so N > 2n or N ≥
2n + 1. Thus any Ck map from M into RN with N ≥ 2n + 1 can be
approximated in Ck by embeddings.

Now turn to the case of free maps: In this case we require that
the 2-jet of F avoid certain submanifolds in the 2-jet bundle, so this
holds generically provided the submanifold has codimension greater
than n. This submanifold consist of 2-jets which have rank k, for

k = 0, . . . , n(n+3)
2

− 1. The largest of these has dimension n(n+3)
2

− 1 +

N n(n+3)
2

−N at each point, so our requirement becomes 2n+ n(n+3)
2

−
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1+N n(n+3)
2

−N < n+N n(n+3)
2

, or N ≥ n(n+5)
2

. So for N in this range,

any Ck map from M to RN (with k > 2) can be approximated in Ck

by free embeddings.
It is interesting to note that Whitney improved the result of The-

orem 2.2 much later, in 1944, to give [51] an embedding into R2n and
[52] an immersion into R2n−1 (for n > 1). These results are much more
difficult than the earlier ones (they are known as the ‘hard’ Whitney
embedding theorems). It seems plausible that methods similar to this
later work of Whitney (particularly that on immersions) might give a
free embedding into a lower dimension than the proof above produced.
However, in general no such improvement is possible: Eliashberg [5]

showed that if n = 2k+1 with k ≥ 1, then RP 2k × RP 2k

cannot be

freely mapped into R
n(n+5)

2
−1.

Some improvement in embedding dimension for particular man-
ifold dimensions may be possible by the following approach: There
are topological characterisations of when a manifold Mn can be im-
mersed in Rn+k for k < n, due to Hirsch [19], and sometimes called the
Smale-Hirsch Theorem. Consider GL(n) acting on the space Vn,n+k of
n-frames in Rn+k in the obvious way. Associated to this action there
is a bundle B with fibre given by Vn,n+k, defined by B = (F (M) ×
Vn,n+k)/GL(n), where F (M) is the frame bundle of M and GL(n) acts
separately on each factor. The theorem states that Mn can be im-
mersed into Rn+k (with k ≥ 1) if and only if B has a non-vanishing
section. Note that this condition is equivalent to the existence of some
k-dimensional vector bundle B′ over M such that TM ⊕ B′ is triv-
ial. Hirsch shows in particular that every compact 3-manifold can be
immersed in R4 (since 3-manifolds are parallelizable), and that every
compact 5-manifold can be immersed in R8. Eliashberg and Gromov

[6] prove that a manifold Mn can be freely mapped into R
n(n+3)

2
+k (with

k ≥ 1) if and only if there is a bundle P over M of dimension k such
that TM ⊕ S2M ⊕ P is trivial, where S2M is the bundle of symmetric
2-tensors on M .

3. Approximate isometric embeddings

In this section we continue the process of setting up the isometric
embedding problem by constructing embeddings which are approxi-
mately isometric. The argument we give yields an isometric embedding
into a high-dimensional Euclidean space, modulo the local perturba-
tion result. At this stage the dimension required depends on the metric
g and not only on the dimension n of the manifold, but this will be
corrected in the next section.
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3.1. The Nash Twist. Here is another one of Nash’s good ideas,
which makes the construction of approximate embeddings fairly easy.
The idea is the following: Suppose we can express the desired Cr metric
g in the form

(3.1) gij =
m∑

k=1

(ak)2∂fk

∂xi
· ∂fk

∂xj

where ak ∈ Cr(M) is positive and fk is C∞ (or analytic) for k =
1, . . . ,m. Then define a map yλ : M → R2m as follows:

yk
λ =

ak

λ
sin (λfk) , k = 1, . . . ,m;

ym+k
λ =

ak

λ
cos (λfk) , k = 1, . . . ,m.

Roughly speaking, the map yλ takes each component of the map f =
(f1, . . . , fm) and winds it around a circle with radius λ−1, then scales
the result by the weight ak. If λ is large, then ak is close to constant
on each traverse of the circle, so the speed of motion is approximately
ak times the rate of change of fk along any curve in M . Computing
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more precisely, the induced metric gλ = gyλ
given by

(gλ)ij =
m∑

k=1

(
∂yk

λ

∂xi

∂yk
λ

∂xj
+
∂ym+k

λ

∂xi

∂ym+k
λ

∂xi

)

=
m∑

k=1

(
(ak)2 cos2(λfk)

∂fk

∂xi

∂fk

∂xj

+
ak sin(λfk) cos(λfk)

λ

(
∂ak

∂xi

∂fk

∂xj
+
∂ak

∂xj

∂fk

∂xi

)
+

sin2(λfk)

λ2

∂fk

∂xj

∂fk

∂xi

+ (ak)2 sin2(λfk)
∂fk

∂xi

∂fk

∂xj

− ak sin(λfk) cos(λfk)

λ

(
∂ak

∂xi

∂fk

∂xj
+
∂ak

∂xj

∂fk

∂xi

)
+

cos2(λfk)

λ2

∂ak

∂xj

∂ak

∂xi

)
=

m∑
k=1

(
(ak)2∂fk

∂xi

∂fk

∂xj
+

1

λ2

∂ak

∂xj

∂ak

∂xi

)

= gij +
1

λ2

m∑
k=1

∂ak

∂xj

∂ak

∂xi
.

If we take λ large, this is a good approximation for g in Cr−1.

3.2. Applying the Nash Twist. To make use of this observation, we
need to express g in the given form. Nash’s approach is the following:
Construct a collection of functions fk, k = 1, . . . ,m such that the
symmetric bilinear forms

∂fk

∂xi
· ∂fk

∂xj

for k = 1, . . . ,m span the space of symmetric bilinear forms at each

point. Nash showed that this can be done with m = n(n+3)
2

. Then
any metric can be expressed as a linear combination of these (with
Cr coefficients if we insist that the sum of the squared norm of the
coefficients is as small as possible), and any metric which is sufficiently
close (in C0) to the metric

γij =
m∑

i=1

∂fk

∂xi
· ∂fk

∂xj

has coefficients which are positive in this decomposition.
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This shifts some of the problem back to the construction of the
free z-embedding, which must be chosen in such a way that g − gz is
close to γ in C0 to allow it to be approximated by the metric of the
y-embedding.

3.3. Existence of Full maps. Let us now construct a collection of
functions f = (f1, . . . , fm) satisfying the requirements of the previous
section, so that the metric elements dfj · dfj, j = 1, . . . ,m span the
space of symmetric 2-tensors at each point of M (let us agree that such
a map be called full). This is easy if we don’t care about the dimension:
Let F be an immersion of M into RN (we can take N = 2n by the easy
Whitney theorem) and take the collection of functions fij = Fi + Fj,
1 ≤ i ≤ j ≤ N . At any point of M , some n of the functions Fi

(say i = 1, . . . , n) are suitable as local coordinates for M , and then the

collection of n(n+1)
2

functions fij for 1 ≤ i ≤ j ≤ n have metric elements

(gij)kl =
∂fij

∂xk

∂fij

∂xl
= (δik + δjk)(δil + δjl).

These span the space of symmetric bilinear forms, since

1

4
(gii)kl = δikδil

and

(gij)kl −
1

4
(gii)kl −

1

4
(gjj)kl = δikδjl + δjkδil.

Therefore a general symmetric bilinear form with coefficients akl at a
point of Wα can be expressed as

1

4

n∑
i=1

aiigii +
∑

1≤i<j≤n

aij

(
gij −

1

4
gii −

1

4
gjj

)
.

This gives a full map into Rn(2n+1).
A better result can be obtained using a transversality argument:

The condition of fullness of a map F into RN says that at each point
the 1-jet of F (i.e. the derivative, locally an n × N matrix at each
point of M) avoids a certain union of submanifolds in the space of 1-
jets, namely the submanifolds for which the span of the metric elements

have rank k, for each k < n(n+1)
2

, in the space of symmetric bilinear

forms. The largest of these (with k = n(n+1)
2

− 1) is defined by N

equations in Nn+ n(n+1)
2

− 1 variables, and has dimension N(n− 1) +
n(n+1)

2
− 1. The 1-jet of F is a section of the 1-jet bundle, hence of

dimension n, and we want this to avoid the submanifold of dimension

N(n− 1) + n(n+1)
2

− 1 + n, so we ask that the sum of these dimensions
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be less than the dimension of the 1-jet space, which is n+Nn, so that
transversality implies disjointness. This gives the requirement

N(n− 1) +
n(n+ 1)

2
+ 2n− 1 < n+Nn,

which means N ≥ n(n+3)
2

. The transversality theorem therefore implies

that any Ck map from M to R
n(n+3)

2 can be approximated in Ck by full
maps (provided k > 1).

3.4. Isometric embedding in high dimensions. I will avoid using
Nash’s approach for now, and instead take a different approach which
requires a larger dimension.

Lemma 3.1. Let Mn be a compact C∞ manifold, and g a Ck metric
on M , k ≥ 1. Let F : M → RN be a C∞ immersion. Then there exists
a finite collection of unit vectors e1, . . . , er in RN and Ck non-negative
functions a1, . . . , ar on M such that

gkl =
r∑

i=1

a2
i

∂

∂xk
(F · ei)

∂

∂xl
(F · ei).

