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Subelliptic operators on Lie groups 

A.F.M. ter Elst and Derek W. Robinson 

1 Introduction 

Hormander's analysis [Hor] of hypoelliptic operators lent impetus to the development of 
the theory of subelliptic operators on Riemannian manifolds or on Lie groups. Recent 
results have been surveyed in the article by Jerison and Sanchez-Calle [JSC], the lecture 
notes of Varopoulos, Saloff-Coste and Coulhon [VSC] or the books by Davies [Dav] and 
Robinson [Rob]. The Lie group theory, which has been extensively studied for subelliptic 
operators with real coefficients, concentrates on analyzing the heat semigroup generated 
by the operator and the corresponding heat kernel. In this review we describe the main 
results of this theory under slightly more general assumptions than hitherto. 

Throughout the sequel we adopt the general notation of [Rob]. In particular G 
denotes a d-dimensional Lie group which we may assume to be connected because all 
analysis takes place on the connected component of the identity. The Lie algebra of G 
is denoted by fl. Furthermore (X,G,U) is used for a continuous representation of G on 
the Banach space X by bounded operators g ~ U(g). Both strong and weak* continuity 
are considered. Moreover if ai E f1 then Ai denotes the generator of the one-parameter 
subgroup t ~ U(e-ta;) of the representation. The cn-subspaces X~ of the representation 
(X, G, U) with respect to a sub basis a1, . .. , ad' of f1 is the common domain of all monomials 
Mm of order m ::5 n in the generators At. ... , Ad'· The en-norm is defined by 

where the supremum is over all the monomials and M0 =I. The C""-elements X~ of the 
subbasis are then defined by 

Similarly if a1, ... , ad is a full vector space basis of f1 we use the notation Xn and II · lin 
for the corresponding en-subspace and norm and denote the C""-elements by X00 • 

If the representation (X, G, U) is strongly continuous, X* is the dual of X and U(g)* 
the adjoint of U(g) then one has a dual representation (X*, G, U*), where 

which is weakly* continuous. Alternatively if (X, G, U) is weakly* continuous, X* is the 
predual of X and U(g)* is the adjoint of U(g) on X* one has a dual representation 
(X*, G, U*) which is strongly continuous. We will denote both cases with the common 
notation (:F, G, U*) with :F =X*, or X*. 

The theory of subelliptic operators is constructed from a Lie algebraic basis a1 , .•. , ad' 
of g, i.e., a finite sequence of linearly independent elements of g whose Lie algebra gen­
erates g. Thus there is an integer r such that a1, ... , ad' together with all commutators 
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(adaiJ ... (adai,._1 )(ai,.), i; = 1, ... , d', where n ~ r, span the vector space g. The small­
est integer r with this property is referred to as the rank of the algebraic basis and a vector 
space basis is defined to have rank one. Note that if the algebraic basis a1, ... , ad' is com­
pleted to a full vector space basis a1, ... , ad', ... , ad and X~, Xn denote the corresponding 
cn-subspaces then 

X~r ~ Xn ~X~ 

for all n 2:: 1 where the inclusions are continuous embeddings of Banach spaces. Hence 
Xoo = X~. Although the subspaces X~ for n < oo depend on the choice of algebraic basis 
the subspaces X~ and Xn are basis independent. 

There is a canonical modulus associated with each algebraic basis a1, ... , ad' which is 
defined by considering absolutely continuous paths -y: [0, 1] -+ G from the identity e E G 
tog E G such that the tangents are almost everywhere in the span of a1, ... , ad'· Then 
if 1/J is a smooth function over G and A1, ... , Ad' are the generators of left translations 
there are tangential coordinates -y1, ... , 'Yd' such that 

d'I/J('Y(t)) = t 'Yi(t)(A;'I/J)(-y(t)) . 
dt i=1 . 

