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MOVING BOUNDARY PROBLEMS IN 
SOLID/LIQUID SEPARATION 

K. A. Landman and L. R. White 

1. INTRODUCTION 

A problem of widespread industrial and theoretical 

importance is the separation of fine solids from liquids. The 

suspended solids are consolidated under the influence of a body 

force applied to the particles, for example, gravitational force 

in gravity thickening or an applied pressure in a pressure 

filter. In this paper, we outine the dynamics of such problems 

using the settling of a suspension in a closed bottom container 

under the force of gravity - that is batch settling. 

2. EQUATIONS 

SUSPENSIONS 

FOR BATCH SETTLING OF FLOCCULATED 

Electrolyte or polymer flocculants when added to suspensions 

cause the formation of connected aggregate structures (floes) 

which fall faster than single solid particles because of their 

larger mass-to-surface-area ratio. While flocculation speeds up 

the settling process, the consolidated bed forms an open network 

of these floes whose average volume fraction is lower than that 

acheived by a unflocculated sedimenting suspension. Above a 

critical volume fraction the network has some properties of 

solids. In particular the network can support compressive 

stresses up to a compressive yield stress; above this value the 

network will irreversibly deform. The compressive yield stress 

PY(~) is defined as the value of the network (particle) pressure 

at which the flocculated suspension at volume fraction ~ will no 

longer resist compression elastically and will irreversibly 

consolidate. Py(~) can be obtained expermentally as discussed 

elsewhere [3,5]. 
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The equations of motion, with a constitutive equation 

describing the yielding of the solid network are given and 

discussed in Buscall and White [3) and Landman, White and Buscall 

[11). In this paper, we will consider only the case when the 

suspension is initially fully networked, thus avoiding the 

complications of differing floc sizes in a pre-networked system. 

A force balance on the particulate network in a volume 

element of the suspension is 

(1) 

The first term (see glossary for a list of symbols used) is the 

hyrodynamic drag exerted by the suspending fluid on the 

sedimenting particles. The function r($) is the hindered settling 

factor and accounts for hydrodynamic interactions between the 

particles. Experimental measurements [2,10] and some theoretical 

work [1] has established the relationship 

r ($) = (1 - $)-4.S (2) 

for unfloculated suspensions. We use this form in the present 

calculation for want of a more appropriate expression. The 

second term in equation (1) is the net force that the surrounding 

particles exert by direct interaction on the particles of the 

volume element. For flocculated suspensions, which form a 

network (when <)l ><)>g) p is the elastic stress in the network. The 

third term is the net gravitational force exerted on the 

particles (weight minus upthrust from the suspending fluid) . As 

is usual, the inertial terms and the shear forces in the bulk of 

the fluid and those exerted by the container walls on the 

neighbouring suspension are assumed small compared to the terms 

in equation (1), and so are neglected. 

Conservation of particle and fluid masses requires the 

continuity equations 

Cl$ at + v. (qm) = 0 (3) 
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Cl(l-<J>) + V· {(1-<!>)w}=O 
Clt 

(4) 

Buscall and White [3] put forward the following constitutive 

equation as modelling the response of flocculated suspensions: 

(5a) 

(5b) 

where the function K(<\>) is the dynamic compressibility of the 

system. The compressive yield stress Py(<\>) is the value of the 

network pressure at which the network under compression will 

start to irreversibly consolidate. By expanding the material 

derivative in equations (5) and using the continuity equation 

(3), the constitutive equation may be rewritten as 

(6a) 

(6b) 

Now suppose that the suspension is contained in a closed 

bottom container. Usually plug flow is assumed. In fact, the 

assumption that <!> does not vary much over a horizontal 

cross-section of the container leads to similar equations in the 

horizontally averaged velocities and pressure [11] . 

then, with 

u=-u2 and 1\ w=wz 

In summary 

(7) 

the continuity equations together with the closed bottom 

conditions give 

-<I> u + (1- <j>) w = 0 (8) 

Hence the fluid velocity w may be eliminated from equation (1) 

to give the system 

(9) 

u = u0 (1- cp) ll 1 + _1 _.ili2_ Jl 
r(<!>) Llp g <!> az (10) 
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{ 
0, 

~~ = K~<\>) [p- Py(<j>)] 

(lla) 

(llb) 

where the yield stress Py(<j>) will be a given monotonic increasing 

function of <j>. 