Proof. For each z ∈M , g is a positive definite symmetric bilinear form,
so (since all such are similar) we can choose vectors e1(z), . . . , en(z) ∈
DzF (TzM) such that

gkl(z) =
∑

1≤i≤j≤n

∂

∂xk
(F · (ei(z) + ej(z)))

∂

∂xl
(F · (ei(z) + ej(z)))

Since the bilinear forms ∂
∂xk (F ·(ei(z)+ej(z)))

∂
∂xl (F ·(ei(z)+ej(z))) are

a basis for the space of bilinear forms, and g is continuous, it remains
true for y in a neighbourhood Uz of z that

gkl(y) =
∑

1≤i≤j≤n

β2
ij(z, y)

∂

∂xk
(F · (ei(z) + ej(z)))

∂

∂xl
(F · (ei(z) + ej(z)))

where βij(z, y) is positive for each 1 ≤ i ≤ j ≤ n and each y ∈ Uz.
Cover M by a finite number of such regions (given by some choice of
z1, . . . , zm) and choose a collection of smooth non-negative functions
fα, α = 1, . . . ,m with suppfα ⊂ Uzα and

∑
α f

2
α = 1 everywhere. Then

gkl =
∑

α;1≤i≤j≤n

f 2
αβ

2
ij(zα, .)

∂

∂xk
(F ·(ei(zα)+ej(zα)))

∂

∂xl
(F ·(ei(zα)+ej(zα)))

�
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We can now apply the Nash twist to get an embedding with metric
approximating the desired metric g in Ck−1. This completes the proof
of the isometric embedding theorem, at least if we don’t care what
dimension the embedding space should be, and modulo the proof of
the local perturbation result.

3.5. Nash’s argument. A few words on Nash’s argument, which will
explain where his embedding dimension comes from: First, construct

a full map into R
n(n+3)

2 , and scale to make it short for g (that is, so
that the induced metric γ is strictly smaller than g in every direction).
Nash then wants to construct the z-embedding, which should be a free
(real-analytic) embedding with metric close in C0 to g − γ. This is
done as follows: Start with any embedding (say, into R2n as given by
Whitney’s theorem) which is short for g−γ. Nash proves (in an earlier
paper [36]) that this can be perturbed an arbitrarily small amount in
C0 to give a C1 isometric embedding of the metric g − γ. Now, at

the expense of moving to the higher-dimensional space R
n(n+5)

2 we can
approximate the resulting embedding in C1 by analytic free embeddings
(first approximate in C1 by a Ck map, k > 2, then approximate that by
a Ck free embedding using the genericity result, then approximate the
result in Ck by a real-analytic map — since the freeness, immersion and
one-to-one conditions are open in C2, the resulting map will be a free
embedding if the last approximation is close enough). Sufficiently close
C1 approximation ensures that the metric gz is close in C0 to g− γ, so
that g − gz is close to γ and the coefficients of g − gz are positive with
respect to the full map we started with. Then the Nash twist can be
used to construct the y-embedding into Rn(n+3) with arbitrarily close
Ck approximation to g − gz. If this approximation is good enough in
C3, then we can perturb the z embedding to give gz = g − gy, which
completes the proof. The resulting embedding, given by combining the
y and z embeddings, is into a Euclidean space of dimension n(n+ 3) +
n(n+5)

2
= n(3n+11)

2
.

All we are missing to carry out this approach is the C1-isometric
embedding result. Since the idea of this is closely related to the Nash
twist we have just seen, I will make a few remarks on this result and
its proof.

3.6. C1 isometric embeddings. The main result of the paper [36] is
as follows:

Theorem 3.2. Let (Mn, g) be a complete Riemannian manifold (g
continuous), and F : M → Rn+k, k ≥ 2 a strictly short immersion



ISOMETRIC EMBEDDINGS AND NASH-MOSER 175

(embedding). Then for any ε > 0 there exists a C1 immersion (embed-
ding) F ′ with |F − F ′|C0 < ε and gF ′ = g.

Kuiper [26]–[27] later improved this to allow k ≥ 1 — thus any
compact Riemannian 2-manifold can be C1-isometrically immersed in
R3. C1 isometric embeddings are therefore very different animals to
smoother ones — the main point being that curvature does not make
sense for such immersions, so all of the usual obstructions to isometric
immersion are gone.

The method of proof is as follows: We carry out a sequence of
‘stages’ in each of which we improve the aproximation to isometry,
roughly decreasing the error in the metric by half while keeping the
immersion strictly short.

In each stage we begin by writing the difference g− gF in the form
(3.1), where each of the coefficents ak is compactly supported in some
coordinate chart (this is provided by our construction above). Then
for each term in the expansion we try to do some analogue of the Nash
twist to remove most of the error from that term. Instead of ‘twisting’
in 2m dimensions as we did above, we twist in n + 2 dimensions by
choosing (on the support of ak) a pair of smooth orthonormal vectors
normal to M , say e1 and e2, and taking

Fλ = F +
ak

√
2λ

(sin(λfk)e1 + cos(λfk)e2) .

One can check that (if F is smooth), the induced metric of Fλ is a good
approximation to gF + 1

2
a2

kdf
2
k (in C0). Now repeat this for each term,

and we have completed our first stage. The factor 1
2

keeps the map
strictly short, but we can be sure of removing roughly half the error.
Now repeat the process indefinitely — at each stage we are left with
a smooth immersion (embedding), but the smoothness deteriorates as
the stages progress. However, since the metric is converging, we have
control on the map in C1.

Kuiper’s modification works by constructing ‘corrugations’ or ‘rip-
ples’ instead of twisting around in two dimensions, which is why he
needs only k ≥ 1.

4. Smoothing operators on manifolds

This section is required to prepare for the proof of the perturbation
result. Roughly speaking, the idea of the proof is to adapt Newton’s
method by introducing some smoothing at each iteration step. To do
this we need to devise smoothing operators which give the best possible
estimates.
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4.1. The required estimates. In the following we will fix a real-
analytic embedding F̄ of M into some Euclidean space, and let ḡ be the
induced metric. This will be used to define all notions of smoothness,
including norms on Cr spaces, and so on.

We need to construct smoothing operators TN for some parameter
N on our manifold, with sufficiently good properties. Here large N cor-
responds to less smoothing and better approximation, while small N
means more smoothing and consequently a worse approximation. The
two properties we will need are the following: First, a smoothed func-
tion TNu should have derivatives of all orders, with bounds depending
on lower derivatives of u:

|TNu|Cr ≤ CN r−s|u|Cs , r ≥ s.

Secondly, the approximation of the smoothed function TNu to the orig-
inal one should be good in Ck if u is more regular than Ck:

|TNu− u|Cs ≤ CN s−r|u|Cr , r ≥ s.

Constructing such an operator takes some care, as we will see.

4.2. Mollifications. The standard way of choosing a smoothing op-
erator is to take mollifications in coordinate charts, patched together
with a partition of unity. This gives good smoothing properties, but
the approximation is not as good as we require. In fact mollification
does not give the properties we need, even on R: Consider the function
u(x) = x2

1+x2 , and compute its mollifications for N large:

TNu(0) =

∫
B1(0)

ρ(y)u(y/N)dy ' CN−2

for N large. Therefore |TNu − u|C0 ≥ CN−2. However u is bounded
in C3, so we should expect |TNu − u|C0 ≤ CN−3 for N large. It can
be seen fairly easily that smoothing by mollification gives the desired
approximation estimate only for r − s ≤ 2.

4.3. Reduction to the Euclidean case. First we reduce the problem
to finding suitable operators on Rd.

The embedding F̄ has a tubular neighbourhood Va on which there
is a smooth nearest-point projection π onto M , with positive radius a
(say half of the smallest radius of curvature of the embedding). Take
a C∞ function η which is non-negative, identically equal to 1 on Va/2,
and zero outside Va.

Let P be the operator which extends a function f on M to a com-
pactly supported function on Rd by taking Pf(y) = η(y)f(πy) for
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each point y in Va, and Pf(y) = 0 outside Va This clearly satisfies the
inequalities

|Pf |Ck(Rd) ≤ C|f |Ck(M).

Also let ι be the operator which takes a function on Rd to a function
on M by restricting to F̄ (M). Then we again have

|ιf |Ck(M) ≤ C|f |Ck(Rd).

Now suppose we have smoothing operators T̃N on Rd which satisfy
the desired inequalities. Then we have

|ιT̃NPu|Cr(M) ≤ C|T̃NPu|Cr(Rd) ≤ CN r−s|Pu|Cs(Rd) ≤ CN r−s|u|Cs(M),

so the smoothing estimates hold for TN = ιT̃NP , and

|TNu− u|Cs(M) = |ι(T̃N − I)Pu|Cs(M)

≤ C|(T̃N − I)Pu|Cs(Rd)

≤ CN s−r|Pu|Cr(Rd)

≤ CN s−r|u|Cr(M).

4.4. Nash’s smoothing operators. Nash’s idea is to use convolu-
tion, but not with a compactly supported bump function as is normally
used in mollifications. Instead we define a radially symmetric function
K by taking its Fourier transform K̂ to be a compactly supported ra-
dially symmetric C∞ bump function, equal to a positive constant in
the ball of radius 1/2, and vanishing outside the ball of radius 1. This
guarantees that K is smooth and decreases rapidly at infinity, since

‖DβxαK‖L2 = ‖ξβDαK̂‖L2 <∞

for any multiindices α and β. Note also that K is real since K̂ is even.
By scaling we can ensure that

∫
Rd K(y)dyd = 1. The crucial point

about this choice is that the resulting function has no moments, i.e.
for any multiindex α with |α| > 0,∫

Rd

K(y)yαdyd = 0.

