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A CONTINUITY PROPERTY RELATED TO AN INDEX 
OF NON-WCG AND ITS IMPLICATIONS 

Warren B. Moors 

Consider a set-valued mapping <I> from a topological space A into subsets of a 

topological space X. Then <I> is said to be upper semi-continuous at t E A if given an open set W 

in X containing <I>(t) there exists an open neighbourhood U of t such that <I>(U) c W. For 

brevity we call <I> an usco if it is upper semi--continuous on A and <P(t) is a non-empty compact 

subset of X for each t EA. If X is a linear topological space we call <P a cusco if it is upper 

semi--continuous on A and <I>(t) is a non-empty convex compact subset of X for each tEA. An 

usco (cusco) <I> from a topological space A into subsets of a topological (linear topological) space 

X is said to be minimal if its graph does not strictly contain the graph of any other usco (cusco) 

with the same domain. 

For a bounded set E in a metric space X, the Kuratowski index of non-compactness is 

a(E) = inf{r > 0 : E is covered by a finite family of sets of diameter less than r}. 

It is well known that if X is complete then a(E) = 0 if and only if E is relatively compact, 

[6, p.303]. 

In a recent paper by Giles and Moors [4], a new continuity property related to 

Kuratowski's index of non--compactness was examined. In that paper they said that a set-valued 

mapping <P from a topological space A into subsets of a metric space X is a upper semi-

continuous at t E A if given e > 0 there exists an open neighbourhood U oft such that 

a( <I>(U)) < e. They showed that if the subdifferential mapping of a continuous convex function 

<jl on an open convex subset of a Banach space is a upper semi--continuous on a dense subset of 

its domain then <j> is Frt!chet differentiable on a dense and G0 subset of its domain. This result 

led to the consideration of two generalisations of Kuratowski's index of non--compactness. 

For a set E in a metric space X the index of non-separability is 

~(E) = inf { r > 0 : E is covered by a countable family of balls of radius less than r}, 

when E can be covered by a countable family of balls of a fixed radius, otherwise, ~(E) = oo. 

Further ~(E)= 0 if and only if E is a separable subset of X, [7]. 
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Now, a set-valued mapping w from a topological space A into subsets of a metric space 

X is said to be {3 upper semi-continuous at a point t e A if given £ > 0 there exists an open 

neighbourhood U of t such that (3( w(U)) < £. Moors proved that if the subdifferential mapping 

of a continuous convex function cp on an open convex subset of a Banach space is (3 upper semi

continuous on a dense subset of its domain, then cp is Frechet differentiable on a dense Gs subset 

of its domain. 

The second generalisation of Kuratowski's index of non-compactness involves a weak 

index of non-compactness introduced by de Blasi. Let us denote the closed unit ball 

{x eX: II x II::;; 1} by B(X) and the unit sphere {x eX: II x II= 1} by S(X). For a bounded set 

E in a normed linear space X, the weak index of non-compactness is 

ro(E) = inf { r > 0 : there exist a weakly compact set C such that E c C + rB(X) } . 

For a bounded set E in a Banach space X, ro(E) = 0 if and only if E is relatively weakly 

compact, [3]. 

A set valued mapping w from a topological space A into subsets of a normed linear space 

X is said to be ro upper semi-continuous at teA, if given £ > 0 there exists an open neighbour

hood U oft such that ro( w(U)) <£.Giles and Moors [5, Theorem 2.4] showed that if the 

subdifferential mapping of a continuous convex function cp on an open convex subset of a 

Banach space is ro upper semi-continuous on a dense subset of its domain then cp is Frechet 

differentiable on a dense G0 subset of its domain. 

We now introduce a new index, which generalises both the (3 index of non-separability, 

and the ro weak index of non-compactness. 

For a set E in a normed linear space X, the index of non-WCG is 

)'(E) = inf { r > 0 : there exists a countable family of weakly compact sets 
00 

{ Cn} : 1 such that E £ U Cn + rB(X)}. 
n=1 

A subset E of a normed linear space is said to be weakly compactly generated if there exists a 

weakly compact set C such that E ~ sp { C}. 
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Proposition 1 

For a normed linear space X, the index of non-WCG on X satisfies the following 
properties 

1. 'Y(E) ~ 0 for any E C X 

2. 'Y(E) = 0 if and only ifE is a weakly compactly generated subset ofX. 