At time t = 0, we assume here that the system is fully 

networked and that <I> is a constant <l>o • Here <\>o > <j>g , where <j>g 

corresponds to the lowest volume fraction for which the 

flocculated particles are networked. Since the container bottom 

is closed 

and 

u(O, t) = 0 

H(t) 

J $(z,t) dz = 1{>0 H0 

0 

where H(t) is the height of the sedimenting column, with 

(12) 

(13) 

H(O) = H0 • The network pressure at the top of the bed is clearly 

p(H(t), t) = 0 (14) 

Consolidation cannot occur until the network pressure p has 

increased above Py($0 ). Hence there will be a region at the top 

of the column, zc (t) ::;; z ::;; H (t), •1here p < Py (<\>0 ) so that the 

equations give that the volume fraction remains at <)>0 and all the 

particles fall at the same velocity 

u = _ dH 
dt 

(15) 

In this region equation (10) can be solved for the pressure: 

(16) 
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The position zc, which marks the boundary between the falling 

zone (<j>=<!Jol and the consolidation zone (d<jl/dz > O,<j>0<<jl<<j>(O,t)) 

is the point at which the network pressure becomes equal to the 

compressive yield stress: 

(17) 

Hence, equation (16) gives an equation combining the total solids 

height and the critical height 

(18) 

Figure 1 shows a schematic illustration of the three zones 

in the consolidating column. 

H Initial Solids Height 
D 

Supen:u~:tant (¢1 =0) 

H(t) Solids Height 

: Free Fall Zone: : (4> = lilo).": : : : 

z.(t) Critical Height 

z = 0 Container Bottom 

Figure 1: Schematic illustration of a consolidating sediment. 

The equations to be solved in the consolidation zone 0 < z 

< zc(t) are (9), (10) and (1lb) with the conditions 

<)l(z, 0) = $0 

u(O,t)=O 

<)l(zc(t), t) = 4>0 

dH 
u(z (t), t) = --d 

c T 
p(zc(t), t) = PyC$0) 

(19a) 

(19b) 

(19c) 

(19d) 

(19e) 
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where we have assumed that the volume fraction, velocity and 

pressure are continuous at the interface between the falling and 

consolidation zones. 

We consider now the large dynamic compressibility 

approximation to the consolidation equations. When K($) is 

'large', it follows immediately from equation (6b) that 

(20) 

(almost) everywhere in the collapsing part of the sediment. 

Physically, when p exceeds Py($), collapse is assumed so rapid 

that, locally, $ moves immediately to the value at which Py ($) 

exactly balances the applied network pressure. Network pressure 

can then never greatly exceed the yield stress in a rapidly 

collapsing structure. Therefore equation (11b) can be replaced 

with p = Py (<j>) and used directly in equation ( 10) to give a 

differential equation in <j>. There will be a boundary layer in the 

neighbourhood of zc(t) which resolves the discontinuity in the z­

derivative of $ [11]. 

Equa·tion (20) is not new. Several authors [4,7,8] have made 

use of a constitutive equation connecting network stress to local 

volume fraction. Stable suspensions obey a constitutive equation 

p = P 0 s ($) since the network pressure is just the osmotic 

pressure of the particles, which thermodynamically is a function 

of $ only. It should be understood, however, that the existence 

of a constitutive relationship for a flocculated suspension is 

predicted on the assumption of rapid collapse when the yield 

stress is exceeded. 

3. DIMENSIONLESS SEDIMENTATION EQUATIONS 

The equations may be made dimensionless by applying the 

following scalings: 

Z (T) = Zc(t) 
, c H 

0 

, L(T) = ~t) 
0 

(2la) 
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T = _t u....::o:.,-<..,...1 -~cl>o~> 
r(cl>o) lfo 

<l»(Z,T) = cp~~t) 

U(Z, T) = u(z,t) r(cl>o) 
uo (1-cl>o> 

For a consolidation zone to exist, E< 1 [3]. 

(21b) 

(21c) 

(21d) 

(21e) 

(21f) 

(21g) 

For convenience the scaled sedimentation equations (in the 

large dynamic compressibility limit) are written in terms of <I» 

and the dimensionless solids flux Q =<l»U. Then in 0 < Z < Z0 (T) 

dQ = a<~» 
az aT 

a<~» = 1 [ Q - <~»B<<~»> ] 
az e f '(<~») B(<~») 

with boundary conditions 

(22) 

(23) 
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!P(Z, 0) = 1 

Q(O, T) = 0 

w(Zp), n= 1 
dL 

Q(Zp), T) = - dT 

(24a) 

(24b) 

(24c) 

(24d) 

An algorithm for solving the system (22)-(25) for the unknown 

functions ~(Z,T), Q(Z,T), L(T) and Zc(T) is presented below. 

