A CONTINUITY PROPERTY RELATED TO AN INDEX OF NON-WCG AND ITS IMPLICATIONS

Warren B. Moors

Consider a set-valued mapping Φ from a topological space A into subsets of a topological space X. Then Φ is said to be *upper semi-continuous* at $t \in A$ if given an open set W in X containing $\Phi(t)$ there exists an open neighbourhood U of t such that $\Phi(U) \subseteq W$. For brevity we call Φ an *usco* if it is upper semi-continuous on A and $\Phi(t)$ is a non-empty compact subset of X for each $t \in A$. If X is a linear topological space we call Φ a *cusco* if it is upper semi-continuous on A and $\Phi(t)$ is a non-empty convex compact subset of X for each $t \in A$. An usco (cusco) Φ from a topological space A into subsets of a topological (linear topological) space X is said to be *minimal* if its graph does not strictly contain the graph of any other usco (cusco) with the same domain.

For a bounded set E in a metric space X, the Kuratowski index of non-compactness is

 $\alpha(E) \equiv \inf\{r > 0 : E \text{ is covered by a finite family of sets of diameter less than } r\}.$ It is well known that if X is complete then $\alpha(E) = 0$ if and only if E is relatively compact, [6, p.303].

In a recent paper by Giles and Moors [4], a new continuity property related to Kuratowski's index of non-compactness was examined. In that paper they said that a set-valued mapping Φ from a topological space A into subsets of a metric space X is α upper semicontinuous at $t \in A$ if given $\varepsilon > 0$ there exists an open neighbourhood U of t such that $\alpha(\Phi(U)) < \varepsilon$. They showed that if the subdifferential mapping of a continuous convex function ϕ on an open convex subset of a Banach space is α upper semi-continuous on a dense subset of its domain then ϕ is Fréchet differentiable on a dense and G_{δ} subset of its domain. This result led to the consideration of two generalisations of Kuratowski's index of non-compactness.

For a set E in a metric space X the index of non-separability is

 $\beta(E) \equiv \inf\{r > 0 : E \text{ is covered by a countable family of balls of radius less than } r\}$, when E can be covered by a countable family of balls of a fixed radius, otherwise, $\beta(E) = \infty$. Further $\beta(E) = 0$ if and only if E is a separable subset of X, [7]. Now, a set-valued mapping Φ from a topological space A into subsets of a metric space X is said to be β upper semi-continuous at a point $t \in A$ if given $\varepsilon > 0$ there exists an open neighbourhood U of t such that $\beta(\Phi(U)) < \varepsilon$. Moors proved that if the subdifferential mapping of a continuous convex function ϕ on an open convex subset of a Banach space is β upper semi-continuous on a dense subset of its domain, then ϕ is Fréchet differentiable on a dense G_{δ} subset of its domain.

The second generalisation of Kuratowski's index of non-compactness involves a weak index of non-compactness introduced by de Blasi. Let us denote the closed unit ball $\{x \in X : || x || \le 1\}$ by B(X) and the unit sphere $\{x \in X : || x || = 1\}$ by S(X). For a bounded set E in a normed linear space X, the *weak index of non-compactness* is

 $\omega(E) \equiv \inf \{ r > 0 : \text{there exist a weakly compact set C such that } E \subseteq C + rB(X) \}.$ For a bounded set E in a Banach space X, $\omega(E) = 0$ if and only if E is relatively weakly compact, [3].

A set valued mapping Φ from a topological space A into subsets of a normed linear space X is said to be ω upper semi-continuous at $t \in A$, if given $\varepsilon > 0$ there exists an open neighbour-hood U of t such that $\omega(\Phi(U)) < \varepsilon$. Giles and Moors [5, Theorem 2.4] showed that if the subdifferential mapping of a continuous convex function ϕ on an open convex subset of a Banach space is ω upper semi-continuous on a dense subset of its domain then ϕ is Fréchet differentiable on a dense G_{δ} subset of its domain.

We now introduce a new index, which generalises both the β index of non-separability, and the ω weak index of non-compactness.

For a set E in a normed linear space X, the index of non-WCG is

 $\gamma(E) \equiv \inf \{ r > 0 : \text{there exists a countable family of weakly compact sets} \}$

$$\{C_n\}_{n=1}^{\infty}$$
 such that $E \subseteq \bigcup_{n=1}^{n} C_n + rB(X) \}.$

A subset E of a normed linear space is said to be *weakly compactly generated* if there exists a weakly compact set C such that $E \subseteq \overline{sp}$ {C}.