Next we define

T̃Nu(x) =

∫
Rd

K(y)u(x+ y/N)dyd =

∫
Rd

KN(y − x)u(y)dyn

where KN(y) = NdK(Ny). Note that the Fourier transform of KN is

given by K̂N(ξ) = K̂(ξ/N).
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4.5. Smoothing estimates. It is easy to see that this gives the de-
sired smoothing properties, since we can write

DαT̃Nu(x) =

∫
Rd

K(y)Dαu(x+ y/N)dyn

= (−1)|β|N |β|
∫

Rd

DβK(y)Dγu(x+ y/N)dyn,

whenever β + γ = α, and hence

|T̃Nu|Cr ≤ CN r−s|u|Cs

for integers r ≥ s. We also have

DαT̃Nu(x2)−DαT̃Nu(x1)

= ±N |β|
∫

Rd

DβK(y) (Dγu(x2 + y/N)−Dγu(x1 + y/N)) dyd

so that for σ ∈ [0, 1]

|T̃Nu|Cr,σ ≤ CN r−s|u|Cs,σ .

The most general estimate now follows by interpolation: We know that
for any function f ∈ C1,σ and any µ ∈ (σ, 1 + σ),

[f ]Cµ ≤ C[f ]1+σ−µ
C0,σ [f ]µ−σ

C1,σ

so we can estimate for r + µ ≥ s+ σ

|T̃Nu|Cr+µ ≤ C|T̃Nu|1+σ−µ
Cr,σ |T̃Nu|µ−σ

Cr+1,σ

≤ C(N r−s)1+σ−µ(N r+1−s)µ−σ|u|Cs,σ

≤ CN r+µ−s−σ|u|Cs,σ

This extends the regularity estimates to arbitrary real exponents.
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A plot of K in the one-dimensional case.

4.6. Approximation estimates. The approximation property is more
difficult to prove. First note that since K has integral equal to 1, the
limit of T̃Nu as N →∞ is u, so it is enough to control how T̃Nu changes
as N varies.

We can write

d

dN
T̃Nu(x) =

∫
Rd

d

dN
KN(y − x)u(y)dyn =

∫
Rd

LN(y − x)u(y) dyn,
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where LN(x) = Nd−1L(Nx) and L(x) = dK(x)+xiDiK(x). Note that

the Fourier transform L̂ of L is equal to −ξiDiK̂, which is radially sym-
metric, and is non-zero only on the annular region A = B1(0)\B1/2(0).

The set A can be covered by the n open sets Aj = {1
2
d−1/2 < |ξj| < 1}.

Take a smooth partition of unity with respect to this cover, say {ρj}d
j=1,

with suppρj ⊆ Aj for each j, and each ρj even. Then we can write
L =

∑
j Lj, where each of the functions Lj is a smooth, rapidly de-

creasing function with Fourier transform L̂j = ρjL̂. The beauty of this
construction is the following: For each j and each positive integer r
define Hj,r to be the real, smooth, rapidly decreasing function with

Fourier transform Ĥj,r = (iξj)
−r L̂j. This works because the support of

L̂j is away from the ξj axis. But then applying the Fourier transform
to this definition, we have

∂rHj,r

(∂xj)r
= Lj,

and therefore for any positive integer r,

d

dN
T̃Nu(x) = N−1

∫
Rd

L(y)u(x+ y/N)dyd

= N−1

d∑
j=1

∫
Rd

Lj(y)u(x+ y/N)dyd

= N−1

d∑
j=1

∫
Rd

∂rHj,r

(∂yj)r
u(x+ y/N)dyd

= (−1)rN−r−1

d∑
j=1

∫
Rd

Hj,r(y)D
r
ju(x+ y/N)dyd.

Taking the Cs norm for any s ≥ 0, we obtain∣∣∣∣ ddN T̃Nu

∣∣∣∣
Cs

≤ CN−r−1 |u|Cr+s .

Integrating from N to ∞ gives∣∣∣T̃Nu− u
∣∣∣
Cs
≤ C

∫ ∞

N

N−r−1 dN |u|Cr+s ≤ CN−r |u|Cr+s ,

which is the required approximation estimate in the case of integer
exponents. In the general case we proceed as before, first by noting
that the argument above gives∣∣∣∣ ddN T̃Nu

∣∣∣∣
Cs,µ

≤ CN s−r−1 |u|Cr,µ
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and then interpolating the Cs,σ norm of d
dN
T̃Nu between the Cs,µ and

Cs±1,µ norms (depending whether σ is greater than or less than µ) to
obtain ∣∣∣∣ ddN T̃Nu

∣∣∣∣
Cs,σ

≤ CN s+σ−r−µ−1 |u|Cr,µ .

Integrating from N to∞ then gives the desired approximation estimate∣∣∣T̃Nu− u
∣∣∣
Cs,σ

≤ CN s+σ−r−µ |u|Cr,µ ,

provided s+ σ ≤ r + µ.

4.7. Approximating tensors. So far everything has been done for
approximating functions. We also need to be able to approximate met-
rics, and this is done as follows: Given our embedding F̄ , the tangent
space for M at each point can be identified with a subspace of the
embedding space Rd. The metric can be extended to a bilinear form
on Rd at each point by taking the action on any normal vector to be
zero.

The metric is then represented by a d × d matrix at each point,

and we think of this as a collection of d(d+1)
2

real functions on M . We
approximate each of these as before, then restrict back to the tangent
plane to obtain our approximations. This gives the same kinds of
estimates as for the approximations of functions.

Similar remarks apply for approximating arbitrary tensors on a
manifold.

5. Perturbation result after Hörmander

I will now turn to an argument based on one of Hörmander [22],
which is somewhat easier to motivate and understand than Nash’s orig-
inal argument, and avoids some technicalities such as the short-time
existence of Nash’s continuous deformation process. This is simplest
in the case where the desired metric change is in a non-integer Hölder
space. The integer case is not treated by Hörmander, but I include a
proof here using a slight extension of his argument. I also provide a
proof that more regular metrics are in fact attained by more regular
embeddings.

5.1. Decomposition into frequency bands. The key idea in Hör-
mander’s proof is to break up the total desired metric change into pieces
corresponding to various ‘frequency bands’, and then feed these pieces
in one at a time with a level of smoothing suited to each piece.



182 BEN ANDREWS

In order to get a good decomposition into pieces, we define for each
positive integer j an operator Rj as follows:

(5.1) Rjf = Tej+1f − Tejf.

For j = 0 we take R0f = T1f .
The operators Rj have good estimates: First, for j > 0 we have

‖Rjf‖Cr ≤
∫ ej+1

ej

∥∥∥∥ dTdN f

∥∥∥∥
Cs

dN

≤ Cr,s

∫ ej+1

ej

N r−s−1 dN‖f‖Cs

≤ Cr,s
N r−s

r − s

∣∣∣ej+1

ej
‖f‖Cs

≤ Cr,s(e
r−s − 1)

r − s
ej(r−s)‖f‖Cs

= C̃r,se
j(r−s)‖f‖Cs .(5.2)

This estimates holds (with constants depending on r and s) for any
values of r and s.

We can write formally

f =
∞∑

j=0

Rjf,

since the partial sum to k terms is just Tek . This converges to f as
k →∞, at least in the Cβ sense for β < α if f is Cα. In fact if f is Ck

then the sum converges in Ck, but the same result is not true for Ck,σ,
σ > 0 (Exercise: A function f on a compact manifold M is continuous
if and only if TNf approaches f uniformly as N →∞).

Recalling our definition of the smoothing operators, we can give
the operator Rj an interpretation: TN truncates the Fourier transform
of (the extension of) f to the ball of radius N (give or take a bit of
smoothing), so Rj is more or less the operator which takes that part of
f which has Fourier transform in the shell between radii ej and ej+1.

5.2. A characterisation of Ck,α functions. There is a kind of con-
verse to the observation of the previous section, which will be very
helpful in the proof we outline below: Suppose we have a sequence of
functions uj, j = 0, 1, . . . satisfying the following estimates for some
constant M :

(5.3) ‖uj‖Cr ≤Mej(r−s)
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for every r in some range [r1, r2], where r1 < s < r2. Then the sum∑∞
j=0 uj converges in Cr for r < s (the sum is absolutely convergent

for such r). Let the limit be u. Below we assume that s = k+σ where
0 < σ < 1 — we will consider integer cases later.

Theorem 5.1. Assume s is not an integer. If u =
∑

j uj, and ‖uj‖r ≤
Mej(r−s) for all j and all r ∈ [r1, r2], then u is in Cs, and ‖u‖Cs ≤
CM for some constant C depending on r1 and r2 and the smoothing
constants.

In fact we will get a little more: If we consider the infinum of M
over all such decompositions of u into pieces satisfying the estimate
(5.3), this is comparable to ‖u‖Cs .

Note first that the sum converges absolutely in Ck, so in particular
the limit is Ck and the Ck norm can be estimated by

‖u‖Ck ≤
∞∑

j=0

Me−jσ ≤ M

1− e−σ
.

We need to obtain a C0,σ estimate for any kth derivative of u. To get
this, we write Sju =

∑j
i=0 ui, choose µ = min{r2− k, 1} > σ and leave

j to be chosen, and obtain

|Dku(x)−Dku(y)| ≤ |Dku(x)−DkSju(x)|
+ |DkSju(x)−DkSju(y)|+ |DkSju(y)−Dku(y)|

≤ 2

∥∥∥∥∥
∞∑
i=j

ui

∥∥∥∥∥
Ck

+

∥∥∥∥∥
j−1∑
i=0

ui

∥∥∥∥∥
Ck,µ

|y − x|µ

≤ 2M
∞∑
i=j

e−iσ +M

j−1∑
i=0

ei(µ−σ)|y − x|µ

≤ 2M
e−jσ

1− e−σ
+M

ej(µ−σ)

eµ−σ − 1
|y − x|µ

≤M |y − x|σ
(

2 (ej|y − x|)−σ

1− e−σ
+

(ej|y − x|)µ−σ

eµ−σ − 1

)
.

