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OSCILLATIONS IN PARABOLIC NEUTRAL SYSTEMS* 

K. Gopalsamy 

Abstract 

Sufficient conditions are obtained for the oscillation of all solutions of 

the homogeneous Neumann and Dirichlet boundary value problems as­

sociated with the neutral parabolic system 

a m 

at [u;(x, t)- c;u;(x, t- r)] - D; \i u;(x, t) +?: a;jUj(X, t- O"j) = 0 
J=l 

for i = 1, 2, 0 0
., m; X E n c Rn, t > 0 where y 2 denotes the Laplacian 
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1. Introduction 

There has been increased activity in the investigation of oscillations of solutions of 

lumped parameter scalar neutral delay differential equations. It is known that a necessary 

and sufficient condition for oscillation of all solutions of the scalar neutral delay differential 

equations of the type 
d 
dt [u(t)- cu(t- r)] + au(t- a}= 0 1.1 

is that the associated characteristic equation 

1.2 

has no real roots; for more details of this and several related extensions we refer to Gram­

matikopoulos et al.[6-9], Kulenovic et al. [14], Stavroulakis [17], Jiong [12], Gopalsamy 

and Zhang [5]. Quite recently Arino and Gyori[l] have established that a necessary and 

sufficient condition for the oscillation of the vector matrix system 

1.3 

(Aj and Bj are n x n matrices, O"j, Tj are nonnegative numbers andy is an n-vector) is 

that the associated characteristic equation 

1.4 

has no real roots. In applications it is often desirable to obtain sufficient conditions in terms 

of the parameters (coefficients, delays etc.) of the equations themselves and this involves 

further analysis of the characteristic equations such as (1.4). In fact it is a nontrivial task 

to obtain sufficient conditions for (1.4) to have or not to have real roots when m > 1. A 

special case of (1.3) has been considered by Gyori and Ladas [11] in the form 

1.5 

fori= 1, 2, · · ·, n and easily verifiable sufficient conditions for the oscillation of the system 

(1.5) have been obtained. 
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The purpose of this article is to derive sufficient conditions for all solutions of the 

linear systems of the type 

a m 2 
a[u;(x,t)-c;u;(x,t-r)] + L:>ii(x,t)ui(x,t-ui)=D;\,7 u;(x,t) 

t i=l 1.6 

i = 1, 2, ... 'm; X E n c Rn 

where D;, c;, T, O"j are nonnegative numbers and \,72 is the Laplacian in Rn; n is a bounded 

domain with a smooth boundary an. For an analysis of the stability characteristics of 

neutral parabolic and hyperbolic equations we refer to Datko [3]. 

Oscillations of scalar parabolic equations have been considered before by Kreith and 

Ladas [13] and Yoshida [18]. However nonscalar parabolic delay systems have not been 

hitherto considered in the literature on oscillation of delay systems. We shall use the 

following definition: 

Definition. A scalar valued function w : en u an) X [0, 00) t-+ R is called oscillatory if for 

each positive number T there exists a point (x 0 , To) En x [T, oo) such that w(xo, To)= 0; 

a vector valued function, i1 : n x [0, oo) r-+ Rn is said to be oscillatory if at least one 

component of i1 is oscillatory in the sense of oscillation of a scalar function. A vector 

i1 : n x [0, oo) r-+ Rn is said to be nonoscillatozy if each of its components is nonoscillatory. 

We remark that the above definition is one of the several possible ways of generalising 

the oscillations of a scalar valued function of one variable. 

2. Neumann neutral parabolic system 

We consider the following initial boundary value problem 

a m 

at [u;(x, t)- c;u;(x, t- r)] +?:::: a;i(x, t)ui(x, t- ui) = D; v2 u;(x, t); 
J=l 

x En; t > 0 2.1 
a an u;(x,t) = 0 on an 

u;(x,s) = </>;(x, s), x E nuan; s E [-(u* + r), 0), i = 1,2, · · · ,m 
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where a* = max o-1, o-2, · · · , () m , 8
8n denotes the outward normal derivative. We recall that 

if 

u; : n x [o, oo) ,__... R 

is nonoscillatory then there exists a T0 > 0 such that 

v;(t) =in u;(x,t)dx =f 0 

iu;(x,t)i > 0 

for 

for 

t > To, i = 1, 2, · · ·, m } 

X En' t >To. 
2.2 

Also we note from Green's formula and the homogeneous Neumann boundary condi-

tion 

i 1 fJu· 
\]U;(x,t)dx = -8 'dS = 0; i = 1,2, · · · ,m. 

n an n 

Theorem 2.1. Suppose the following are satisfied; 

1. c; E (0, 1); T,a;E[O,oo); i=1,2,···,m. 