3. 'Y(E) ·~ 'Y(F), for E.£ F.£ X. 
00 

4. y( U ErJ=sup{'Y(E0):neN},whereE0 ,£Xforal/neN. 
n=l 

- -
5. 'Y(E) = 'Y(E) for any E C X, where E denotes the closure of E. 

6. 'Y(E () F) ~ min { y(E), 'Y(F)} ,for E, F c X. 

7. 'Y(E+F) ~ 'Y(E) + 'Y(F), for E,F C X. 

8. 'Y(kE) =I k I 'Y(E), forE.£ X and k e R. 

9. 'Y(co E) = 'Y(E) forE c X when X is a Banach space, where co E denotes the convex hull 

of E. 

Proof 

The proofs of the properties 1. to 9. are straightforward, with the possible exception of 

2. and 9. which we now prove. 

2. Clearly, if E is weakly compactly generated subset of X then 'Y(E) = 0. 

Conversely, if 'Y(E) = 0 then there exists a sequence of weakly compact sets { C0 } : 1· such that 

-00-- 00 1 

E!:: U C0 • LetC= U A.: Cnu{O}whereA.0 =(sup{llxll:xeCn}+l)2°<oo. 
n=l n=l 

We will now show that Cis weakly compact. To this end, let {W1s;;, X: ye r} be a weak 

open cover of C. So, for some 'Yo e r, 0 e W 10, and in fact for some me N we have that 

2-IDB(X) C Wy,. Now,·C\ Wy = 0 (A.~1C0 \ W 1 )=i(/ A.~ 1C0 )\ W11 which is 
o o n=l o l n=l o 

weakly compact (possibly empty). Let { Wyi c X: i e { 1, 2, ... n}} be a fmite subcover of 

n 
C \ Wy, , then C c U W "'· . So, indeed C is weakly compact, and for every n e N we have 

0 i=O 11 

that C0 C 'Ar.C C sp{C}. 
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o;;-

Therefore, E \;;;;; U C \;;;;; sp { C} and so Eisa weakly compactly generated subset of X. 
n=l 11 

9. Clearly, y(E) ~ y(co E) by 3., so we prove the reverse inequality. Given r > y(E) there 

exists a countable family of weakly compact sets { Cn} ":. 1 such that E c U C11 + rB(X). So 
II- n=l 

co E \;;;;;co ( U C11 ) + rB(X) \;;;;; U co ( U co C ) + rB(X). Now co C is weakly compact 
n=l n=l n=l k k 

n 

for each k e N, [2, p.68], so co U co Ck is weakly compact for each n e N and then y( co E) ::;; r. 
k=l 

Therefore, y(co E)::;;; 'Y(E). II 

Consider a non-empty bounded subset K of X. Given f eX*\ { 0} and o > 0, the slice 

of K defined by f and 8 is the set S(K, f, o) = { x E K : f(x) > sup f(K) - S}. For a set-valued 

mapping cl> from a topological space A into subsets of a nonned linear space X we say the cl> is 

yupper semi-continuous at teA, if given e > 0 there exists an open neighbourhood U oft such 

that "/( <i>(U)) < E. 

Before proceeding to the main theorem we need the following two lemmas 

(see [7, Proposition 3.2]). 

Lemma 2 

Consider an usco ( cusco) ~from a topological space A into subsets of a Hausdorff space 

(separated linear topological space) X. Then <fl is a minimal usco (cusco) if and only if for any 

open set V in A and closed (closed and convex) set Kin X where cl>(V) Sf. K there exists a non

empty open subset V' £ V such that <l>(V') n K = 0. 

Lemma 3 

Let A be a topological space and X a Hausdorff space (separated linear topological 

space). Consider <I> a minimal usco ( cusco) from A into subsets of X. Let B be a closed (closed 

and convex) subset of X. Iff or each open subset U in A, ~(U) Sf. B then { x E A: <l>(x) n B = 

0} is a dense open subset of A. 
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Theorem 4 

Consider a Baire space A, and a Banach space X. Lett denote either the weak or norm 

topologies on X or, if X is the dual of a Banach space, also the weak* topology on X. Consider 

a minimal t:...usco (t-cusco} $from A into subsets of X. If$ is y upper semi-continuous on a 

dense subset of A then $ is single-valued and norm upper semi-continuous on a dense Ga 

subset of A. 