Now we choose j to be the integer closest to − log |y − x|, so that

1√
e
≤ ej|y − x| ≤

√
e,

so that the bracket in the last line becomes a constant depending only
on σ and µ− σ. This proves the Theorem.
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5.3. The approximation process. Hörmander’s method is to de-
compose the desired metric change h = g−gF0 into frequency bands as
above, then feed these in one at a time to Newton’s method, each time
smoothing at a length-scale suited to the frequency band. Precisely,
we start at the embedding F0, and take a sequence of adjustments Ḟj,

j = 0, 1, . . . ,. The embedding F0 +
∑k−1

j=0 Ḟj is denoted by Fk, and for

convenience we denote by uk the total correction Fk − F0 =
∑k−1

j=0 Ḟj.
Then the corrections are defined by

(5.4) Ḟk = LF0+vk
hk,

where hk = Rkh is the kth frequency band of the desired metric change,
and vk is a smoothing of uk:

(5.5) vk = Tekuk.

Here also L is the operator we derived in section 4 of Lecture 2 as an
inverse for the linearised problem:

(5.6) LFh =
1

2

(
G−1

F

)ij,kl
hijII

F
kl,

where IIF is the second fundamental form of the embedding F , and GF

is the metric induced on the bundle of symmetric 2-tensors by this, i.e.

(GF )ij,kl = IIF
ij · IIF

kl.

After having completed this for all k, we will have achieved a new
embedding which is much closer to having the desired metric change
— it will turn out that if the desired metric change is Cs with suffi-
ciently small norm δ, then the error after this sequence of corrections
is bounded in Cs, with norm at most Cδ2.

5.4. Estimating compositions and products. In analyzing the be-
haviour of the iteration we have just defined, it is useful to observe two
facts. First, we have a result that simplifies the estimation of products
of functions:

Lemma 5.2. Suppose φ and ψ are Cr functions. Then

‖φψ‖r ≤ C (‖φ‖0‖ψ‖r + ‖φ‖r‖ψ‖0)

where C may depend on r.

The starting point in the proof is the following interpolation esti-
mate (see [21])

(5.7) ‖u‖s ≤ C‖u‖1−s/r
0 ‖u‖s/r

r

for any 0 < s < r.
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If we compute a derivative of φψ in the direction of a multi-index
α, we get terms like this:

Dα(φψ) =
∑

β+γ=α

DβφDγψ.

If r = k + σ, with k an integer and σ ∈ [0, 1), then

‖φψ‖r =
∑
|α|≤k

‖Dα(φψ)‖σ

≤
∑

p+q≤k

(‖φ‖p+σ‖ψ‖q + ‖φ‖p‖ψ‖q+σ)

≤ C
∑

p+q≤k

‖φ‖
q

p+q+σ

0 ‖φ‖
p+σ

p+q+σ

p+q+σ‖ψ‖
p+σ

p+q+σ

0 ‖ψ‖
q

p+q+σ

p+q+σ

+ C
∑

p+q≤k

‖φ‖
q+σ

p+q+σ

0 ‖φ‖
p

p+q+σ

p+q+σ‖ψ‖
p

p+q+σ

0 ‖ψ‖
q+σ

p+q+σ

p+q+σ

≤ C
∑
j≤k

(‖φ‖0‖ψ‖j+σ + ‖φ‖j+σ‖ψ‖0)

≤ C (‖φ‖0‖ψ‖r + ‖φ‖r‖ψ‖0) .

Here we used the interpolation estimate (5.7) to obtain the third line,
then Young’s inequality to get the second-last line.

The other fact we need is the following, which simplifies the esti-
mation of compositions of the type appearing in our iteration:

Lemma 5.3. Suppose ψ is a smooth map on an open bounded set U ,
and f maps into U . Then for any r ≥ 0,

‖ψ ◦ f‖r ≤ C (1 + ‖f‖r) .

Here the constant C depends on bounds for derivatives of ψ up to order
r, and on the bound for U .

This holds quite generally, but we will be applying it in estimating
terms in the operator L, which we think of as a smooth function of
f = D2F on a suitable region U where GF is bounded from below.
This gives the following:

Corollary 5.4. Given a free embedding F0, there exists δ > 0 and
C <∞ such that for any F ∈ Cr+2 with ‖F − F0‖2 < δ,

‖LFh‖r ≤ C (‖h‖r + ‖h‖0‖F‖r+2)

This follows from the form (5.6) of the operator L, and uses both
Lemma 5.2 and 5.3. The crucial point in the above result is that the
derivatives of F appear only in a linear way in the estimate, even though
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high derivatives of LFh will typically result in products of many terms
involving derivatives of F .

Now I will prove Lemma 5.3. If we compute a kth derivative of a
composition, we get something of the following form:

Dk(ψ ◦ f) =
k∑

i=1

Diψ ∗
∑

j1+···+ji=k

Dj1f ∗ · · · ∗Djif,

where A ∗B represents a linear combination of terms obtained by con-
tracting tensor A with tensor B. The interpolation estimate can be
applied to each term involving derivatives of f , yielding for σ ∈ [0, 1)
(with k + σ ≤ r)

‖Dj1f∗ · · · ∗Djif‖σ

≤ C

i∑
l=1

Dj1f‖0 . . . D
jl−1f‖0‖Djlf‖σ‖Djl+1f‖0 . . . ‖Djif‖0

≤ C
i∑

l=1

‖f‖1−jl+σ/r
0 ‖f‖

jl+σ

r
r

∏
m6=l

‖f‖1−jm/r
0 ‖f‖jm/r

k

= C‖f‖i− j1+···+ji+σ

r
0 ‖f‖

j1+···+ji+σ

r
r

≤ C‖f‖i−1
0 ‖f‖r.

The Lemma follows (using Lemma 5.2), since Diψ is bounded in Cσ

and ‖f‖0 is bounded by assumption.

5.5. Controlling the embeddings. We will first show that the em-
beddings can be controlled quite strongly throughout the sequence of
corrections (5.4)–(5.5), and converge to a Cs embedding. In fact the
following estimates hold for each j:

(5.8) ‖Ḟj‖Cr ≤ C1e
j(r−s)‖h‖Cs

for r1 ≤ r ≤ r2;

(5.9) ‖uj‖Cs ≤ C2‖h‖Cs ,

where C2 can be assumed to be small enough that any map with ‖F −
F0‖s ≤ C2 is a free embedding with GF bounded away from zero; and
furthermore

(5.10) ‖vj‖Cr ≤ C3e
j(r−s)‖h‖Cs

for s < r ≤ r2 + 2; finally

(5.11) ‖uj − vj‖Cr ≤ C4e
j(r−s)‖h‖Cs
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for all r ≤ r2. Here C1, . . . , C4 are constants independent of j and h.
In proving these we will assume that ‖h‖s is sufficiently small, say less
than a constant δ < 1.

For j = 0 we have the last three inequalities trivially, since u0 =
v0 = 0. We will proceed by induction: Suppose we have the last three
inequalities for 0 ≤ j ≤ k and the first one for 0 ≤ j ≤ k − 1. We will
prove the first inequality for j = k and the last three for j = k + 1.

To prove the first we use Corollary 5.4)(writing A = ‖F0‖r2+2 and
using Corollary 5.4)

‖Ḟk‖r = ‖LF0+vk
hk‖r

≤ C (‖F0 + vk‖r+2‖hk‖0 + ‖F0 + v‖2‖hk‖r)(5.12)

≤ C
(
(A+ C3e

k(r+2−s)+‖h‖s)e
−ks‖h‖s + ek(r−s)‖h‖s

)
≤ Cek(r−s)‖h‖s

(
1 + Ae−kr + C3δe

k((r+2−s)+−r)
)

If s ≥ 2, the exponentials in the bracket are all bounded by 1. Choose
C1 > C(1 + A), and choose δ sufficiently small to ensure C1 > C(1 +
A + C3δ) — this can be done whatever the value of C3 may be. This
proves the first estimate for j = k.

To prove the second for j = k + 1, we note that uk+1 =
∑k

j=0 Ḟj.
The estimate we have just proved shows that this sum satisfies the
assumptions of Theorem 5.1, so uk+1 has Cs norm bounded by CC1,
so we must choose C2 larger than this.

The third estimate follows from the estimates for the smoothing
operator, giving

‖vk+1‖Cr ≤ Cr,se
(k+1)(r−s)‖uk+1‖Cs

for any r ≥ s, and we can take the constant Cr,s uniform on bounded
intervals of r, in particular for s ≤ r ≤ r2 + 2. This gives the third
estimate provided C3 ≥ CC2.

For r = 0 (or more generally any r < s) the fourth estimate also fol-
lows from the second by the approximation estimates for the smoothing
operator:

‖uk+1 − vk+1‖0 ≤ Ce−(k+1)s‖uk+1‖s.
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For r = r2 we get a similar estimate by much cruder means:

‖uk+1 − vk+1‖r2 ≤ ‖uk+1‖r2 + ‖vk+1‖r2

≤ (1 + C)‖uk+1‖r2

≤ (1 + C)

∥∥∥∥∥
k∑

j=0

Ḟj

∥∥∥∥∥
r2

≤ (1 + C)C1

k∑
j=0

ej(r2−s)‖h‖s

≤ (1 + C)C1

er2−s − 1
e(k+1)(r2−s)‖h‖s.

Interpolation gives the estimate for each r ∈ [r1, r2], with a constant
comparable to the larger of the above two. Thus we are in business pro-
vided C4 ≥ C(C1 +C2). This completes the induction, and establishes
the bounds for every j.