Proposition 1

For a normed linear space X, the index of non-WCG on X satisfies the following properties

- 1. $\gamma(E) \ge 0$ for any $E \subseteq X$
- 2. $\gamma(E) = 0$ if and only if E is a weakly compactly generated subset of X.
- 3. $\gamma(E) \leq \gamma(F), \text{ for } E \subseteq F \subseteq X.$
- 4. $\gamma\left(\bigcup_{n=1}^{\infty} E_n\right) = \sup\{\gamma(E_n) : n \in \mathbb{N}\}, \text{ where } E_n \subseteq X \text{ for all } n \in \mathbb{N}.$
- 5. $\gamma(E) = \gamma(\overline{E})$ for any $E \subseteq X$, where \overline{E} denotes the closure of E.
- 6. $\gamma(E \cap F) \le \min{\{\gamma(E), \gamma(F)\}}, \text{ for } E, F \subseteq X.$
- 7. $\gamma(E+F) \leq \gamma(E) + \gamma(F), \text{ for } E, F \subseteq X.$
- 8. $\gamma(kE) = |k| \gamma(E)$, for $E \subseteq X$ and $k \in \mathbb{R}$.
- 9. $\gamma(\text{co E}) = \gamma(\text{E})$ for $\text{E} \subseteq X$ when X is a Banach space, where co E denotes the convex hull of E.

Proof

The proofs of the properties 1. to 9. are straightforward, with the possible exception of 2. and 9. which we now prove.

2. Clearly, if E is weakly compactly generated subset of X then $\gamma(E) = 0$. Conversely, if $\gamma(E) = 0$ then there exists a sequence of weakly compact sets $\{C_n\}_{n=1}^{\infty}$ such that

$$E \subseteq \overline{\bigcup_{n=1}^{\infty} C_n} \quad \text{Let } C \equiv \bigcup_{n=1}^{\infty} \lambda_n^{-1} C_n \cup \{0\} \text{ where } \lambda_n \equiv \left(\sup\{\|x\| : x \in C_n\} + 1\right) 2^n < \infty.$$

We will now show that C is weakly compact. To this end, let $\{W_{\gamma} \subseteq X : \gamma \in \Gamma\}$ be a weak open cover of C. So, for some $\gamma_0 \in \Gamma$, $0 \in W_{\gamma_0}$, and in fact for some $m \in \mathbb{N}$ we have that

$$2^{-m}B(X) \subseteq W_{\gamma_0}. \text{ Now, } C \setminus W_{\gamma_0} = \bigcup_{n=1}^{\infty} \left(\lambda_n^{-1}C_n \setminus W_{\gamma_0}\right) = \left(\bigcup_{n=1}^{m-1} \lambda_n^{-1}C_n\right) \setminus W_{\gamma_0} \text{ which is}$$

weakly compact (possibly empty). Let $\{W_{\gamma_i} \subseteq X : i \in \{1, 2, ..., n\}\}$ be a finite subcover of $C \setminus W_{\gamma_0}$, then $C \subseteq \bigcup_{i=0}^n W_{\gamma_i}$. So, indeed C is weakly compact, and for every $n \in \mathbb{N}$ we have that $C_n \subseteq \lambda_n C \subseteq \operatorname{sp}\{C\}$.

Therefore, $E \subseteq \overline{\bigcup_{n=1}^{\infty}} C_n \subseteq \overline{sp} \{C\}$ and so E is a weakly compactly generated subset of X.

9. Clearly, $\gamma(E) \leq \gamma(\operatorname{co} E)$ by 3., so we prove the reverse inequality. Given $r > \gamma(E)$ there exists a countable family of weakly compact sets $\{C_n\}_{n=1}^{\infty}$ such that $E \subseteq \bigcup_{n=1}^{\infty} C_n + rB(X)$. So $\operatorname{co} E \subseteq \operatorname{co} \left(\bigcup_{n=1}^{\infty} C_n\right) + rB(X) \subseteq \bigcup_{n=1}^{\infty} \operatorname{co} \left(\bigcup_{n=1}^{n} \overline{\operatorname{co}} C_n\right) + rB(X)$. Now $\overline{\operatorname{co}} C_k$ is weakly compact for each $k \in \mathbb{N}$, [2, p.68], so $\operatorname{co} \bigcup_{k=1}^{n} \overline{\operatorname{co}} C_k$ is weakly compact for each $n \in \mathbb{N}$ and then $\gamma(\operatorname{co} E) \leq r$. Therefore, $\gamma(\operatorname{co} E) \leq \gamma(E)$.

