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ROBUST ESTIMATION AND OUTLIER DETECTION 
FOR REPEATED MEASURES EXPERIMENTS. 

R.M. HUGGINS 

1. INTRODUCTION. 

Standard methods of testing for repeated measures experiments and 
other mixed linear models are based on the likelihood function or least 
squares methods. These methods are known to be sensitive to model mis­
specification, and can be adversely affected by the presence of outliers. 

There have been several attempts at constructing robust estimates 
of the parameters associated with such models, eg Rocke (1982), Fellner 
(1986), Huggins (1991a,b) but only the methods of Huggins (1991a,b) based 
on M-estimators allow ready computation of standard errors of the resulting 
estimates and the construction of hypothesis tests. Note that the paramet­
ric form of the covariance matrix in repeated measures experiments allows 
the adoption of a simpler approach than that of Maronna (1976), see also 
Carroll (1978), who takes a different approach to constructing M-estimates. 

The approach used here also differs from that of Fellner (1986) who 
considered the robust estimation of variance components in mixed models. 
He constructed estimating equations, which are then solved iteratively, by 
trimming large residuals rather than constructing a robustified likelihood 
as is done here. The methods based on the t-distribution, as in Lange et al 
(1989), can be difficult to interpret in practice. Huggins (1991a) gives an 
example where the inclusion of an outlier in a dataset causes the degrees of 
freedom of the t-distribution to fall from 4945 to 13, which gives a mislead­
ing impression of the distribution of the bulk of the data. Methods based 
on the t-distribution have the further disadvantage that they downweight 
entire vectors of observations when it may only be one of the components 
of the vector which is abnormal. 

The approach here supposes that one is interested in the behaviour 
of the "centre" of the data and that the estimates, particularly those for 
variance components, should be able to be interpreted in a multivariate nor­
mal framework, see Huggins (1991b) for a discussion of this. In particular 
one would like to obtain estimates very close to the maximum likelihood 
estimates if there are no outliers. 
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2. ROBUST INFERENCE AND OUTLIER DETECTION. 
I 

We briefly outline and discuss the methods of Huggins (1991a,b,c). 

For each individual let X = (X1, ... , Xt)t be a vector of correlated con­
tinuous random. variables. It is commonly supposed that X ,.._, 1\IIV N(fl, D), 
where fl = Y (3 for some design matrix Y and vector of paran1.eters (3, and 
Dis some nonsingular matrix which can be expressed as a function of some 
variance components O"t, ... , O"~. Suppose one then takes independent ob-

t . v(l) X(N) d . h t · "t• t (3 cl 2 2 serva 1ons Jl.. , ••• , _. an w1s es o ·e.., 1ma e an a 1 , ... , IY m. 

If multivariate normality is assumed then the contribution of each in­

di-vidual to the likelihood is 

Summing these contributions over the observed X(j), then maximising with 
respect to (3 and the a% results in the m.aximum likelihood estimators. 

In order to robustify these equations write D = A-tA-l and for each 
let Z =A. - 1(X- ,u) = (Z1 , ... , Zt)t. Then under the MVN assumption 

the Zi are i.i.d. standard normal random variables and 

t 

- !-L)tn- 1(X- !-L) = zt z = L z;. 
i=l 

That is the maximumn likelihood estimators minimize the sum over all the 
XCi) of 

~ t Zf + ~ ln(det(D)). 
2 2 

i=l 

Now the Zf terms give excessive weight to large Zi values and in particular 
to outliers. The approach to robust inference of Huggins (199la,b) replaces 
Z'f by p(Zi) where p gives less weight to large values of Zi. A correction 
factor, K, rnust then be introduced so that the resulting estimators of the 
variance components are consistent and the robust estimators then arise 
from minimising, 

n Y L p(Zi)+ ~ ln(det(D)). 
. 2 
z=l 
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This results in M-estimators of the parameters associated with the model 
and the standard errrors etc. can be easily calculated using standard meth­
ods, as in Huggins (1991a). In the example below p corresponding to 
Tukey's bisquare was used. 

The robust estimates are easily computed, as only a minor modification 
to programs which compute maximum likelihood estimates is required, and 
agree closely with the mle's if there are no outliers or contamination. A 
comparison of the resulting estimates with the mle's is often a good outlier 
diagnostic. The estimates are not perfect in that the influence function 
of the variance components is not bounded, Huggins (1991b). However, 
it is possible to modify the procedure so that the influence functions are 
bounded. In practice these estimators with bounded influence function are 
far more difficult to compute and for most purposes the estimates described 
above will suffice. 

In order to detect the presence of outliers several methods may be used. 
The approach taken here is taken from Huggins (1991a,b) where.earlier 
work of Hopper and Mathews (1982) concerning the detection of outliers 
in pedigree analysis using maximum likelihood estimates is extended to 
repeated measures and robust estimates. Firstly the Zi may be computed 
using the estimated parameter values and any large values indicate the 
presence of outliers, but do not identify the outliers. Next outlying X can 
be detected by computing 

Q =(X- p,)tf2-1(X- p,), 

and then computing Q* = (2Q)I/2 - (2t- 1)I/2 which has an approximate 
standard normal distribution, so that large values of Q* for an observation X 
indicates that X is an outlier. In order to detect outlying observations within 
an observation X= (XI,· .. ,Xt)t each observation Xj may be compared 
with its conditional distribution given the remaining Xi. For example for 
an observed xi, let x2 denote the remaining observations, PI the estimated 
mean of XI, P2 the estimated mean of X2 and partition n as 

n = (~11 ~I2). n2I n22 
Then under multivariate normality the distribution of 

XI -(PI+ n12n221(x2- P2)) 
qi = ' 

)nn- n12n;2If221 
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has approximately a standard normal distribution and this may be used to 
detect outliers. Note that the presence of outliers may mask the presence of 
other outliers or indeed detect spurious outliers through an abnormal value 

for x 2 . To overcome this replace Xz in ql by Xz where x = A~(Z) + jl with 

1/J(x) = x for lxl < 2 and ~(x) = 2 if lxl > 2. This procedure has been used 
in the outlier detection tests below. 