It follows (from Theorem 5.1) that as k → ∞ the embeddings
Fk = F0 + uk converge (in Cr for r < s) to a limit F∞ which is Cs.

5.6. Controlling the errors. Now we will turn to controlling the
errors in the metric accumulated over the sequence of corrections. This
is not too hard: Let us compute the change in the metric ġk = gFk+1

−
gFk

in each step:

(5.13) ġ = hk +D(Ḟk)⊗D(Ḟk)+D(uk− vk)⊗D(Ḟk) = gk +Ek +E ′
k.

The second and third terms are the error terms that we need to control.
For the second term we have the estimate

‖Ek‖Cr ≤ C‖Ḟk‖C1‖Ḟk‖Cr+1 ≤ CC2
1e

k(r−(2s−2))‖h‖2
s.

for r ∈ [r1, r2]. For the third term we have

‖E ′
k‖Cr ≤ C

(
‖uk − vk‖1‖Ḟk‖r+1 + ‖uk − vk‖r+1‖Ḟk‖1

)
≤ CC1C4e

k(r−(2s−2))‖h‖2
s

provided r1 ≤ 1 and r2 > s+ 1.
Combining these, we have

‖ġk − hk‖r ≤ C(C2
1 + C1C4)e

k(r−(2s−2))‖h‖2
s

for all k, from which we deduce (by Theorem 5.1) that

‖
∞∑

k=0

(ġk − hk)‖2s−2 ≤ C‖h‖2
s.
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Thus the metric of the limit F∞ is g0+h+E, where ‖E‖C2s−2 ≤ C‖h‖2
s.

5.7. Continuity. A slightly more detailed look at the above argument
also gives us that the embedding F∞ we end up with, and the metric
g0 + h + E(h), depend continuously on h in Cs. If we take two Cs

bilinear forms h and k (with norm less than δ), then the corresponding
embeddings at each step, Fk,i = F0 + uk,i and Fh,i = F0 + uh,i, satisfy
the estimates

‖Ḟh,i − Ḟk,i‖r ≤ Cei(r−s)‖h− k‖s, r1 ≤ r ≤ r2;(5.14)

‖uk,i − uh,i‖r ≤ Cei(r−s)‖h− k‖s, s ≤ r ≤ r2;(5.15)

‖vk,i − vh,i‖r ≤ Cei(r−s)‖h− k‖s, s ≤ r ≤ r2 + 2;(5.16)

‖uk,i − vk,i − uh,i + vh,i‖r ≤ Cei(r−s)‖h− k‖s, r ≤ r2 + 1.

(5.17)

This follows by a straightforward induction argument using the esti-
mates (5.8)–(5.11).

From this we find (by an argument very similar to that above) that
the errors E(h) and E(k) in the metrics of the two limiting embeddings
satisfy

(5.18) ‖E(h)− E(k)‖2s−2 ≤ C‖h− k‖s (‖h‖s + ‖k‖s) .

In particular, E is a continuous map into C2s−2. Similar arguments
show that E is differentiable.

5.8. Removing the errors. The metric we end up with by feeding in
a desired metric change h is given by h+E(h), where E(h) is bounded
in C2s−2, hence compact in Cs (since s > 2), with norm bounded
by ‖h‖2

s. It follows from the Schauder fixed point theorem that this
takes on all values in a neighbourhood of the origin in Cs: To find a
solution of h+E(h) = ϕ, we solve the equation −E(ϕ+v) = v, so that
ϕ + v + E(ϕ + v) = ϕ. The map E(ϕ + .) is compact and continuous
from Bδ ⊂ Cs into Cs, and maps the ball of radius δ′ inside the ball
of radius C(δ′)2 in Cs for δ′ < δ if ‖ϕ‖s < δ′. Choosing δ′ sufficiently
small so that Cδ2 < δ, we get a fixed point of E(ϕ + .) in Bδ′ (see
Corollary 11.2 in Gilbarg-Trudinger [7]).

Remark 5.5. In this proof the original embedding F0 must be bounded
in Cs2+2, which means we can perturb in Cs provided s > 2 and the
initial embedding is Cs′ with s′ > s+ 3.
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5.9. Remarks on integer cases. Next let us consider what happens
in cases where s is an integer. Here we have two different interpretations
of the space Cs — either Cs or Cs−1,1. We will deal with both of these
cases.

The main difficulty is that Theorem 5.1 does not apply in either of
these cases, so we have to work harder to show that the embeddings
are controlled in Cs or in Cs−1,1 if h is.

The first step is to observe that we can still salvage something from
the previous argument, even without Theorem 5.1: For fixed r1 < s <
r2, we define a Banach space C̃s to be the space of all functions f which
can be expressed in the form f =

∑∞
j=0 fj where

(5.19) ‖fj‖r ≤Mej(r−s)

for all r ∈ [r1, r2]. For a norm ‖.‖s̃ we take the infimum of M over all
such decompositions of f . The properties of the operators Rj imply

that Cs ⊂ Cs−1,1 ⊆ C̃s, and ‖f‖s̃ ≤ C‖f‖s−1,1 for f ∈ Cs−1,1, since we
can take the decomposition f =

∑
j Rjf .

We also note that the space C̃s is independent of the choice of r1
and r2, and can be characterised as the space of functions f for which

‖Rjf‖r ≤ C(r)ej(r−s)

for every j and every r ≥ 0. If we take a different choice of r1 and r2
then the norm may change, but remains equivalent to the previous one.
To see this, suppose we have any decomposition f =

∑
j fj satisfying

(5.19), and consider the operators Ri applied to each piece:

‖Rifj‖Cr ≤ C̃r,r′e
i(r−r′)‖fj‖Cr′ ≤ C̃r,r′Mei(r−r′)ej(r′−s),

provided r1 ≤ r′ ≤ r2.
We will sum the above estimates to get an estimate for Rif : Note

that
∑

j fj converges to f in Cr for any r: For r < s the sum is

absolutely convergent, so Ri(
∑
fj) converges to Rif in Cr. But for

each i, ‖Ri(
∑
fj)‖Cp ≤ C̃p,r1e

i(p−r1)‖
∑
fj‖Cr1 where p is some large

number. Thus the partial sums are bounded in Cp and convergent in
Cr1 . By interpolation, the sum is convergent in Cr for any r < p.
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Therefore we have for any r

‖Rif‖Cr = ‖Ri(
∑

fj)‖Cr

≤
∑

j

‖Rifj‖Cr

≤ CM
∑

j

ei(r−r′(j))+j(r′(j)−s)

= CMei(r−s)
∑

j

e(i−j)(s−r′(j)).

where we can choose r′(j) in [r1, r2] for each j. We now choose r′(j) = r1
for j > i, and r′(j) = r2 for j ≤ i. This gives

‖Rif‖Cr ≤ CMei(r−s)

(∑
j<i

e−(i−j)(r2−s) +
∑
j≥i

e−(j−i)(s−r1)

)

≤ CMei(r−s)

(
∞∑
l=1

e−l(r2−s) +
∞∑
l=0

e−l(s−r1)

)
≤ C̃Mei(r−s)

where

C̃ = C

(
1

er2−s − 1
+

1

1− e−(s−r1)

)
.

This shows that we can replace the original decomposition of f by
the decomposition f =

∑
Rjf , without substantially changing the

constant M on the range [r1, r2], and that the estimates extend (with
increased constants) to any larger range of r.

Remark 5.6. The same construction could be used for non-integer s,
but then the space C̃s is the same as Cs, with equivalent norm.

Having defined the space C̃s, we observe that in applying the
smoothing operators we can often replace Cs norms with C̃s norms
in the estimates: In particular, if f ∈ C̃s and r < s (we will assume r
is not too close to s, so we might as well take r < r1) , then we can
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estimate the approximation of Teif to f in Cr as follows:

‖Teif − f‖r = ‖
∑

j

(Teifj − fj)‖r

≤ C
∑

j

ei(r−r′(j))‖fj‖r′(j)

≤ CM
∑

j

ei(r−r′(j)ej(r′(j)−s)

≤ CMei(r−s)

(∑
j<i

e(i−j)(s−r2) +
∑
j≥i

e(i−j)(s−r1)

)
≤ CMei(r−s)(5.20)

where the constant depends on r2 − s and s− r1.
Now we are ready to begin the proof that the embeddings converge

in Cs or Cs−1,1. As a first step, we show that if h is in small in C̃s

then the embedding converges in C̃s, and the error E(h) in the metric
satisfies

‖E(h)‖2s−2 ≤ C‖h‖2
s̃.

To see this, we just observe that the four estimates (5.8)–(5.11) can be
obtained, with the same proof, with ‖h‖s replaced by ‖h‖s̃ wherever
it appears: The only differences are that we use the definition of C̃s

instead of Theorem 5.1 to get the bound on uk+1, and we use (5.20)
instead of the usual approximation estimate to obtain (5.11). The
convergence of the embeddings then follows again from the definition
pf C̃s, and the estimates on the metric errors go through unchanged.

Remark 5.7. Thus we can prove that we can do a C̃s perturbation to
get any sufficiently small C̃s metric change. While interesting, this is
not so useful without further understanding of the space C̃s.

Now we consider the case where h is in Cs−1,1. Then in particular
it is in C̃s, so we know the embeddings converge in C̃s, and we have
the estimates (5.8)–(5.11). We will prove that uj remains bounded
in Cs−1,1, from which it follows that the limiting embedding F∞ has
the same bound. This will follow from the fact that the partial sums∑k

j=0Rjh = Tek+1h remain bounded in Cs−1,1 (this is just the bound

for the smoothing operator).