Proof 

We will prove the theorem only for the case of minimal t cuscos, as the proof for 

minimal t uscos is analogous. 

For each n eN, denote by U0 the union of all open sets U in A such that the 

diam $(U) < ~. For each n e N, U0 is open; we will show that U0 is dense in A. Consider W a 

non-empty open subset of A. Now there exist at e W where $ is y upper semi-continuous. So 

there exists an open neighbourhood V of t contained in W such that 'Y( $(V)) < 4~ . Therefore there 

exists a sequence {Co lkO:l of weakly compact sets in X such that $(V) c U Ck + 41 B(X). 
- k=l n 

We now prove that there exist a non-empty open subset G ofV such that co(w(G)) < 4~. 
Now if $(V') ~co c 1 + in B(X) for some non-empty subset V' of V, write G = V', but if not, 

then by Lemma 3 there exists a dense open set 0 1 ~ V such that $(01) ('I co C1 + 4~ B(X) = 0. 

Now if $(V') ~ co c 2 + 4~ B(X) for some non-empty open subset V' of V, write G = V', but if 

not, then by Lemma 3 there exists a dense open set 02~ V such that $(02) ('I co C2 + 4~ B(X)= 0. 
00 

Continuing in this way we will have defined Gat some stage, because if not, 0 00 = () Ok is a 
k=l 

dense Ga subset of v and $(0oo) ('I (k21 ck + 4~ B(X)) = 0. However, for any t E v we have 

that$(t) ('I ( U Ck + 4~ B(X))¢0. So we can conclude that V contains anon-empty open set 
k=l 

G with co(w(G)) <in. 
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We now prove that there exists a non-empty open subset U of G such that the 

diam <f>(U) < *. Now there exists a minimal convex weakly compact set Cm such that 

1 
cll(G) C Cm + 4n B(X), [5, Lemma 2.2]. 

We may assume that the diam Cm ~in· Since Cm is weakly compact and convex there 

exists an f e S(X*) and a b > 0 such that diam S(Cm, f, S) <in , [1, p.199]. Now 

K = Cm \ S(Cm, f, 0) is a non-empty weakly compact and convex subset of X, and so it is 

't closed and convex. But K + 4~ B(X) is also t closed and convex. However, since Cm is a 

minimal convex weakly compact set such that ell( G)£ Cm+ in B(X) we must have that 

<I>( G) Sf K + 4~ B(X). Since <I> is a minimal t cusco it follows from Lemma 2 that there exists a 

non-empty open subset U of G such that 

<f>(U) c (em+ 4~ B(X)) \(K + ln B(X)) c S(Cm, f, 8) +in B(X). 

So the di;:un <I>(U) <*,and we have that 0 .= U C U0 n W. We conclude that for each n eN, 

U0 is dense in A and so <l> is single-valued and norm upper semi-continuous on the dense GB 
00 

subset n u of A. II 
n=l n n 

Theorem 4 has some important implications in differentiability theory. But first we need 

the following facts about convex functions. A continuous convex function $ on an open convex 

subset A of a Banach space X, is said to be Frechet differentiable at x e A if lim !jl(x+ty;- <j>(x) 
. t~O 

exists and is approached uniformly for ally e S(X). A sub gradient of <jl at xo e A is a continuous 

linear functional f on X such that f(x-xo) ::;; <j>(x) - <j>(x0) for all x EA. The subdijferential of$ at 

xo is denoted by o${xo) and is the set of all subgradients of <jl at xo. The subdijferential 

mapping x--? d<jl(x) is a minimal weak* cusco from A into subsets of X*, [8, p.lOO]. Further 

$ is Frechet differentiable at x e A if and only if the subdifferential mapping x ~ d<jl(x) is 

single-valued and norm upper semi-continuous at x, [8, p.l8]. So from Theorem 4, we have 

the following two corollaries. 
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Corollary 5 

A continuous convex function ~ on an open convex subset A of a Banach space X 

whose subdifferential mapping x -? a~(x) is y upper semi-continuous on a dense subset of A 

is Frechet differentiable on a dense G0 subset of A. 

The well-known property for spaces with weakly compactly generated dual, [8,p.38], 

follows naturally. 

Corollary 6 

Every Banach space, whose dual is weakly compactly generated has the property that 

every continuous convex function on an open convex subset is Frechet differentiable on a 

dense G0 subset of its domain. 
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