4 . TIME DISCRETISED EQUATIONS 

We begin by approximating all time derivatives that appear 

in the consolidation equations by backward differences so that 

the state of the system at each time step can be determined from 

the state at the preceding time step. An additional advantage of 

discretising in time is that it converts the partial differential 

equations (22) and (23) to a pair of ordinary differential 

equations, which can be efficiently and accurately solved using 

Runge-Kutta techniques. This approach has been used before on 

moving boundary problems [12]. 

Let .6-T be the time step size. Approximating all time 

derivatives by first-order backward differences we have 

<P(Z, T) - q,(z, T - .6. T) 
AT 

dL _ L(T) - L(T- AT) 
dT - llT 

(26) 

(27) 

Denote by the superscript K (K = 0, 1, 2, .... ) the value of a 

function at time TK = K.6.T so ~K(z) = ~(Z,K.6.T), and similarly for 

QK (Z), LK and zcK· From the initial time state of the system, we 

have 
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(28) 

Discretising this way, the problem has been changed from one of 

finding the functions '«l>(Z, T), Q(Z, T), L(T) and Z0 (T) to one of 

finding the sequences cl>K(Z), QK (Z), LK and Z0 K. We will call the 

set {cl>K (Z), QK (Z), LK, Z0 K} the Kth time state of the system. The 

equations to be solved in the region 0 < Z < zcK are 

(29) 

(30) 

subject to initial conditions (28) and 

(31a) 

(3lb) 

K~ [ LK -LK-1] Q ( = - aT (3lc) 

The equation connecting the interfaces of the two zones is 

(32) 

after using equation (24d) in (25) . 

In the next section we describe a method whereby the Kth time 

state of the system may be determined given cl>K-1 (Z) and LK-1 , that 

is data from the (K-l)th time state. Then since cl>O(z) and L0 are 

known, all time states for K > 0 may be determined inductively. 

5 . A RUNGE-KU'l''l'A SHOO'l'ING ME'l'HOD 

Equations (29)- (30) are two coupled first-order ordinary 

differential equations which may be solved by Runge-Kutta 
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integration, but the particular method of solution depends on 

the nature of the boundary conditions. The no-flux condition 

(31a) is a simple boundary condition. The conditions (31b,c) at 

the other boundary, together with (32), specify QK and ~Kin 

terms of zcK and LK. But zcK and LK are unknown. We therefore 

regard these three equations as 'one' boundary condition at zcK· 

It is this fact which introduces complexity into the numerical 

scheme. 

In order to solve any two-point boundary value problem 

where the range of integration is known, a Runge-Kutta shooting 

method is commonly used. Here the upper limit of the range of 

integration is unknown so that we must adapt such a shooting 

algorithm. Below is a description of the procedure which is 

implemented for each fixed K. 

(1) We define a mesh on the Z interval [0,1) by dividing that 

interval into N subintervals of width Az. 

(2) We guess the value of ~K(O). With the given boundary 

condition QK (0) 0, we now have an initial value problem, 

which can be solved numerically using the 4th order Runge-Kutta 

method. 

(3) We continue integrating in Z until we reach a Z-value for 

which ~K(Z) = 1. This gives an estimate of zcK and call this 

value z*. 

(4) In the course of the integration, QK(z*) will be 

determined. This value is used in (31c) to give a value for LK. 

Then substitution of both QK(z*) and LK into (32) yields a 

second estimate for zcK, which we call z**. 

(5) We now have two numbers, z* and z** as estimates of zcK· If 

the guess ~K(Q} is a good one, then z* and z** should agree, 

within an assigned tolerance, e.g . 

•• 
~~- 1 i <TOLERANCE • (33) 
z 
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If this is the case, set z~ = z* and the valu~s of LK, UK(z) 

and <I>K (Z) just determined give the required Kth time state of 

the system. On the other hand, if the convergence criterion is 

not met, then we must guess another value of <VK (0) and repeat 

the steps 2 - 5. Continue in this way· with guessed values 

until the convergence criterion is satisfied. The method for 

choosing each <l>K(O) is described in detail elsewhere [9]. 