The modulus lgl' of g is defined in terms of these coordinates by 

11 ( d' )1/2 lgl' = inf dt L 'Yi(t) 
-y(O)=e,-y(1)=g 0 i=1 

It follows that if 
B~ = {g E G: lgl' < p} 

there is an integer D' 2:: d and d, C' > 0 such that 

c'pD' ~ IB~I ~ C'pD' 

for all p E {0, 1]. The integer D' is defined to be the local dimension ofthe algebraic basis 
a1, ... , ad'· For a proof see [NSW] Theorem 4 and [Rob] Lemma IV.2.3. 

If the algebraic basis a1, ... , ad' is again completed to a full vector space basis 
a1, ... , ad', ... , ad one can repeat the above definitions and obtain a modulus I · I which 
automatically satisfies 

for all g E G. Moreover if 

then 
cpd ~ IBpl ~ Cpd 

for all p E {0, 1] and some c, C > 0 with d the dimension of G. The two moduli are 
equivalent for large values. Explicitly there is a b 2:: 1 such that 

for all g with lgl 2:: 1. Near the identity the two measures are, however, distinct. Never­
theless there is a b' > 0 such that 
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whenever lui ::::; 1 where r is the rank of the algebraic basis by [NSW], Proposition 1.1. 
Much of the subsequent analysis is on function spaces over the group. We let Lv 

denote the usual spaces Lv(G; dg) formed with respect to left Haar measure dg. Moreover, 
Lr; denotes the corresponding spaces Lv(G; dg) with respect to right Ha.ar measure dg. 
Then the modular function ~ satisfies dg = ~ - 1dg. The cn-subspaces of Lv and Lr; 
corresponding to left translations are denoted by L~;n and L~,,. 

2 Heat semigroups 

Let ah ... , ad' be an algebraic basis of the Lie algebra g and As, ... , Ad' the corresponding 
generators associated with the continuous representation ( ... l', G, U). Next let C = (c;j) be 
ad' X d'-matrix with real entries and strictly positive real part 3CC = (C + C*)/2. Thus 
we do not assume that C is symmetric, but the real part is of course symmetric. Then 
for Co, cl, ... ' CrJ.I E c introduce the densely-defined subelliptic operator H by D(H) = x; 
and 

d' d' 

H =-I: c;iAAi + :Le;Ai + eoi (1) 
i,j=l i=1 

Further define the formal adjoint Ht of H by 

d' d' 

Ht = - E cjiA,Ai - E CiA + eoi 
i,j:=l 

with D(Hf) = D(H). Note that if Hf is defined relative to the dual representation 
(:F, G, U*) then Ht is the restriction of the adjoint of H to F~. In all the subsequent 
statements of this section the subelliptic operators are assumed to be of the foregoing 
type. 

The first result is an extension of results given in [Rob] Section IVA. 

Theorem 2.1 Let (X, G, U) be a continuous representation and a1 , .•. , ad' an algebraic 
basis. 

I. The subelliptic operator H defined by (1) is closable and its closure H generates 
a continuous holomorphic semigroup S on X with the property StX s:;; Xoo for all 
t > 0. 

II. The action of S is determined by aU-integrable kernel K, i.e. there is a family 
(Kt)t>O of functions over G forming a convolution semigroup with respect to left 
Haar measure dg such that 

St = k dg Kt(g)U(g) 

for all t > 0. 

III. The kernel Kt is a coo -function for all t > 0 and the function t 1-4 Kt (g) is analytic 
for all g E G. 

IV. There exist a, b > 0 and w 2 0 such that 

IKt(u)l::::; acD'/2e"'te-b(lul')2 /t 

for all g E G and t > 0. 
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V. The kernel is pointwise positive if and only if the coefficients H are real and then 
there are a', b' > 0 and w1 :;::: 0 such that 

for all g E G and t > 0. 

The statements of the theorem can be improved in several respects. We will comment 
further on this after discussing two different but related methods of proving the result. 