Consider a non-empty bounded subset K of X. Given $f \in X^* \setminus \{0\}$ and $\delta > 0$, the *slice* of K defined by f and δ is the set $S(K, f, \delta) \equiv \{x \in K : f(x) > \sup f(K) - \delta\}$. For a set-valued mapping Φ from a topological space A into subsets of a normed linear space X we say the Φ is *γupper semi-continuous* at $t \in A$, if given $\varepsilon > 0$ there exists an open neighbourhood U of t such that $\gamma(\Phi(U)) < \varepsilon$.

Before proceeding to the main theorem we need the following two lemmas (see [7, Proposition 3.2]).

Lemma 2

Consider an usco (cusco) Φ from a topological space A into subsets of a Hausdorff space (separated linear topological space) X. Then Φ is a minimal usco (cusco) if and only if for any open set V in A and closed (closed and convex) set K in X where $\Phi(V) \not\subseteq K$ there exists a nonempty open subset V' \subseteq V such that $\Phi(V') \cap K = \emptyset$.

Lemma 3

Let A be a topological space and X a Hausdorff space (separated linear topological space). Consider Φ a minimal usco (cusco) from A into subsets of X. Let B be a closed (closed and convex) subset of X. If for each open subset U in A, $\Phi(U) \not\subseteq B$ then $\{x \in A : \Phi(x) \cap B = \emptyset\}$ is a dense open subset of A.

Theorem 4

Consider a Baire space A, and a Banach space X. Let τ denote either the weak or norm topologies on X or, if X is the dual of a Banach space, also the weak * topology on X. Consider a minimal τ -usco (τ -cusco) Φ from A into subsets of X. If Φ is γ upper semi-continuous on a dense subset of A then Φ is single-valued and norm upper semi-continuous on a dense G_{δ} subset of A.

Proof

We will prove the theorem only for the case of minimal τ cuscos, as the proof for minimal τ uscos is analogous.

For each $n \in \mathbb{N}$, denote by U_n the union of all open sets U in A such that the diam $\Phi(U) < \frac{1}{n}$. For each $n \in \mathbb{N}$, U_n is open; we will show that U_n is dense in A. Consider W a non-empty open subset of A. Now there exist a $t \in W$ where Φ is γ upper semi-continuous. So there exists an open neighbourhood V of t contained in W such that $\gamma(\Phi(V)) < \frac{1}{4n}$. Therefore there exists a sequence $\{C_n\}_{k=1}^{\infty}$ of weakly compact sets in X such that $\Phi(V) \subseteq \bigcup_{k=1}^{\infty} C_k + \frac{1}{4n} B(X)$. We now prove that there exist a non-empty open subset G of V such that $\omega(\Phi(G)) < \frac{1}{4n}$. Now if $\Phi(V') \subseteq \overline{\operatorname{co}} C_1 + \frac{1}{4n} B(X)$ for some non-empty subset V' of V, write $G \equiv V'$, but if not, then by Lemma 3 there exists a dense open set $O_1 \subseteq V$ such that $\Phi(O_1) \cap \overline{\operatorname{co}} C_1 + \frac{1}{4n} B(X) = \emptyset$. Now if $\Phi(V') \subseteq \overline{\operatorname{co}} C_2 + \frac{1}{4n} B(X)$ for some non-empty open subset V' of V, write $G \equiv V'$, but if not, then by Lemma 3 there exists a dense open set $O_2 \subseteq V$ such that $\Phi(O_2) \cap \overline{\operatorname{co}} C_2 + \frac{1}{4n} B(X) = \emptyset$. Continuing in this way we will have defined G at some stage, because if not, $O_{\infty} \equiv \bigcap_{k=1}^{\infty} O_k$ is a dense G_{δ} subset of V and $\Phi(O_{\infty}) \cap \left(\bigcup_{k=1}^{\infty} C_k + \frac{1}{4n} B(X)\right) = \emptyset$. However, for any $t \in V$ we have that $\Phi(t) \cap \left(\bigcup_{k=1}^{\infty} C_k + \frac{1}{4n} B(X)\right) \neq \emptyset$. So we can conclude that V contains a non-empty open set G with $\omega(\Phi(G)) < \frac{1}{4n}$.

We now prove that there exists a non-empty open subset U of G such that the diam $\Phi(U) < \frac{1}{n}$. Now there exists a minimal convex weakly compact set C_m such that $\Phi(G) \subseteq C_m + \frac{1}{4n} B(X)$, [5, Lemma 2.2].