ISOMETRIC EMBEDDINGS AND NASH-MOSER 193

To use this, we have to express uk in a way that involves the partial
sums. This is analogous to an integration by parts:

uk+1 =
k∑

j=0

Ḟj

=
k∑

j=0

LF0+vj
hj

= LF0

(
k∑

j=0

hj

)
+

k∑
l=1

(
LF0+vl

− LF0+vl−1

)( k∑
j=l

hj

)
.(5.21)

We can estimate this in Cs−1,1 as follows:

‖uk+1‖s ≤ C

∥∥∥∥∥
k∑

j=0

hj

∥∥∥∥∥
0

+

∥∥∥∥∥
k∑

j=0

hj

∥∥∥∥∥
s


+

k∑
l=1

‖vl − vl−1‖s+2

∥∥∥∥∥
k∑

j=l

hj

∥∥∥∥∥
0

+ ‖vl − vl−1‖2

∥∥∥∥∥
k∑

j=l

hj

∥∥∥∥∥
s


≤ C‖h‖s +

k∑
l=1

e2le−sl‖h‖2
s

+
k∑

l=1

e(2−s)l‖h‖2
s

≤ C‖h‖s.

This completes the proof for the Cs−1,1 case.
Next we turn to the proof for the Cs case for s an integer. If h is Cs

then it is certainly Cs−1,1, so we have convergence of the embeddings
in Cs−1,1. To show that the limiting embedding is Cs we will show that
the embeddings uk form a Cauchy sequence in Cs. This will use the
fact that the partial sums Tekh =

∑k−1
j=0 h converge to h in Cs. From

(5.21) we have the following expression for the difference between uk+1

and ul+1 for l < k:

(5.22) uk+1−ul+1 = LF0+vl+1

(
k∑

j=l+1

hj

)
+

k∑
i=l+2

(
LF0+vi

−LF0+vi−1

)( k∑
j=i

hj

)
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For convenience we define

∆l = sup
m≥n≥l

∥∥∥∥∥
m∑

i=n

hi

∥∥∥∥∥
s

,

and note that ∆l → 0 as l→∞. Estimating this as before, we find

‖uk+1 − ul+1‖s

≤ C

‖F0 + vl+1‖s+2

∥∥∥∥∥
k∑

j=l+1

hj

∥∥∥∥∥
0

+ ‖F0 + vl+1‖2

∥∥∥∥∥
k∑

j=l+1

hj

∥∥∥∥∥
s


+ C

k∑
i=l+2

‖vi − vi−1‖s+2

∥∥∥∥∥
k∑

j=i

hj

∥∥∥∥∥
0

+ ‖vi − vi−1‖2

∥∥∥∥∥
k∑

j=i

hj

∥∥∥∥∥
s


≤ C

(
1 + e2(l+1)‖h‖s

) k∑
j=l+1

e−js‖h‖s + C

∥∥∥∥∥
k∑

j=l+1

hj

∥∥∥∥∥
s

+ C
k∑

i=l+2

e2i‖h‖s

k∑
j=i

e−js‖h‖s + ei(2−s)‖h‖s

∥∥∥∥∥
k∑

j=i

hj

∥∥∥∥∥
s


≤ C

(
e−(l+1)s + e−(l+1)(s−2)‖h‖s

)
‖h‖s + C∆l+1

+ C
k∑

i=l+2

(
e−(s−2)i‖h‖2

s + e−i(s−2)‖h‖s∆l+1

)
≤ Ce−(s−2)(l+1)(1 + ∆l+1)‖h‖s.

This can be made arbitrarily small by choosing l sufficiently large, so
the sequence {uk} is Cauchy in Cs, and the limiting embedding F∞ is
Cs.

The argument using the Leray-Schauder fixed-point theorem to
remove the errors goes through unchanged.

Remark 5.8. This works for integers s > 2. It fails for s = 2, in several
points: First, we no longer have that the error E(h) is compact in Cs

— this is not so crucial, since we could work a bit harder and deduce
that the error is differentiable in C2 near 0, with derivative zero, then
apply the classical implicit function theorem instead to deduce h+E(h)
covers a neighbourhood of the origin in C2. More crucial is the fact
that we can no longer show convergence in C2, since we rely on the
exponential decay at rate e−(s−2) to bound various terms. It is not
known whether C2 metrics can be C2-isometrically embedded.
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5.10. Higher regularity. To complete the proof of the perturbation
result, we show that the embeddings converge in Cs′ for non-integer
s′ > s if h is Cs′ and F0 is sufficiently regular. Here we do not want
to assume that h is small in Cs′ or to decrease δ any further. Integer
cases can also be treated by methods analogous to those in the previous
section.

Given s′, we choose some r3 > s′+1, and assume that F0 is bounded
in Cr3+2, with norm A′. The first step is to observe that the estimate
(5.10) on vk obtained in the proof of convergence in Cs extends (possi-
bly with a larger constant C ′

3 instead of C3) to hold with r3 replacing
r2: The bound on ‖vk‖r follows from the bound on ‖uk‖s together with
the properties of the smoothing operator.

We will prove that the estimates (5.8)–(5.11) holds (for some new
constants C̃1, . . . , C̃4) with r2 replaced by r3 and s replaced by s′. This
follows by induction as before: In the proof of (5.8), we obtain from
(5.12)

‖Ḟk‖r ≤ C (‖F0 + vk‖r+2‖hk‖0 + ‖F0 + v‖2‖hk‖r)

≤ C
(
(A′ + C ′

3δe
k(r+2−s)+))e−ks′‖h‖s′ + ek(r−s′)‖h‖s′

)
≤ C(1 + A′ + C ′

3δ)e
k(r−s′)‖h‖s′ ,

since s′ > 2. This proves the estimate if we choose C̃1 = C(1+A′+C ′
3δ).

Here we do not need to choose δ small as we did before, because the
estimate does not involve C̃3, only C3. The remaining estimates now
follow without change.

It follows from the new version of (5.8) and Theorem 5.1 that the
limiting embedding is Cs′ . The error in the metric can also be bounded:
In equation (5.13) we can estimate

‖Ek‖r ≤ C‖Ḟk‖C1‖Ḟk‖Cr+1

≤ CC1e
k(1−s)C̃1e

k(1+r−s′)‖h‖s‖h‖s′

≤ CC1C̃1δe
k(r−(s′+s−2))‖h‖s′ ,

and

‖E ′
k‖r ≤ C

(
‖uk − vk‖1‖Ḟk‖r+1 + ‖uk − vk‖r+1‖Ḟk‖1

)
≤ CC4e

k(1−s)‖h‖sC̃1e
k(r+1−s′)‖h‖s′

≤ CC4C̃1δe
k(r−(s′+s−2))‖h‖s′ ,

provided r < r3 − 1. Theorem 5.1 then implies the estimate

‖E‖s′+s−2 ≤ Cδ‖h‖s′ .
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As before, we can also show that the limit metric and the limit embed-
ding vary Cs′-continuously as a function of h, and that the error E is
continuous in Cs′+s−2.

We now want to apply the Schauder fixed point theorem to show
that if ‖ϕ‖s < δ′ (with the same δ′ as before) and ‖ϕ‖s′ < ∞, then
there is some h ∈ Cs′ such that h+ E(h) = ϕ.

Consider the closed convex set A = {h : ‖h‖s ≤ δ′, ‖h‖s′ ≤ M}
for some constant M yet to be chosen. The same estimates as before
show that if ‖ϕ‖s ≤ δ′ and h ∈ A then ‖E(ϕ+ h)‖s < δ′. To estimate
the Cs′ norm we note that by interpolation, if ‖h‖s′ ≤M then

‖E(ϕ+ h)‖s′ ≤ C‖E(ϕ+ h)‖
s′−s

s′+s−2

s′+s−2‖E(ϕ+ h)‖
s−2

s′+s−2
s

≤ Cδ (‖ϕ‖s′ +M)1− s−2
s′+s−2

< M,

provided M is sufficiently large compared to ‖ϕ‖s′ . Therefore the map
−E(ϕ+ .) is compact and continuous, and maps A strictly inside itself.
Therefore we have a fixed point, which is a Cs′ symmetric bilinear form
v such that h+ E(h) = ϕ for h = ϕ+ v.

This also gives the C∞ case: If ‖h‖s < δ′ and h is C∞, then we
get for any s′ > s a Cs′ embedding achieving the metric g0 + h, with
bounds in Cr depending only on ‖h‖r for each r ∈ [s, s′]. Taking a
limit as s′ → ∞, and using a diagonal subsequence construction, we
obtain a limit which is C∞.

5.11. Further remarks. It is useful to note that the result we obtain
is somewhat stronger than the one stated by Nash: To obtain a Cs

embedding of a Cs metric g it suffices to start from a Cs+3+ε free
embedding F0, with metric g0 satisfying ‖g0−g‖s < δ′, where δ′ depends
on s, ‖F0‖s+3+ε, and a bound on G−1

F0
(the latter controls the freeness

of F0).
The reason why Nash did not bother to state this is probably that

the stronger result still doesn’t seem to be enough to get around the
need for Nash’s elaborate construction using the y and z embeddings:
If we approximately isometrically embed a Cs metric in the Cs sense,
the Cs+3+ε norms of the embedding necessarily become large if the
metric is not this regular, and so we have no control over the required
δ′. In fact this can be circumvented using better methods for approxi-
mations — I’ll make some more remarks on this point after discussing
Günther’s argument, since it is also his work which provide the better
approximation results.
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I should also remark that the proof I have given here can easily
be adapted to other settings where there is loss of differentiability, or
to prove a general implicit function theorem of Nash-Moser type. See
the survey of Hamilton [16] for many examples and applications of this
kind of result. There are many approaches to the proof of this kind of
result, ranging from the Newton method employed by Moser [33]–[34]
and by Schwartz [45]–[46] — which yields a relatively simple proof but
one which is not optimal as regards differentiability assumptions —
to methods of Jacobowitz [24]— which use extension of real-analytic
functions to complex-analytic ones, applying complex-analytic methods
and then employing classical approximation techniques to get results
for lower differentiability classes — to the arguments of Sergeraert [47]
and Hamilton [16], which are aimed at producing results in the setting
of suitable Frechet spaces (see also [31] for further extensions), and the
argument of Nash himself [37]–[38] (see also Hörmander [21] for a simi-
lar argument with a little further motivation and explanation) which is
beautiful and delicate but decidedly non-obvious (“like lightning strik-
ing” according to Gromov). I like Hörmander’s argument because it is
significantly simpler and more transparent than Nash’s, but still gives
good results for natural graded sequences of Banach spaces (such as
Ck as I had here) as well as for the Frechét space limit.