The conceptually simplest proof is based on Ouhabaz' recent extension [Ouh] of the 
theory of Dirichlet forms to sectorial forms. The starting point is the observation that 
one can associate with the operator H on L2 a sectorial form h with D(h) = L;.1 and 

d.' d.' 

h(cp,'I/J) = I: CiJ(A;cp,Aj'I/Y) + l:c;(cp,Ai'tP) + co(cp,'I/J) 
i,j=l i=l 

for cp,'I/J E D(h). This form determines in a canonical manner a closed extension H 
of H which generates a continuous holomorphic semigroup on L 2 • But then Ouhabaz' 
results, in particular Theorem 2.7 and the discussion in Section 4 of [Ouh], imply that 
the semigroup S generated by H interpolates between the Lp-spaces. In particular the 
semigroup extends to a continuous semigroup on each of the Lp-spaces and then, by 
an easy argument, to a continuous semigroup on each of the Lp-spaces. Moreover, the 
holomorphy of 8 on L2 implies that StL2 s;;; D(H) s;;; D(h) = L~;l for all t > 0. Similarly, 
S1L2 s;;; L~.1 for all t > 0. Therefore one can repeat the differential inequality arguments 
of [Rob] Chapter 4 based on the Nash inequalities to deduce that S1 , t > 0, is a bounded 
operator from Li to L2 and then by a duality argument involving the formal adjoint of H 
it is a bounded operator from L2 to L00 • Combination of these results implies that St is 
bounded from L1 to Loo and then by the Dunford-Pettis theorem it must have an integral 
kernel. Subsequently, the perturbed form of the differential inequality arguments as given 
in [Rob] Section IV.2 yield Gaussian bounds on the kernel. In these latter calculations 
it is important that the matrix of leading coefficients of H are real but symmetry of the 
matrix is not of consequence. Once the existence of a kernel with Gaussian bounds is 
established one can associate a continuous semigroup S with the general representation 
(X, G, U) by the definition 

St =fa dg K1(g)U(g) 

for all t > 0. Moreover the arguments used in Step 4 of the proof of Theorem IV.4.5 in 
[Rob] establish that the generator of Sis exactly the closure of H. The only elements of 
this proof are general functional analysis and interpolation theory. 

The second method of proof is a rearrangement of the arguments used in Section IV.4 
of [Rob]. One begins by considering the operator H 0 associated with left-translations on 
the realBanach space C0 (G) with Co= c1 = ... = cd' = 0. If <p E D(H0 ) is real valued and 
cp(g) = II'PIIoo then ((A;Aj- AjA;)cp)(g) = E%=1 ctj(Akcp)(g) = 0. So the d' X d'-matrix 
D0 with entries -(A;Ayp)(g) is real-valued, symmetric and positive definite. Hence 

Re ( (H0 cp )(g)) Re (Tr (CD9 )) 

Tr (D!12 (RC)D!f2 ) :;::: 0 
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Thus H 0 is dissipative and closable. Then the arguments of [Rob] apply directly to H0 and 
the theorem can be established for this operator. The first-order terms are subsequently 
handled by perturbation theory. Note that this proof goes beyond conventional functional 
analysis by its use of Bony's results [Bon] on subelliptic differential operators. 

Note that in both cases one needs supplementary arguments to establish the state­
ment that StX ~ X00 • This requires an extension of Hormander's proof of hypoellipticity 
to the operator H. 

One feature of the theorem which can be substantially improved is the upper bounds. 
In the case of real coefficients the dependence of the parameters a, b, w entering the bounds 
on the coefficients of H can be effectively estimated. For example, the value of b can be 
chosen arbitrarily close to the vdlue (4IICII)-1 . Similar improvements can also be made 
in the present context by repetition of the arguments of [Rob]. Moreover in special cases 
such as polynomial groups the large t behaviour of the kernel can be related to the volume 
growth of the group. Again this improvement is possible under the current hypotheses. 

It is also possible to derive estimates on the holomorphy sector of the semigroup S 
in terms of bounds on the coefficients of H. In particular one can prove that there is a 
sector of holomorphy which is universal for all isometric representations. 