We may assume that the diam $C_m \ge \frac{1}{2n}$. Since C_m is weakly compact and convex there exists an $f \in S(X^*)$ and a $\delta > 0$ such that diam $S(C_m, f, \delta) < \frac{1}{2n}$, [1, p.199]. Now

 $K \equiv C_m \setminus S(C_m, f, \delta)$ is a non-empty weakly compact and convex subset of X, and so it is τ closed and convex. But $K + \frac{1}{4n} B(X)$ is also τ closed and convex. However, since C_m is a minimal convex weakly compact set such that $\Phi(G) \subseteq C_m + \frac{1}{4n} B(X)$ we must have that $\Phi(G) \not\subseteq K + \frac{1}{4n} B(X)$. Since Φ is a minimal τ cusco it follows from Lemma 2 that there exists a

non-empty open subset U of G such that

 $\Phi(U) \subseteq \left(C_m + \frac{1}{4n} B(X)\right) \setminus \left(K + \frac{1}{4n} B(X)\right) \subseteq S(C_m, f, \delta) + \frac{1}{4n} B(X).$ So the diam $\Phi(U) < \frac{1}{n}$, and we have that $\emptyset \neq U \subseteq U_n \cap W$. We conclude that for each $n \in \mathbb{N}$, U_n is dense in A and so Φ is single-valued and norm upper semi-continuous on the dense G_δ subset $\bigcap_{n=1}^{\infty} U_n$ of A. //

Theorem 4 has some important implications in differentiability theory. But first we need the following facts about convex functions. A continuous convex function ϕ on an open convex subset A of a Banach space X, is said to be *Fréchet differentiable* at $x \in A$ if $\lim_{t\to 0} \frac{\phi(x+ty) - \phi(x)}{t}$ exists and is approached uniformly for all $y \in S(X)$. A *subgradient* of ϕ at $x_0 \in A$ is a continuous linear functional f on X such that $f(x-x_0) \leq \phi(x) - \phi(x_0)$ for all $x \in A$. The *subdifferential* of ϕ at x_0 is denoted by $\partial \phi(x_0)$ and is the set of all subgradients of ϕ at x_0 . The *subdifferential mapping* $x \rightarrow \partial \phi(x)$ is a minimal weak * cusco from A into subsets of X*, [8, p.100]. Further ϕ is Fréchet differentiable at $x \in A$ if and only if the subdifferential mapping $x \rightarrow \partial \phi(x)$ is single-valued and norm upper semi-continuous at x, [8, p.18]. So from Theorem 4, we have the following two corollaries.

Corollary 5

A continuous convex function ϕ on an open convex subset A of a Banach space X whose subdifferential mapping $x \rightarrow \partial \phi(x)$ is γ upper semi-continuous on a dense subset of A is Fréchet differentiable on a dense G_{δ} subset of A.

The well-known property for spaces with weakly compactly generated dual, [8,p.38], follows naturally.

Corollary 6

Every Banach space, whose dual is weakly compactly generated has the property that every continuous convex function on an open convex subset is Fréchet differentiable on a dense G_{δ} subset of its domain.

References

- 1. J. Bourgain, "Strongly exposed points in weakly compact convex sets in Banach spaces", *Proc.Amer.Math.Soc.* 58 (1976) 197–200.
- M.M. Day, Normed Linear Spaces, Springer-Verlag, Berlin, Heidelberg, New York, 3rd ed. 1973.
- F.S. de Blasi, "On a property of the unit sphere in a Banach space", Bull.Math.Soc.Sci. Math R.S. Roumaine (NS) 21 (1977) 259-262.
- 4. John R. Giles and Warren B. Moors, "A continuity property related to Kuratowski's index of non-compactness, its relevance to the drop property and its implications for differentiability theory", (preprint)
- 5. John R. Giles and Warren B. Moors "The implications for differentiability of a weak index of non-compactness" (preprint).

- 6. Casmir Kuratowski, "Sur les espaces complets", Fund.Math. 15 (1930), 301-309.
- 7. Warren B. Moors, "A continuity property related to an index of non-separability and its applications, *Bull.Austral.Math.Soc.* (to appear).
- 8. R.R. Phelps, *Convex functions, monotone operators and differentiability*, Lecture notes in Mathematics, 1364, Springer–Verlag, Berlin, Heidelberg, New York, 1989.

Department of Mathematics University of Newcastle NSW 2308, Australia.