2. a;j ( i,j = 1, 2, · · ·, m) are bounded continuous functions on n X [0, oo) such that 

1 ~~m [a;;- fPji] > 0 
-- j=l 

j -:}=i 

wl1ere 

a;;= inf {a;;(x,t)}; xen 
t2: 0 

Pji =sup {iai;(x, t)l}· 
xen 
t2:0 

3. at least one of 

either for bE (O,oo) 

holds where 

p, = min {a .. -~ P"}· 
l<i<m " L_., 1' 
-- j=l 

j~i 

Then all nontrivial solutions of (2.1) are oscillatory. 

or 
1 - C0 

P,O'o > -­
e 

2.3 

2.4 

2.5 

2.6 

2.7 
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Proof. Our plan of proof is to suppose that there exists a nonoscillatory solution of the 

system (2.1) and then show that this leads to a contradiction. Accordingly let us suppose 

that (2.1) has a nonoscillatory solution. This implies that there exists a T0 > 0 such that 

ju;(x,t)! > 0 for xEf!; t>To, i=1,2,···,m 2.8 

and if we let 

v;(t) =in ju;(x, t)j dx, i = 1,2, · · · ,m 2.9 

then for t > T = T0 + u* + r 

![v;(t)-c;v;(t-r)] +in a;;(x,t)ju;(x,t-u;)!dx 

:::; fnt!a;j(x,t)!ui(x,t-ui)!dx 2.10 

j :Fi 

+!D;k v 2 u;(x,t)dx!; i=1,2,···,m. 

Adding all the inequalities in (2.10) and simplifying (using (2.3)), 

d [ m m ] 
dt ~ v;(t)- ~c;v;(t- r) 

+ fnt [a;;(x,t)- t,!aj;(x,t)!]!u;(x,t-cr;)jdx 

j -:;ti 

:::; 0; i = 1,2, · · · ,m 2.11 

and therefore 
d[m m ] m 
dt 8 v;(t)- 8 c;v;(t- r) + p, 8 v;(t- cr;):::; 0. 2.12 

We shall now show that v; ( i = 1, 2, · · · , m) remain uniformly bounded for t > 0. An 

integration of (2.12) on [T, t) leads to 

f v;(t)- f c;v;(t- r)+p, lt f, v;(s- cr;) ds 
i=l i=l T i=l 

m m 

:::; L v;(T) + L c;jv;(T- r)j. 2.13 
i=l i=l 
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For convenience we let 
m m 

a= 2.: v;(T) + L c;jv;(T- r)j. 
i=l i=l 

From (2.13) and (2.14), 

m m 

L v;(t)::; a+ L c;v;(t- r) 
i=l i=l 

m 

::; a+ c L v;(t- r); c = max { c1 , Cz , · · · , Cm } . 

Now if we let 

then we have from (2.15), 

We now let 

and derive that 

i=l 

m 

V(t) = L v;(t) 
i=l 

V(t)::; a+ cV(t- r); t > T. 

p(t) = sup V(s) 
•E[-r,t] 

p(t)::; a+ cp(t) + max V(s) 
sE[-r,TJ 

from which it will follow that 

(a+ maxsE[-r,Tj V(s)) 
p(t):=; 1-c · 

2.14 

2.15 

2.16 

2.17 

The uniform boundedness of V and hence that of v;, i = 1, 2, .. ·, m follows from (2.17); 

that is 

fniu;( x, t)i dx is bounded for t ;=:: 0, i = 1, 2, · · ·, m. 2.18 

We next show that v; , i = 1, 2, · · ·, m remain bounded for all t ;::: 0. We note from (2.10) 

that 
m 

v;( t) - c;v;(t - T) ::; L {J;jvj( t - aj ). 
j=l 
j:Fi 

2.19 
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p;(t) = sup v;(s) 
sE(O,t) 