Finally one can also establish a useful identification of the closure of H in terms of 
the formal adjoint associated with the dual representation. It follows that H = Ht* 
because Ht* = IiT* is the generator of the adjoint of the semigroup generated by Ht 
on :F. Moreover, Ht* extends Fl. Since a semigroup generator has no proper extension 
it follows that H = Ht*. Similar identifications are known to hold for strongly elliptic 
operators. 

3 Interpolation spaces 

In the sequel we intend to describe regularity properties of the subelliptic operators H 
associated with a general continuous :representation. These properties are all statements 
of the form 'if x E D( H) and H x is smooth then x is somewhat smoother'. Usually they 
can be expressed in terms of a scale of subspaces (X,., II · II,.), where the index o: is a 
measure of smoothness, by inequalities of the form 

for all x E D(H), i.e., they correspond to continuous embeddings of Banach subspaces 
characterized by smoothness properties of the representation. In order to make such state­
ments more precise it is useful to introduce a variety of spaces adapted to the expression of 
smoothness properties. These spaces can be defined in various ways, by interpolation, by 
Lipschitz conditions on the representr.tion, et cetera. But it is a key result that all the pos­
sible approaches are equivalent. We begin with the standard definitions of interpolation 
spaces related to the C""-subspaces corresponding to an algebraic subbasis. 

If n1, n 2 E N 0 , n 1 < n 2 and x E X define the interpolation function "~'"'' ·"2 ): (0, oo) -t 

[0, oo] by setting 
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Then for 1 E 

where p E [1, oo] and we adopt the convention ooP = oo1/P = oo for finite p. (Here and in 

the sequel there are obvious modifications which cover the case p = oo and which we will 
not explicitly record.) The interpolation space (X~,, X~2 ), is defined by 

X' ) = {x E X · llxll(n,,n,) < oo} 
' 'il2 "'( • '"Y • 

It is a Banach space with respect to the norm \1· and X~2 is a norm dense subspace 
if p E (see, fo:r [BuB], §3.2). 

There are at least three more interesting interpolation spaces. Let 0 be a bounded 
open neighborhood of the identity e of G and n E N then for each 1 E (0, n) define 

II ·ll~·u: X---? [0, oo] 

( )p) 1/p 
dp.n(g) jgj-'~II(I- U(g!}) ···(I- U(gn))xji 

where g = ... ,gn) and jgj = 1'+ ... +lgnj'. Moreover, P,n is the absolutely continuous 
measure with to the left invariant Haar measure on G" with density g ~-+ jgl-nD' 
where D' is the local dimension corresponding to the algebraic basis a1,. o., ad'· Then the 

space is defined by 

It is a Banach space with respect to the norm II · ll;.u. Note that asp is fixed throughout 
we have suppressed it in the notation. Moreover, since the space is independent of the 
choice of 0, up to equivalence of norms, we have also omitted it from the notation. 

Next we introduce a uniform version of the Lipschitz spaces. First, for each x E X 
and n E N 0 define oo)---? [0, oo) by wi0l(t) = llxll and 

sup 
g,, ... ,gnEG 

IY;I':9 

IJ(I- U(gi)) .. 0 (I- U(gn))xll 

for n E N. Secondly, for 1 E (0, n) define II · ll~·w: X--> [0, oo] by 

Then the space 
x;·w = {x EX: Jlxll~'w < oo} 

is a Banach space with respect to the norm II · ll;·w. 
Finally, if S is a continuous semigroup on X we introduce the corresponding Lipschitz 

spaces as follows. For n EN and 1 E (O,n) define 11·11~·5 :-¥---? [O,oo] by 
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Then 
X~·s = {x EX: llxll~·s < oo} 

is a Banach space with respect to the norm II · ll;·s. 
The operators Ai, i E {1, ... , d'} are also defined, by restriction, on the interpolation 

spaces and the corresponding cn-subspaces are denoted by (Xn,, Xn2 )-r;n and the en-norms 
by 11·11\7~'"2 ). Explicitly (Xn10 Xn, )-y;n is the common domain of all n-th order monomials 
Mn in the A1, ... , Aa' and 

where the supremum is over all monomials of order m S:: n with the comrention !v[0 =I. 
We have the following relation between these spaces. 