6 . NUMERICAL RESULTS 

To exhibit the utility of this algorithim, we have 

performed numerical calculations on a model sedimenting net.work 

using two parameter (n,k) power law curves of the type 

(34) 

with n between 4 and 10. Yield stresses of this form have been 

fitted by our experimental collaborators to systems such as 

polystyrene latex [13] and red mud suspensions [6]. Expressions 

of this form obey Py(~gl = 0, consistent with the definition of 

~g· Since we are only working with fully networked suspensions~ 

~~0~ ~g • 

The functions B(<V) and f(<V) may be written explicitly in 

terms of these dimensionless variables using the forms for r(~) 

(in equation (2)) and Py(~) above. Hence 

(35) 

and 

f(<V) (36) 

where now C > 1. 
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In Figure 2 we plot the computed scaled volume fraction as 

a function of Z in the consolidating zone at various times. 

This allows the evolution of the consolidating bed to be 

observed. As well, Figure 3 shows the scaled bed height L(T) 

and the scaled critical height marking the consolidating zone 

Zc(T) as a function of time. 

Note that in the volume fraction graph the horizontal axis 

is the line ~ = 1, so that the point where the curves meet this 

line is the point Zc (T) . Thereafter ci> = 1 for zc (T) :;;; Z :;;; 

L(T), where L(T) can be determined from the Fig 2b. 

(i) The volume fraction profiles are concave upwards for 

early times, while for later times they are concave downwards, 

that is the second Z-derivative of ~ decreases with time and 

changes sign. This behaviour is anticipated from the analytic 

forms of the solution at small times and at equilibrium. These 

profiles are for fully networked suspensions, so that the 

differing floc sizes and shapes 

behaviour. 

do not affect the sediment 

(ii) The ..JT behaviour of Zc (T) for early times as derived 

elsewhere [9] is clearly illustrated. Also the approach of 

cl>(Z,T), L(T) and Zc(T) to their steady state equilibrium values 

can be clearly seen. The analytic forms of the steady state 

solution is also given in [9]. 

The effect of varying n, C and e is gven in 

[9] .Essentially, if one of n, C, or E is varied, the yield 

stress of the network PY ($) is changed for $ > $0 , the region of 

interest. Smaller values of Py($) at a given concentration mean 

that the network is easier to compress, so we expect greater 

concentrations in a more compact consolidation zone. 
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Figure 2: Volume fraction profiles for n 
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Figure 3: Critical height Zc(T) and bed height L(T) for 

n = 5, c = 1.25, e = 0.1. 

Corresponding asymptotes are Zcs = 0.7011 and L5 0. 8011 
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GLOSSARY '1'0 SYMBOLS USED 

LOWER CASE ROMAN 

f (<D) 

g 

k 

n 

p 

r (cj>) 

t 

u 

u 

w 

w 

z 

scaled yield stress function 

gravitational constant 

proportionality constant in yield stress function 

index in yield stress function 

network pressure 

hydrodynamic interaction factor 

time 

magnitude of solids velocity vector 

Stokes settling velocity of an isolated particle 

solids velocity vector 

magnitude of fluid velocity vector 

fluid velocity vector 

vertical spatial coordinate 

critical height, boundary of the consolidation zone 

UPPER CASE ROMAN 

B (<1>) 

c 

H(t) 

K 

L(T) 

T 
~s 

U ( Z, T) 

z 

scaled hydrodynamic drag function 

constant in f(<D) 

initial solids height 

solids height 

superscript labelling time steps 

scaled solids height 

time discretised scaled solids height at the Kth time 

step 

steady state scaled solids height 

yield stress of a flocculated suspension 

scaled solids flux 

time discretised scaled solids flux at the Kth time step 

scaled time 

time at the Kth time step 

scaled downward solids speed 

scaled vertical spatial coordinate 



z* 

z** 

z K c 
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for each time step K, this is the estimate of zcK 

obtained by the shooting method (31b) 

for each time step K, this is the estimate of zcK 

obtained form equations (32) 

scaled critical height 

time discretised scaled critical height at the Kth time 

step 

Zcs steady state scaled critical height 

LOWER CASE GREEK 

e dimensionless number characterising a flocculated 

suspension 

cp volume fraction of suspension occupied by solids 

cpg gel point of a flocculated suspension 

cp0 initial volume fraction 

K(cp) dynamic compressibility of the flocculated network 

UPPER CASE GREEK 

Ap difference between solid and fluid densities 

AT time step size 

Az grid spacing on coarse mesh 

~(Z,T) scaled solids volume fraction 

~K(z) time discretised scaled solids volume fraction 
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