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Abstract. In this note we prove estimates of Jacobian determi-
nants of Du on strongly Lipschitz domains Ω in R2. The theorem
consists of two parts: one is an estimate in terms of the BMOr(Ω)
norm for u in the Sobolev space W 1,2(Ω, R2) with boundary zero,
and another is an estimate in terms of the BMOz(Ω) norm for u
in W 1,2(Ω, R2) with no boundary conditions.

1. Introduction

Jacobian determinant estimates were first studied by Müller in [Mu].
In [CLMS], Coifman, Lions, Meyer and Semmes’ Theorems II.1 and
III.2 imply that for b ∈ L2

loc(R2), supu

∫
R2 b det Du dx is equiva-

lent to the BMO(R2) norm of b, where det Du(x) =
( ∂uj

∂xk

)
, the

supremum is taken over all u in the Sobolev space W 1,2(R2,R2) with
‖Dui‖L2(R2,R2) ≤ 1. The aim of this note is to consider an extension of
this result to domains in R2. As a main result (Theorem 2.1), we give
estimates of supu

∫
Ω
b det Du dx when Ω is a strongly Lipschitz domain

of R2, where the superemum is taken over all u in the Sobolev space
W 1,2(Ω,R2) or W 1,2

0 (Ω,R2) (the closure of C∞
0 (Ω,R2) in W 1,2(Ω,R2))

with ‖Dui‖L2(Ω,R2) ≤ 1.
In the sequel, Ω will denote a strongly Lipschitz domain - an as-

sumption which is enough to ensure
(1) the existence of a bounded extension map from W 1,2(Ω,R2) to

W 1,2(R2,R2), and
(2) the existence of a bounded extension map from BMOr(Ω) to

BMO(R2), where BMOr(Ω) is the space of locally integrable functions
with

‖f‖BMOr(Ω) = sup
Q⊂Ω

(
1

|Q|

∫
Q

|f(x)− fQ| dx
)
<∞,
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here fQ = 1
|Q|

∫
Q
f(x) dx, the supremum is taken over all cubes Q in

the domain Ω.
In [CKS], two Hardy spaces are defined on bounded domains Ω, one

which is reasonably speaking the largest, and the other which in a
sense is the smallest. The largest, H1

r(Ω), arises by restricting to Ω
arbitrary elements of H1(R2). The other, H1

z(Ω), arises by restricting
to Ω elements of H1(R2) which are zero outside Ω̄. Norms on these
spaces are defined as following

‖f‖H1
r(Ω) = inf ‖F‖H1(R2),

the infimum being taken over all the functions F ∈ H1(R2) such that
F |Ω = f ,

‖f‖H1
z(Ω) = ‖F‖H1(R2),

where F is the zero extension of f to R2.
From [C], the dual of H1

z(Ω) is BMOr(Ω) and the dual of H1
r(Ω) is

BMOz(Ω), where BMOz(Ω) is the space of all functions in BMO(R2)
supported in Ω̄, equipped with the norm ‖f‖BMOz(Ω) = ‖f‖BMO(R2).

2. The Main Theorem and Its Proof

In [CLMS, Theorems II.1 and III.2], among other results, Coifman,
Lions, Meyer and Semmes established the following:

(A) If u ∈ W 1,2(R2,R2) then det Du belongs to the Hardy space
H1(R2) and

‖det Du‖H1(R2) ≤ C
2∏

i=1

‖Dui‖L2(R2,R2) (2.1)

for some absolute constants C.
(B) b ∈ L2

loc(R2)

‖b‖BMO(R2) ∼ sup
E,F

∫
R2

b E · F dx, (2.2)

where the supremum is taken over all E, F ∈ L2(R2,R2) with div E =
curl F = 0 and ‖E‖L2(R2,R2), ‖F‖L2(R2,R2) ≤ 1.