In order to conduct robust tests of hypotheses, the \iVald and score tests 

of Basawa, Huggins and Staudte (1985) may be extended to this setting as 

in Huggins (1991c). 

3. EXAMPLE. 

The n1.ethodology is illustrated on the Guinea Pig dataset. It was 
expected that the animals would all grmv at a similar rate until the start 
of vveek 5 at which time there would be different rates in the three groups. 

Let Yij(t) denote the weight of the j th individual in group i at time t. 
The full model for the fixed effects is 

if t < 4· - ' 
if t 2: 5. 

The null hypothesis is that the three treatment effects are the same, 1.e. 

H 0 : /31 = /32 = (33 • The model for the covariance structure, based on the 
approach of Diggle (1988), considered here is var(Yij(t)) = a; +a; and 
cov(Yij(tk), 1'ij(tz)) =a; exp( -.A!tk- tzl), where a; corresponds to environ-
mental variation and to an autoregressive component of the variation. 

Here individual 1 is identified as an outlier with a value of Q* of 3.4 
and five data points, three corresponding to individuall (weeks 3,6 and 7), 
one to individual 7 (week 5) and one to individualS (week 6), are identified 
as outliers. The parameter estimates and their associated standard errors, 
with the standard errors of the maximum likelihood estimates computed 
according to the approach of Royall (1986), for both the full data set and 
with individual 1 omitted are given in Table 1. It is clear from_ this table 
that the outlying individual has a large effect on the maximum likelihood 
estimate of /31 whilst the robust estimate is noticeably less affected. 

To conduct the testing we reparameterise so that f3z = /31 + 1 2 and 

/33 = /31 + /3. Thus vve take et = ( Bi, e~) where Bi = ("t2, 13} and 8~ 
(p, a, /3, a;, a;, .A). The null hypothesis is now Ho : /2 = /3. 
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Table 1. Maximum likelihood and robust estimates of the parameters as­
sociated with the full model. 

All Data Individual 1 Omitted 

Parameter Likelihood Robust Likelihood Robust 

(31 1.52 (6.00) 5.43 ( 4.83) 7.42 (9.09) 7.30 (5.99) 

(32 22.89 ( 4.51) 21.56 (9.87) 22.17 (5.08) 21.73 (9.26) 

(33 15.84 (2. 72) 14.56 (3.66) 15.27 ( 4.23) 14.90 ( 4.82) 

1-" 484.93 (7.38) 489.4 7 (8.48) 487.57 (7.82) 488.56 (8.69) 

a 26.75 (2.84) 27.96 (3.41) 27.25 (2.97) 27.91 (3.56) 

cr2 
e 286.11 (121.20) 254.91 (122.91) 285.85 (139.78) 241.51 (144.45) 

cr2 
r 1353.1 (461.43) 951.18 ( 419.49) 936.47 (613.03) 1004.6 (320. 79) 

). 0.09 (0.09) 0.14 (0.10) 0.10 (0.13) 0.11 (0.16) 

The fact that the outlier has a marked effect on the maximum like­
lihood estimates suggests that the likelihood ratio test, and related tests 
based on the maximum likelihood estimates, may be unreliable. The values 
of these statistics, with individual one included and excluded respectively 
were: likelihood ratio 11.1, 5.65, Wald statistic 7.39, 1.93, score test 7.56. 
3.22. All these statistics have x2 distributions under H 0 • However, the 
latter two are computed according to the methods of Kent (1982) and are 
robust against model misspecification. Thus one would reach different con­
clusions in the two cases. In the robust case only the Wald and score 
statistics are computed and the corresponding values are: Wald statistic 
3.16, 1.94, score statistic 2.28, 1.85, so that the same conclusions would 
have been made in either case. 

4. DISCUSSION 

The example shows that robust techniques can be an important tool 
for the analysis of repeated measures experiments, both in the detection of 
outliers and in the estimation of parameters and testing of hypotheses. A 
major advantage in their use is that there is no need to discard an entire 
vector of observations if only one of the points in the vector is an outlier, 
and only this outlying point need be downweighted. Further, the initial 
stages of an analysis, and model building, can be simplified as one is less 
concerned that an observed effect may be due to only one or two points. 
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Robust techniques are not an excuse for poor modelling and the detec­
tion of outliers may merely mean the model being examined is incorrect. 
However, an examination of the residuals and any pattern in the outliers 
will often allow more realistic models to be constructed. 

Care needs to be taken in the interpretation of the variance component 
estimates. However, this is also true for maximum likelihood estimates, and 
as discussed in Huggins (1991b), it is the distribution of the standardised 
residuals vvhich determines the interpretation. 
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