6. Günther’s argument

Next we will work through the argument of Günther [13]–[14] which
gets around the loss of differentiability, and so allows the isometric
embedding theorem to be deduced from a Banach space fixed point
theorem.

6.1. Loss of differentiability. Recall the problem which forced us
to use the Nash-Moser argument: Given a general Cs variation (let us
assume for simplicity that s is not an integer), the change in the metric
is bounded in Cs−1, but not in Cs, so one might expect to apply the
inverse function theorem by showing that the derivative of this map
is invertible. But the ‘inverse’ we construct, given by taking normal
variations, is only Cs−1 if the metric change is Cs−1, so this is not
actually an inverse for the derivative as a map between Cs and Cs−1

— that is, our inverse for the derivative is unbounded.
The source of this unboundedness is easy to identify: If we take

an actual variation in a normal direction, rather than an infinitesimal
variation, then we have an extra term which is quadratic in the deriva-
tives of the variation. This drops out for an infinitesimal variation (so
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the derivative maps Cs to Cs), but ruins the regularity for an actual
variation.

One way to think about the problem is like this: If we consider a
variation Ft = F0 + tV where V is normal to F0, the rate of variation
V is no longer normal to Ft for positive times t. One should instead
modify the variation to keep it normal to the moving submanifold.
That is hard to do — one runs into problems in showing the existence
of such a continuous deformation — but we are left with the feeling
that there should be non-trivial variations which do not result in loss
of regularity.

If the problem is that our variations are not normal to the deformed
submanifolds, it should be possible to correct for this by including some
suitable component of the variation which is tangential to the subman-
ifold. Günther managed to do this, by showing that the quadratic error
term can be counteracted by a suitable tangential variation.

6.2. Constructing good variations: The torus case. For simplic-
ity let us first consider the case of the torus, so that we have a flat
metric on our manifold. This simplifies things slightly, as we can com-
mute derivatives without generating curvature terms, and we don’t
have to worry about covariant derivatives.

If we want to achieve a metric variation hij, then the equation we
must satisfy is the following:

DiF ·DjV +DjF ·DiV +DiV ·DjV = hij.

As we have already observed, this looks simpler if the variations are
normal. This is encapsulated in the following reformulation of the
above equation:

(6.1) Dj(DiF · V ) +Di(DjF · V )− 2DiDjF · V +DiV ·DjV = hij.

We are free to choose the tangential part V · DjF as well as the
component in the direction of the second derivatives V ·DiDjF , since
the first and second derivatives of a free embedding are independent.
The idea is to try to move the bad term, the one where the quadratic
term where the derivatives are lost, into the first brackets to allow
cancellation by the tangential part. This seems to make sense: If V is
a Cs map, then the quadratic term is Cs−1, so one might hope it could
be written as the derivative of something in Cs. It seems unlikely this
can be done by purely algebraic manipulations, but Günther observed
that something nice happens if you apply the Laplacian (with respect
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to the flat metric) to the quadratic term:

∆(DiV ·DjV ) = Di∆V ·DjV +Dj∆V ·DiV + 2DkDiV ·DkDjV

= Di (∆V ·DjV ) +Dj (∆V ·DiV )

+ 2 (DkDjV ·DkDiV −∆V ·DiDjV ) .(6.2)

The crucial point is that the top order terms in the Laplacian are
the ones where both derivatives fall on the same factor, none on the
other. But this allows us to write the top order term as a derivative
plus a more regular error: Observe that if V is Cs, this is Di(C

s−2) +
Dj(C

s−2)+Cs−2. But ∆−1 commutes with differentiation and has an
inverse T : Cs−2 → Cs, (bounded provided s is not an integer) so we
can write

DiV ·DjV = (∆− 1)−1(∆− 1)(DiV ·DjV )

= Di (T (∆V ·DjV )) +Dj (T (∆V ·DiV ))

+ T (2DkDiV ·DkDjV − 2∆V ·DiDjV −DiV ·DjV ) .(6.3)

This is exactly what we need: Plugging this into Equation (6.1) we
obtain

hij = Di (DjF · V + T (∆V ·DjV )) +Dj (DiF · V + T (∆V ·DiV ))

−2DiDjF · V + T (2DkDiV ·DkDjV − 2∆V ·DiDjV −DiV ·DjV ) .

To solve this we require that

(6.4) V ·DiF = −T (∆V ·DiV )

and
(6.5)

V ·DiDjF = −hij

2
+ T

(
DkDiV ·DkDjV −∆V ·DiDjV −

1

2
DiV ·DjV

)
.

Since the embedding is free, any system of the form

V ·DiF = Ai(6.6)

V ·DiDjF = Bij

has a unique solution in the span of the first and second derivatives of
F , which we can denote by L(A,B). If F is free and Cs+2, then L is a
bounded linear map from Cs×Cs to Cs. We have to solve an equation
of the form

V = L(Q1(V ),−1

2
hij +Q2(V )),

whereQ1 andQ2 are continuous maps from Cs to Cs satisfying ‖Qi(V )‖s

≤ C‖V ‖s‖V ‖2. This can be tackled using a fixed point theorem in the
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Banach space Cs, or by observing that

V − L(Q1(V ), Q2(V )

is a smooth function of V in Cs, with derivative at V = 0 equal to
the identity. Thus by the (Banach space) inverse function theorem,
it covers a neighbourhood of zero. It follows that we can solve the
perturbation problem about Cs+2 free embeddings for sufficiently small
Cs perturbations.

I’ll say more about this later. First I will consider the general case,
where essentially the same method works, though the non-flatness of
the background metric introduces some extra terms.

6.3. Constructing good variations: The general case. Now we
consider an arbitrary freely embedded submanifold Mn in RN . We
equip M with a metric g. The problem we need to solve is the same
as before, in any local coordinates: If h is some (small) Cs section of
the bundle of symmetric 2-tensors on M , then we need

DjF ·DjV +DjF ·DiV +DiV ·DjV = hij.

This can be written as

∇j(DiF · V ) +∇i(DjF · V )− 2∇i∇jF · V +DiV ·DiV = hij.

As before the main point is to split up the quadratic term in a good
way. The covariant Laplacian ∆ = gkl∇k∇l is again a self-adjoint
elliptic operator from Cs to Cs−2, and ∆ − 1 is invertible. There is
some difference arising from the fact that the Laplacian does not quite
commute with derivatives: We need to satisfy

0 = (∆− 1) (∇j(DiF ·V )+∇i(DjF ·V )− 2∇i∇jF ·V +DiV ·DiV − hij)

= ∇j ((∆− 1)(DiF ·V ))+∇j ((∆− 1)(DiF ·V ))− 2(∆− 1)(∇i∇jF ·V )

+Rp
j∇p(DiF ·V ) +Rp

i∇p(DjF ·V ) + (∆− 1)(DiV ·DjV )

We expand the last term as follows:

(∆− 1)(DiV ·DjV ) = ∆∇iV ·DjV + ∆∇jV ·DiV

+ 2∇k∇iV · ∇k∇jV −DiV ·DjV

= ∇i∆V ·DjV +∇j∆V ·DiV

+Rp
iDpV ·DjV +Rp

jDpV ·DiV

+ 2∇k∇iV · ∇k∇jV −DiV ·DjV

= ∇i(∆V ·DjV ) +∇j(∆V ·DiV )

+Rp
iDpV ·DjV +Rp

jDpV ·DiV

+ 2∇k∇iV · ∇k∇jV − 2∆V · ∇i∇jV −DiV ·DjV.
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Substituting in the previous equation, we get

0 = ∇j ((∆−1)(DiF ·V )+∆V ·DiV )+∇i ((∆−1)(DjF ·V )+∆V ·DjV )

− 2(∆− 1)(∇i∇jF · V +
1

2
hij) +Rp

j∇p(DiF · V ) +Rp
i∇p(DjF · V )

+Rp
iDpV ·DjV +Rp

jDpV ·DiV −DiV ·DiV

+ 2∇k∇iV · ∇k∇jV − 2∆V · ∇i∇jV

Now we are in business: We require that the tangential part of V be
such that the first two terms vanish, so that

V ·DiF = −Ni(V )

where

(∆− 1)Ni = ∆V ·DiV,

and then we require that the components in the direction of the second
derivatives satisfy the remaining identity:

V · ∇i∇jF = −1

2
hij +Mij(V ),

where

(∆− 1)Mij = ∇k∇iV · ∇k∇jV −∆V · ∇i∇jV − Rp
i∇pNj

2
−
Rp

j∇pNi

2

+
1

2
Rp

iDpV ·DjV +
1

2
Rp

jDpV ·DiV − 1

2
DiV ·DjV.

If V is Cs, then ∆V · DiV is Cs−2, so Ni is bounded in Cs, with
norm ‖N(V )‖s ≤ C‖V ‖s‖V ‖1 (for s ≥ 2). Thus M is also Cs, with
‖M‖s ≤ C‖V ‖s‖V ‖2.