We will see that (A) and (B) yield the following equivalence

‖b‖BMO(R2) ∼ sup
u

∫
R2

b det Du dx, (2.3)

where the supremum is taken over all u = (u1, u2) ∈ W 1,2(R2,R2) with
‖Dui‖L2(R2,R2) ≤ 1, i = 1, 2.
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Suppose that E and F satisfy the conditions of (B). From Theorems
2.9 and 3.1 in [GR], there exist ϕ, ψ ∈ W 1,2(R2) such that

E = curl ϕ =

(
∂ϕ

∂x2

, − ∂ϕ

∂x1

)
and

F = Dψ =

(
∂ψ

∂x1

,
∂ψ

∂x2

)
.

Define u = (ϕ, ψ). Then u ∈ W 1,2(R2,R2) with ‖Dui‖L2(R2,R2) ≤ 1,
i = 1, 2, and

det Du = −E · F.
Thus (2.2) implies that

‖b‖BMO(R2) ≤ C sup
u

∣∣∣ ∫
R2

b det Du dx
∣∣∣.

Conversely, applying (2.1) and the duality H1(R2)∗ = BMO(R2), we
have ∫

R2 b det Du dx ≤ C‖b‖BMO(R2)‖det Du‖H1(R2)

≤ C‖b‖BMO(R2)

2∏
i=1

‖Dui‖L2(R2,R2)

≤ C‖b‖BMO(R2)

if ‖Dui‖L2(R2,R2) ≤ 1.
A natural question to ask is: under what conditions does (2.3) hold

on domains Ω of R2? As a main theorem of this note, we solve this
problem for strongly Lipschitz domains in R2.

Theorem 2.1. Let Ω be a strongly Lipschitz domain in R2.
(1) If b ∈ BMOz(Ω), then we have equvalence

‖b‖BMOz(Ω) ∼ sup
u

∫
Ω

b det Du dx, (2.4)

the supremum being taken over all u = (u1, u2) ∈ W 1,2(Ω,R2) with
‖Dui‖L2(Ω,R2) ≤ 1, i = 1, 2.

(2) If b ∈ BMOr(Ω), then

‖b‖BMOr(Ω) ∼ sup
u

∫
Ω

b det Du dx, (2.5)

the supremum being taken over all u = (u1, u2) ∈ W 1,2
0 (Ω,R2) with

‖Dui‖L2(Ω,R2) ≤ 1, i = 1, 2.
The implicit constants in (2.4) and (2.5) depend only on the domain

Ω.
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To prove Theorem 2.1, we need the following Lemmas 2.2 - 2.4. The
proof of Lemma 2.2 is given at the end of this section. Lemma 2.3 is
the two-dimensional case of Theorem 3.1 in Section 3. Lemma 2.4 is a
special case of an extension theorem by Jones in [J, Theorem 1]. We
also need the the following seminorm defined in [Z]

‖b‖BMOH(Ω) = sup
Q

(
1

|Q|

∫
Q

|b− bQ| dx
)
,

where the supremum is taken over all cubes Q with 2Q ⊂ Ω.

Lemma 2.2. Let Ω be an open domain in R2. For b ∈ L2
loc(Ω)

‖b‖BMOH(Ω) ≤ C sup
u

∫
Ω

b det Du dx

for a constant C independent of b, the supremum being taken over all
u = (u1, u2) ∈ W 1,2

0 (Ω,R2) with ‖Dui‖L2(Ω,R2) ≤ 1, i = 1, 2.

Lemma 2.3. Let Ω ⊂ R2 be a strongly Lipschitz domain and let b be
a locally integrable function on Ω. Then

‖b‖BMOr(Ω) ∼ ‖b‖BMOH(Ω),

where the implicit constants are independent of b.

Lemma 2.4. Let Ω be a strongly Lipschitz domain in R2 and let b ∈
BMOr(Ω). Then there exists B ∈ BMO(R2) such that

B|Ω = b

and

‖B‖BMO(R2) ≤ C‖b‖BMOr(Ω)

for some constants C independent of B and b.