and derive from (2.19) that 

which implies that 

m 

p;(t)::::; cp;(t) + sup L,BijVj(s) t > 0 
sE[-r,t] j=l 

i J~:i 

p;(t):s;( 1 ~c)[ sup f,a;jvj(s)], 
sE( -r,t] ; =1 

j :Fi 

t > 0. 2.20 

From the uniform boundedness of Vj (j = 1, 2, · · ·, m) follows that of p;, i = 1, 2, · · ·, m; 

the uniform boundedness of v;' i = 1, 2, ... 'm is now immediate. \life note from (2.13) 

that it it m m 
f.1 v;(s-a;)ds:s;p Lv;(s-a;)ds:s;a+L:c;v;(t-r)<oo 2.21 

T T i=l i=l 

and therefore v; E L 1 [T, oo). From the uniform boundedness of v;, follows the uniform 

continuity of v;, i = 1, 2, · · ·, m. By Barbalat's lemma (see Corduneanu [2]) we can conclude 

that 

lim v;(t) = 0; 
t~oo 

i = 1,2,···,m. 2.22 

Using (2.22) and integrating both sides of (2.12) on (t,oo), 

[ 
m m ] r:x; m 

- ~v;(t)-~c;v;(t-r) +11jt ~v;(s-a;)ds:s;O 

and so 

f v;(t) ~ f c;v;(t- r) + f.1 100 f v;(s- a;) ds 
i=l i=l t i=l 

2.23 

2.24 

We now let 
m 

z(t) = L v;(t) 
i=l 
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and derive from (2.24), 

z(t) :2': c0 z(t- r) + 11 1:o z(s)ds. 2.25 

Define a sequence { Zj} as follows: 

Z 0 (i) = z(t) 

{ 
C0 Zj( t- T) + f1 ft':,.o Zj( S) ds; t > T 

Zj+l = oo 
z(t)- z(T) + C0 Zj(T- r) + JJ fr-uo Zj(s) ds; t ~T } 

2.26 

One can see from (2.25) and (2.26) that 

for t > T and therefore the sequence { z j} converges as j -.. oo to a limit say z* on [T, oo ); 

such a limit also satisfies 

z*(t) = Uo {
c0 z*(t-r)+JJft': z*(s)ds; t>T 

z(t)- z(T) + c0 z*(t- r) + 11 j;_,.o z*(s) ds; t:::; T. 

We can verify that z* is an eventually positive solution of (2.27) as follows; 

z*(t) > c0 z*(t- r) 

> c~z*(t- 2r) 

> c~z*(t- kr) 

= z*(io)exp [ C ~to )en[co]] 
= ae-f3t (say) 

2.27 

for some 0'. > 0 and (3 > 0 since z* has the tail left end of z. We also have from (2.27), 

z*(t)=c0 z*(t-r)+JJ1:o z*(s)ds 

> C 0 0'.e-f3(t-r) + f1 roo O'.e-f3s ds 
lt-u0 

= (coef3r + lle;<To )ae-f3t > ae-f3t 
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if either 

or 

Thus (2.27) has a bounded nonoscillatory solution and hence its characteristic equation 

has a real nonpositive root since this is a necessary condtion. The characteristic equation 

associated with (2.27) is 

2.28 

It is easy to see that ,\ = 0 is not a root and so we can let A = -q for some q > 0. Then 

and therefore 
. eqfTo 

1 = C0 eqr + [t-- 2: C0 + fieO'o. 
q 

2.29 

But (2.29) contradicts our hypothesis (3) and hence the result follows. This completes the 

proof. 

3. Dirichlet neutral parabolic system 

We consider the oscillations of the following neutral parabolic system with homoge­

neous Dirichlet boundary conditions; 

:t[u;(x,t)--c;u;(x,t-r)] + faii(x,t)uj(s,t-aj) 
J=l 

m 

= L D;j \72 uj(x, t); x E fl.; t > 0 
j=l 

u;(x,s)=O, x E oQ, t E [-(a*+ r),O] 

u;(x,s)=</J;(x,s), sE[-(a*+r),O], xEfi.UoQ 

i=1,2,···,m; a*=max(a1,a2,··,o-m) 

3.1 

where </J;, i = 1, 2, .. , m are continuous functions defined on the domain specified above. 