As before, the system can be solved for sufficiently small h in Cs by
an implicit function theorem argument, or with slightly stronger results
by a fixed point or successive approximations argument. Note that we
require the embedding F to be Cs+2 so that the solution L(A,B) of
the system

V ·DiF = Ai;

V · ∇i∇jF = Bij

(determined uniquely in the span of the first and second derivatives of

F ) is bounded from Cs(M,T ∗M)× Cs(M,S
(2)
∗ M) to Cs(M,RN).
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6.4. The perturbation result. A careful successive approximations
argument yields the following result:

Theorem 6.1. Let F be a free Cs+2 embedding, and h ∈ Cs(M,S
(2)
∗ M)

with s > 2. There is a positive number θ independent of F , h and s
such that if

‖L‖
B(C2(M,T ∗M)×C2(M,S

(2)
∗ M),C2(M,RN )

‖L(0, h)‖C2 ≤ θ,

then there exists V ∈ Cs(M,RN) (small in C2) such that

Di(F + V ) ·Dj(F + V ) = DiF ·DjF + hij.

This is very nice: The smallness condition on the perturbation is
in C2, with the smallness determined essentially by the freeness of the
embedding (roughly the size of the operator G−1 defined in the previous
sections) together with the fourth derivatives of the embedding. In
particular, if s > 4, then this means that effectively we can perturb
about any free Cs embedding F to get nearby Cs metrics: First take a
Cs+2 (or C∞!) embedding F ′ which is close to F (we can keep the C4

norm comparable while making the C3 difference as small as desired).
Then the freeness of F ′ is not much worse than that of F , and the C4

norms of F ′ are also comparable, so we can perturb about F ′ to get any
metric change which is small in C2. Any Cs metric which is close to
gF in C2 is close to gF ′ in C2, so can be obtained by perturbing about
F ′, and the resulting embedding will be close to F in C2. Some care is
needed here, because we do not claim that the resulting embedding is
close to F in Cs.

Note that an argument like that just outlined also shows that any
Cs metric (s > 4) which can be realized by a free Cr embedding in RN

with r > 4, can also be realised by a free Cs embedding in RN : First
take a smooth approximation of the initial embedding, then perturb
about this to get a Cr embedding with the same metric.

6.5. More on approximations. Günther observed that the pertur-
bation result can be applied to improve the results about approximate
isometric embeddings, reducing the dimension required for the isomet-
ric embedding theorem.

The basic tool is the following variant on the above perturbation
result:

Theorem 6.2. Let B ⊂ Rn be the open unit ball and B1 and B2

open sets with B̄1 ⊂ B2 and B̄2 ⊂ B. Let F ∈ Cs+2(B̄,RN) be

a free mapping, and h ∈ Cs(B,R
n(n+2)

2 ) with s > 2. There exists
θ > 0 (independent of F , s and h) such that if supph ⊂ B1 and
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‖L‖B(C2,C2)‖L(0, h)‖C2 ≤ θ, then there exists V ∈ Cs(B,RN) with
suppV ⊂ B2 and

Di(F + V ) ·Dj(F + V ) = DiF ·DjF + hij.

Thus we can do compactly supported variations of the metric with
compactly supported variations of the embedding. The proof is very
similar to that for the previous case: First choose a smooth cut-off
function ρ with support in B2 and with ρ = 1 in B1. As before, we
want to solve the equation

(6.7) Di(V ·DjF ) +Dj(V ·DiF )− 2V ·DiDjF +DiV DjV − hij = 0.

To ensure that V has compact support we will insist that it has the
form V = ρ2W with W bounded. Substituting this into equation (6.7),
we obtain

0 = ρ3Di

(
W

ρ
·DjF

)
+ ρ3Di

(
W

ρ
·DjF

)
+ 3ρDiρW ·DjF + 3ρDiρW ·DjF

− 2ρ2W ·DiDjF + ρ4DiW ·DjW − hij

+ 2ρ3DiρW ·DjW + 2ρ3DjρW ·DiW + 4ρ2DiρDjρ|W |2.

The strategy will be as before to absorb the highest order part of the
quadratic error term into the derivatives where they can be cancelled
by the tangential part of V , and then prescribe the component of V
in direction DiDjF by setting the remaining terms equal to zero. The
key term is ρ4DiW ·DjW , which we rewrite using the following:

∆ (ρDiW ·DjW )

= ρDi∆W ·DjW + ρDj∆W ·DiW

+ ∆ρDiW ·DjW + 2ρDkDiW ·DkDjW

+ 2DkρDkDiW ·DjW + 2DkρDkDjW ·DiW

= Di (ρ∆W ·DjW ) +Dj (ρ∆W ·DiW )

−Diρ∆W ·DjW −Djρ∆W ·DiW − 2ρ∆W ·DiDjW

+ ∆ρDiW ·DjW + 2ρDkDiW ·DkDjW

+ 2DkρDkDiW ·DjW + 2DkρDkDjW ·DiW
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We also note that DjρW ·DiW = 1
2
Di (Djρ|W |2)− 1

2
|W |2DiDjρ. Equa-

tion (6.7) then becomes

0 = ρ3Di

(
W

ρ
·DjF + ∆−1 (ρ∆W ·DjW ) +Djρ|W |2

)
+ ρ3Dj

(
W

ρ
·DiF + ∆−1 (ρ∆W ·DiW ) +Diρ|W |2

)
+ 3ρDiρW ·DjF + 3ρDiρW ·DjF − 2ρ2W ·DiDjF − hij

− ρ3DiDjρ|W |2 + 4ρ2DiρDjρ|W |2

− ρ3∆−1 (Diρ∆W ·DjW +Djρ∆W ·DiW + 2ρ∆W ·DiDjW )

+ ρ3∆−1 (∆ρDiW ·DjW + 2ρDkDiW ·DkDjW )

+ 2ρ3∆−1 (DkρDkDiW ·DjW +DkρDkDjW ·DiW )

To simplify this we write

Aj(W ) = ∆−1 (ρ∆W ·DjW ) + |W |2Djρ,

and observe that if W is bounded in Cs, then Aj(W ) is also in Cs, with
norm at most C‖W‖s‖W‖1. Similarly we write

Bij(W ) =

(
2DiρDjρ−

1

2
ρDiDjρ

)
|W |2

+ ρ∆−1 (ρDkDiW ·DkDjW − ρ∆W ·DiDjW )

+ ρ∆−1 (DkρDkDiW ·DjW +DkρDkDjW ·DiW )

+
1

2
ρ∆−1 (∆ρDiW ·DjW −Diρ∆W ·DjW −Djρ∆W ·DiW ) .

Again, ‖Bij(W )‖s ≤ C‖W‖s‖W‖2. Then we can solve the perturbation
system by setting

W ·DjF = −ρAj(W )

W ·DiDjF = −3

2
DiρAj(W )− 3

2
DjρAi(W ) +Bij(W )− 1

2
hij.

Here I used the fact that ρ = 1 on the support of h. This is now a very
nice system, and we can apply a fixed-point theorem to get a solution
if h is sufficiently small.

To apply this result, Günther takes any strictly short free embed-
ding F0 of the manifold, and takes a decomposition of the difference
metric g − gF0 as in (3.1) from Lecture 3. Each of the terms a2

kdf
2
k

is defined on some coordinate patch, and one can even choose local
coordinates such that fk = x1 on this patch, so the term has the form
a2(dx1)2. Then he modifies F0 on the coordinate patch to produce
an approximately isometric embedding which satisfies the conditions
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of Theorem 6.2. This allows him to deduce that the embedding can
be perturbed to get metric exactly gF0 + (a2dx1)2. This can now be
repeated for each of the remaining terms to get the desired isometric
embedding. The idea is rather similar to Nash’s argument for the C1

isometric embedding, except that more care must be taken in the ap-
proximation, and the compactly supported perturbation result means
that we only have to do a finite number of steps instead of an infinite
sequence of them.

Günther’s method to get approximate isometric embeddings re-
quires five extra dimensions, beyond the span of the first and second
derivatives of the embedding — thus to obtain an isometric embedding
we must have a free embedding and we must be in dimension at least
n(n+3)

2
+ 5. In particular, we are guaranteed to have an isometric em-

bedding into dimension max{n(n+3)
2

+ 5, n(n+5)
2

}. For high dimensions

this is just n(n+5)
2

, so in some dimensions this is sharp: There are exam-
ples of manifolds which cannot be freely embedded into any dimension

less than n(n+5)
2

(see the remarks at the end of Lecture 2). For n = 2
it gives dimension 10, which is probably far from sharp.

There is a free immersion of Sn into R
n(n+3)

2 given by the map

(z1, . . . , zn+1) 7→
(
z2
1√
2
, . . . ,

z2
n+1√
2
, z1z2, . . . , znzn+1

)
.

This is in fact a free isometric immersion for the standard metric (or a
free isometric embedding for the standard metric on projective space).
It follows that we have a free isometric immersion of any metric on Sn

or RPn into R
n(n+3)

2
+5. It is an interesting question whether this could

be reduced to n(n+3)
2

.
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Räume euklidischen Räumen, Mat. Sb. 38 (1931), 74–85.
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[5] Ja. M. Èliašberg, Singularities of folding type (Russian), Izv. Akad. Nauk
SSSR Ser. Mat. 34 (1970), 1110–1126.
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