Proof of Theorem 2.1. (1) Suppose b ∈ BMOz(Ω). Define

B =

{
b in Ω;

0 in R2 \ Ω.

By the definition of BMOz(Ω), B ∈ BMO(R2) and

‖B‖BMO(R2) = ‖b‖BMOz(Ω). (2.6)

Since Ω is a bounded strongly Lipschitz domain, u ∈ W 1,2(Ω,R2) can
be extended to U ∈ W 1,2(R2,R2) with

‖DUi‖L2(R2,R2) ≤ C‖Dui‖L2(Ω,R2), (2.7)
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where the constant C depends only on the Lipschitz constant of Ω (see,
for example, Proposition 4.12 in [HLMZ]). Therefore (2.6), (2.7) and
(2.1) give

∫
Ω

b det Du dx =

∫
R2

B det DU dx

≤ ‖B‖BMO(R2)‖det DU‖H1(R2)

≤ C‖b‖BMOz(Ω)

2∏
i=1

‖DUi‖L2(R2,R2)

≤ C‖b‖BMOz(Ω)

2∏
i=1

‖Dui‖L2(Ω,R2)

≤ C‖b‖BMOz(Ω)

if ‖Dui‖L2(Ω,R2) ≤ 1, where C depends only on the domain Ω.
We now prove the converse. Let b ∈ BMOz(Ω) and define B as

above. Suppose U ∈ W 1,2(R2,R2) and ‖DUi‖L2(R2,R2) ≤ 1. Let u =
U |Ω, then ‖Dui‖L2(Ω,R2) ≤ 1. So (2.3) and (2.6) yield

‖b‖BMOz(Ω) = ‖B‖BMO(R2)

≤ C sup
U∈W 1,2(R2,R2),‖DUi‖L2≤1

∫
R2

B det DU dx

= C sup
u=U |Ω,U∈W 1,2(R2,R2),‖DUi‖L2≤1

∫
Ω

b det Du dx

≤ C sup
u∈W 1,2(Ω,R2),‖Dui‖L2≤1

∫
Ω

b det Du dx.

(2) Let B ∈ BMO(R2) is an extension of b ∈ BMOr(Ω). For u ∈
W 1,2

0 (Ω,R2), define

U =

{
u in Ω;

0 in R2 \ Ω.

Then U ∈ W 1,2(R2,R2) with

‖U‖W 1,2(R2,R2) = ‖u‖W 1,2(Ω,R2).
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By duality H1(R2)∗ = BMO(R2), (2.1) and Lemma 2.4, we have∫
Ω

b det Du dx =

∫
R2

B det DU dx

= ‖B‖BMO(R2)‖det DU‖H1(R2)

≤ C‖b‖BMOr(Ω)

2∏
i=1

‖DUi‖L2(R2,R2)

= C‖b‖BMOr(Ω)

2∏
i=1

‖Dui‖L2(Ω,R2)

≤ C‖b‖BMOr(Ω)

for all u ∈ W 1,2
0 (Ω,R2) with ‖Dui‖L2(Ω,R2) ≤ 1, i = 1, 2, where the

constant C depends only on the domain Ω.
The proof of the reversed inequality in (2.5) follows from Lemmas

2.2 and 2.3. Theorem 2.1 is proved. �

We now prove Lemma 2.2, its proof uses the following result of Nec̆as
[N, Lemma 7.1, Chapter 3].

Lemma 2.5. Let Ω be a bounded strongly Lipschitz domain in RN .
Then the divergence operator is a (continuous) map from W 1,2

0 (Ω,RN)
onto L2

0(Ω) = {f ∈ L2(Ω) :
∫

Ω
f dx = 0}. That is, there exists a

constant C depending only on the domain Ω and the dimension N
such that for any f ∈ L2

0(Ω), there exists ϕ ∈ W 1,2
0 (Ω,RN) such that

f = div ϕ

and

‖Dϕ‖L2(Ω,RN ) ≤ C‖f‖L2(Ω).