Theorem 3.1 Let 

where C = ( C;j) is a real-11alued symmetric strictly positi1Je-definite matrix and the other 
coefficients are complex, i.e., eo, c1, ... , cd' E C. Fu1·ther letS be the continuous holomor­
ph·ic semigrou.p generated by the closure H of H. 

I. For each n E N and each 7 E (0, n) 

II. If k < n and 7 E (k, n) then 

III. If 7 E (0, n1 1\ n2) then 

Pv. If7 E (O,n) and kEN then 

In all statements the equality means that the Banach spaces aTe equal up to equivalence of 
norms. 

Note that the assumptions on H are slightly more restrictive than in the previous 
section because the matrix C must now be symmetric Then the second-order part of the 
operator can be re-expressed as a sum of squares and for operators of that kind there are 
good kernel bounds available in [VSC]. These can be used to prove the theorem for a 
second-order operator of this form and the general case can subsequently be deduced by 
using perturbation theory. For details we refer to [ElR]. 

It follows immediately from this theorem that if 1 E (0, n) and p E [1, oo) then Xoo is 
dense in (X, X~)"Y and the restriction of S to (X, X~)"Y is a strongly continuous holomorphic 
semigroup. 
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4 Regularity properties 

We can use the interpolation spaces and Lipschitz spaces to derive regularity properties 
for the subelliptic operators 

d1 d' 

H = - I: c;jAiAj + L c;A; + col 
i,j=1 i=l 

where C = (Cij) is a real-valued symmetric strictly positive-definite matrix and the other 
coefficients are complex, eo, c1 ,, .. , cd' E C. There are two types of regularity prop­
erty. The first is relative to the interpolation spaces between the cn-subspaces of the 
algebraic basis used to define H and the second is relative to the cn-subspaces Xn of a 
full vector space basis. In passing from one to the other the rank r of the algebraic basis 
is important. 

Let S be the continuous holomorphic semigroup generated by the closure H of H and 
suppose that S is exponentially decreasing. This latter property can of course always be 
arranged by choosing eo sufficiently large. 

Theorem 4.1 

I. If 0 < 7 < n and k E N then 

(X,X,~),;k = {x E D(H"12 ): Hk12x E (X,X~).J 

H. If n, N E N satisfy n < 2N /r then 

M oreoveT, if a > 0 
D(H"') ~ (Xk,Xk+l)-r = (X,X1)7 ;k 

'WheTe k is the largest integer strictly smaller than 2a/r and 7 E (0, 2a/r- k). Both 
sets of embeddings are continuous. 

HI. Ifp = oo and a> 0 then 

where k is the largest integer strictly smaller than 2afr and 1 = 2afr - k. The 
embeddings are again continuous. 

IV. If 1 > 0, a> 0, n > 1 + 2a/r and x E D(Ha) then 

Hax E (X,Xn), 

implies 

X E (X, Xn)-y+2afr · 

Jl,{oreover, there exists a c > 0, depending on n, 1 and a, such that 

for all x E D(H"'). 
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For unitary representations the regularity properties can be greatly improved. Then 
the regularity can be expressed relative to the C"-spaces X~, just as for strongly elliptic 
operators [Rob]. 

Theorem 4.2 Let (X, G, U) be a unitary representation. Then the following are valid. 

I. H is closed. 

II. Xoo is dense in X~ for all n E N. 

III. There exist 8 > 0 and w > 0 such that S is holomorphic in {z E C : I arg zj < 8} 
and IISzll::::; e"'lzl for all z E c with jargzl <e. 

IV. Ifn EN then 

as Banach spaces. 

V. If n > 21 > 0 and p = 2 then 

as Banach spaces. 

Proofs of these theorems can be found in [ElR]. 
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