We use the following well known property of the Laplacian operator with homogeneous 

Dirichlet boundary condition; there exists a positive number say 8 and a strictly positive 
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function 1j; : n f-+ (0, 00) such that 

v1f;(x) + 81f;(x) = 0; 

'lj;(x)=O; 

'lj;(x)>O; 

xED } 
x E an 

x En. 

3.2 

If { u1 , u2, · · · , u m} is a nonoscillatory solution of ( 3.1) then the vector { u 11f;, uz'lj;, · · · , Um 1j;} 

is also nonoscillatory such that 

sign{uj(x,t)} = sign{uj(x,t)'lj;(x)}; j = 1, 2, · · ·, m; t > T 

for some positive T. 

Theorem 3.1. Assume that the following hold: 

1. c; E [0, 1 ); r E [0, oo ); O"; E (0, oo ); D;; E [0, oo ); D;j E ( -oo, oo ); z,J 

1,2,···,m. 

2. a;j, i, j = 1, 2, · · ·, m are bounded continuous functions such that 

a;;= !~ {a;;(x, t)}; 
t~D 

{3;j = sup{la;j(x,t)l}; i,j = 1,2,···,m. 
•E!l 
t~O 

3. either 

for .\E(O,oo) 

or 

holds where 

p= min [a··-~(3··] >0· 
I <i<m " L., 1 ' ' 
-- j=l 

j#i 

q- min [n··-""' ID ··1] 8 > 0 - 1 <i<m " L., 1' 
-- j=l 

j>j:i 

C 0 =min(cl,cz,···,cm), 0" 0 =min(0"!,0"2,···,0"m)· 

3.3 

3.4 

3.5 

3.6 
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Then all nontrivial solutions of (3.1) are oscillatory. 

Proof. Details of proof need only some minor modifications of those of Theorem 3.1 

and we shall be brief. Suppose { u1 , u2 , • • ·, um} is a nonoscillatory solution of (3.1). We 

multiply both sides of the partial differential equation (3.1) by '¢( x) and integrate both 

sides of the resulting equations over the domain fl; we then define v; such that 

v;(t) =in u;(x,t)'ljJ(x)dx, i = 1,2,···,m 3.7 

and note that there exists aT> 0 such that Jv;(t)J > 0 fort> T and i = 1, 2, · · ·, m due 

to the nonoscillatory nature of { u1, u2, ···,urn}· We derive from (3.1) and (3.7), 

~[v;(t)-c;v;(t-r)] + [a;;v;(t-a;)- t/1;jVj(t-aj)] 

j >Fi 

m 

~ -D;;8v;(t) + 8 2.:::: JD;iJvi(t). 
j=l 
j :j:i 

In the derivation of (3.8) we have used Green's formula and (3.2) so as to obtain 

in \luj(x,t)'ljJ(x)dx =in Uj(x,t) '\12 'ljJ(x)dx 

= -8 in Uj(x,t)'ljJ(x)dx 

= -8vj(t); j = 1,2,· .. ,m. 

Adding all the inequalities in (3.8) and simplifying further, 

3.8 

3.9 

d[m m ] m m 
dt ~ v;(t)-~ c;v;(t- r) + f.l, ~ v;(t- a;)+ q ~ v;(t) ~ 0. 3.10 

As in the case of the proof of Theorem 2.1, one can show that (3.10) leads to an inequality 

of the form 

3.11 
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where 
m 

w(t) =I: v;(t) for t > T +a*+ r; 
i=l 

one can show (as in the proof of Theorem 2.1) that there exists an eventually positive 

bounded solution of the scalar neutral equation 

d 
dt [w(t)- C 0 w(t- r)] + p,w(t -a0 ) + qw(t) = 0. 3.12 

We let 

U(t) = w(t)e-qt 3.13 

and note that U is an eventually positive bounded nonoscillatory solution of 

A necessary condition for (3.14) to have a bounded nonoscillatory solution is that the 

associated characteristic equation 

3.15 

has a nonpositive root; since z = 0 is not a root, we let z = -.\for some .\ > 0 and derive 

from (3.15), 

1 = Coeqr eAr + Caeqr q ( e~r) + p,equ. ( e~o) 

2:: C0 eqr + ( C0 eqr qr + p,equo 170 ) e. 

3.16 

3.17 

But (3.16) and (3.17) contradict respectively (3.3) and (3.4); thus (3.1) cannot have a 

nonoscillatory solution and this completes the proof. 
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