Proof of Lemma 2.2. Suppose b ∈ L2
loc(Ω). We will show that there

exists u = (u1, u2) ∈ W 1,2
0 (Ω,R2) with ‖Dui‖L2(Ω,R2) ≤ 1 for i = 1, 2,

and supp (det Du) ⊂ Q such that for all cubes Q with 2Q ⊂ Ω,(
1

|Q|

∫
Q

|b− bQ|2 dx
)1/2

≤ C
∣∣∣ ∫

Q

b det Du dx
∣∣∣, (2.8)

where bQ = 1
|Q|

∫
Q
b dx, C is a constant independent of Q, b and u.

Let h = b− bQ, then h ∈ L2(Q) with
∫

Q
h dx = 0. Using Lemma 2.5

with Ω = Q, there exists ϕ = (ϕ1, ϕ2) ∈ W 1,2
0 (Q,R2) and an absolute

constant C0 such that

h = div ϕ
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and

‖Dϕ‖L2(Q,R2) ≤ C0‖h‖L2(Q). (2.9)

So

‖h‖2
L2(Q) =

∫
Q

h div ϕ dx

=

∫
Q

h
∂ϕ1

∂x1

dx+

∫
Q

h
∂ϕ2

∂x2

dx

≤ 2 max
1≤i≤2

∣∣∣ ∫
Q

h
∂ϕi

∂xi

dx
∣∣∣

= 2
∣∣∣ ∫

Q

h
∂ϕi0

∂xi0

dx
∣∣∣

(2.10)

for some choice of i0 (i0 = 1 or 2).
Assuming without loss of generality that i0 = 1 in (2.10). To prove

(2.8), we need only to show that there exists u ∈ W 1,2
0 (Ω,R2) with

conditions stated above and a constant C (independent of Q, ϕ and u)
such that∣∣∣ ∫

Q

h‖h‖−1
L2(Q)

∂ϕ1

∂x1

dx
∣∣∣ ≤ C|Q|1/2

∣∣∣ ∫
Q

h det Du dx
∣∣∣. (2.11)

Set u1 = ϕ1

C0‖h‖L2(Q)
. It is obvious that u1 ∈ W 1,2

0 (Q) and ‖Du1‖L2(Q,R2)

≤ 1 by (2.9).
Let ψ0 ∈ C∞

0 (R2) such that

ψ0 =

{
1 on [−1, 1]2;

0 outside [−2, 2]2.

Define

u2 = γC0|Q|−1/2(x2 − x0
2)ψQ(x),

where ψQ(x) = ψ0

(
x−x0

l(Q)/2

)
, x0 = (x0

1, x
0
2) denotes the center of the cube

Q, γ > 0 is a normalization constant (independent of x0 and l(Q)) so
that ‖Du2‖L2(R2,R2) ≤ 1. It is obvious that u2 ∈ C∞

0 (2Q).
Let u = (u1, u2). By a simple computation, we get

det Du = γ|Q|−1/2‖h‖−1
L2(Q)

∂ϕ1

∂x1

in Q.

So (2.11) follows. Lemma 2.2 is proved. �
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3. The Equivalence of Two BMO Seminorms

In [Z] Zhang asked if the two seminorms ‖b‖BMOr(Ω) and ‖b‖BMOH(Ω)

are equivalent under suitable conditions on domains Ω in RN . The
following theorem gives a positive answer. No smoothness conditions
are needed on the domains. In addition, we will see that the equivalence
of ‖b‖BMOr(Ω) and ‖b‖BMOH(Ω) implies that H1

z(Ω) can be decomposed
into a sum of atoms with supports away from boundaries of the domains
(Proposition 3.2).

