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DEPOSITION FROM A CURVED SHALLOW FLOW TREATED AS A MOVING BOUNDARY OF 

CONSTANT FORM 

· R.A. Wooding 

Dams and terraces deposited' from supersaturated flows or supercooled 

flows are known to occur in nature. Examples of the former include the 

travertine deposits at Mammbth Springs, Yellowstone ·National Park, U.S .A., 

the calcareous deposits of Pammukale, Turkey, and the siliceous deposits 

forming the Pink and White Terraces 'which existed in New Zealand prior to 

the Tarawera volcanic eruption of 1886 [9,10]. Examples of the second type 

include an ice-sand dam, formed from pressure melt water, which has been 

known to develop at the toe of the Mueller Glacier in the Southern Alps of 

New Zealand [ 3] . 

These formations are quite large (of order 1 m in height and of 

considerable horizontal extent), suggesting that the qbserved repetitive 

(wavelike) solid profiles are final forms which have developed at large 

times. The fluid flows giving rise to deposition are likely to be quite 

shallow, and may range from thin laminar to turbulent flow regimes. 

Evidently the scale of flow depth is very much smaller than the scale of 

the depositional features. 

One mechanism whereby these deposits might be produced has been 

described recently [ 9, 10] , and the present short article is intended to 

review some aspects of the problem and provide a few additional comments. 

The notation previously used will be retained, and a definition diagram 

(Figure 4 in [9,10]) is also useful. 

2. PROBLEM DESCRIPTION 

If a shallow turbulent flow is assumed, which has been justified a 

posteriori in the former work, it is convenient to use Dressler's 
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approximate hydraulic equations [2,6], including a Chezy term to represent 

flow resistance. From these equations,the length scales of both the fluid 

flow and the solid profile are fixed by flow depth, which is determined by 

the volume flow rate. If these quantities can be taken constant while the 

surface grows, then for self similarity the profile moves in uniform 

translation [1]. This leads to a geometrical condition on the profile of 

the form 

nt = v sin (~ - O) (la) 

where nt is the rate of accretion normal to the surface, v is the 

translational velocity, ~ the angle of profile growth and 8 the slope of 

the solid profile. A similar geometrical condition applies to the 

Saffman-Taylor problem of finger shape in a Hele-Shaw cell [4,5]. However, 

tn the present case the direction of profile growth is not known a priori 

and is not necessarily horizontal. 

It is assumed that deposition is controlled principally by the 

diffusive resistance of the laminar sub layer, the thickness of which is 

almost inversely proportional to the flow velocity. Lag effects are 

neglected on the assumption of large lengthscalejdepth ratios. It follows 

that the minimum depth of flow should be found at a point where the solid 

profile is normal to the direction of profile growth. That point may not 

actually exist within the range of the profile. However, the corresponding 

depth can still be defined, and here it will be taken as the length scale 

of the system. If the assumed deposition law is combined with (la), the 

Saffman-Taylor condition can be written as 

1/H sin (~- II) (lb) 

where H, the dimensionless flow depth, will be taken as a function of 
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distance S along the profile. 

The expected large scale of the solid features relative to flow depth 

has·several important consequences. Over at'least part of the slope range 

the curvature terms in the Dressler equations can be neglected, leading to 

a differential equation for 'the solid profile which is analogous to the 

Bresse profile equation of hydraulics [7], 

dH 
dS 

-H sin 8 
H cos 8 

(2a) 

involving two parameters -- a Froude number Fm and a Chezy coefficient r. 

Then the curvature K of the solid profile can be defined from (lb) and (2a) 

as 

K dH/dS 
d8/dS = H(H2- l)~ (2b) 

Since the curvature is small, it follows that dH/dS is small; the 

values of r and 'Fm are likely to be such that the numerator on the right 

hand side of (2) is small for a significant range in (H,8). This property 

is related to the location of the zeros of the numerator. However, as the 

point of maximum growth rate is approached (H ~ 1) the curvature becomes 

very large unless dH/dS also vanishes simultaneously. From observation, it 

appears that this condition is not necessarily satisfied, and some natural 

dams appear to be "perched", perhaps developing curtains of stalactites. 

3. FLOW WITH A TRANSITION 

The case where a transition occurs from an upstream subcritical flow 

to supercritical flow downstream has been described in detail elsewhere 

[9,10]; this leads to solutions for growing dams. Usually the critical 

point occurs near the top of the dam where the flow becomes shallow, and a 
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supercritical flow covers most of the outer dam wall. At the critical 

point the numerator and denominator on the right hand side of (2) vanish 

simultaneously. The remaining roots of the denominator appear not to be of 

direct physical interest. However, the two available roots of the 

numerator are of considerable significance in determining the shape of the 

solid profile. In two cases theoretical profiles have been fitted to 

photographs of natural dams [ 3, 9, 10] with apparent success, and realistic 

values of the Froude number, drag coefficient and other flow parameters 

deduced. In both examples the roots of the numerator in (2) are found to 

be complex but nearly coincident, i.e. the imaginary parts are small, and 

the numerator is small but non-vanishing. (Note that, if these roots were 

real, then the slope would be constant over at least part of the solid 

profile.) 

The condition for coincident roots provides a boundary between the 

space of complex roots, in which relevant solutions exist, and the space of 

real roots. Evidently the parameter values for realistic solutions lie 

close to this boundary, which is given by the following equations [ 10] . 

Let De be a parameter defined by 

where He denotes the critical depth. Then 

tan cp (4) 

r = (1 ~ De tan cp)/(Dc + tan cp) (5) 

(6) 

These parametric equations follow immediately from the derivations given in 
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[10], equation (4) being the condition for coincident roots. Elimination 

of De and tan~ between (3), (4) and (5) gives a fourth-order equation 

0 (7) 

Since He is bounded; the appropriate solution for f1lc should tend to zero 

with r, and a convenient approximation is: 

A3 - 35 
1 6 1 9 2 

(8) 

where A= {r2(1 + r2)}1/3 is taken to be small on the assumption that r is 

sufficiently small. Then, from (6) and (8), 

1 - A + 
4 

(9) 

Thus the boundary defined by coincident roots of the numerator in (2) lies 

close to a rectangular hyperbola in (Fm,r) space, as would be expected from 

the form of the numerator in (2). 

Figure 1 gives a plot of r vs Fm for coincident roots, from the 

parametric equations (3)- (6) (continuous curve), and also the approximate 

result (9) (dashed curve). The symbol R denotes the zone of real roots for 

the numerator in (2), while C indicates the region in which the numerator 

has two complex roots which lead to real physical solutions of the type 

sought. The results from tests of the theory using photographs of natural 

dams (mentioned above) are indicated by the points 1, a dam formed by 

deposition from supersaturated geothermal flow [9,10], and 2, a dam formed 

by freezing of supercooled glacial meltwater [3]. Evidently these indicate 

two stable solutions, and a continuum of stable solutions may exist close 

to the curve in region G of Figure 1. 
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4. THE SAFFMAN-TAYLOR PROBLEM 

Recently Thome et al. [8] discussed the significance of singularities 

in the complex plane in the selection of zero-surface-tension analytical 

solutions for the Saffman-Taylor finger in a Hele-Shaw cell. In 

particular, they showed experimentally that a very local disturbance of the 

viscous flow which modified the singularities in the complex plane could 

change the nose shape and the selection of finger width -- a major effect. 

In the present problem there is not a complex plane representation of the 

flow, but the geometrical condition (1) is common to both problems, and 

control by modification of singularities is applicable in both. 
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Figure 1. Curved boundary separating region of complex 

roots (C) from real roots (R). (For details see text.) 
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