Theorem 3.1. Let Ω ⊂ RN ( N ≥ 2) be a strongly Lipschitz domain
and let b be a locally integrable function on Ω. Then

‖b‖BMOr(Ω) ∼ ‖b‖BMOH(Ω),

where the implicit constants are independent of the function b.

Proof. It is obvious that ‖b‖BMOH(Ω) ≤ ‖b‖BMOr(Ω). Now we prove

‖b‖BMOr(Ω) ≤ C‖b‖BMOH(Ω).

We will only give the proof for the case of RN for N = 2 using ideas
of Jones [J]. The case for RN (N 6= 2) is similar. In fact, from Jones’
extension theorem [J, Theorem 1] we need only to prove that there
exists a constant C independent of Q and b such that for all cubes
Q ⊂ Ω,

1

|Q|

∫
Q

|b− bQ| dx ≤ C‖b‖BMOH(Ω). (3.1)

Let E = {Qk} be the dyadic Whitney decomposition of Q, then
Q =

⋃
k Qk and

Qj ∩Qk = ∅, j 6= k; (3.2)

1 ≤ d(Qk, Q
c)

l(Qk)
≤ 4 · 21/2; (3.3)

1

4
≤ l(Qj)

l(Qk)
≤ 4 if Qj ∩Qk 6= ∅ (3.4)

(see, for example, Stein’s book [S1, page 167] for more information on
Whitney decompositions). For m = 1, 2, ..., let

Am =

{
x ∈ Q : 2−m ≤ d(x,Qc)

l(Q)
< 2−m+1

}
and

Fm = {Qj ∈ E : Qj ∩ Am 6= ∅}.
To prove (3.1), we need the following two claims:
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Claim (A). ∑
Qj∈Fm

|Qj| ≤ 40 · 2−m|Q|

for all m = 1, 2, ....

Claim (B). If b ∈ BMOH(Ω), then

|bQj
− bQ0| ≤ Cm‖b‖BMOH(Ω)

for all Qj ∈ Fm, m = 1, 2, ..., where Q0 be the Whitney cube that
contains the center of Q and C is a constant independent of b and Qj.

We shall give the proofs of these claims later on and we first prove
(3.1) admitting them. Since Qj ∈ E, j = 1, 2, ..., it is obvious that

1

|Qj|

∫
Qj

|b− bQj
| dx ≤ ‖b‖BMOH(Ω). (3.5)

By (3.5), Claims (A) and (B), we have

1

|Q|

∫
Q

|b− bQ0| dx ≤
∞∑

m=1

∑
Qj∈Fm

1

|Q|

∫
Qj

|b− bQ0| dx

=
∞∑

m=1

∑
Qj∈Fm

|Qj|
|Q|

(
|bQj

− bQ0|+
1

|Qj|

∫
Qj

|b− bQj
| dx

)

≤
∞∑

m=1

∑
Qj∈Fm

|Qj|
|Q|

(Cm‖b‖BMOH(Ω) + ‖b‖BMOH(Ω))

≤
∞∑

m=1

40 · 2−m(Cm+ 1)‖b‖BMOH(Ω)

≤C‖b‖BMOH(Ω).

Therefore

1

|Q|

∫
Q

|b− bQ| dx ≤
1

|Q|

∫
Q

(|b− bQ0|+ |bQ0 − bQ|) dx

≤ |bQ0 − bQ|+
1

|Q|

∫
Q

|b− bQ0| dx

≤ 2

|Q|

∫
Q

|b− bQ0| dx

≤ C‖b‖BMOH(Ω).

This gives (3.1). �
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The proof of claims (A) was given in [J, page 47 (3.8)]. To prove
Claim (B) we need the following

Claim (C). If b ∈ BMOH(Ω) and Qj, Qk ∈ E have touching edges
for j 6= k, then

|bQj
− bQk

| ≤ C‖b‖BMOH(Ω)

for an absolute constant C.

Proof. Suppose that Qj and Qk touch and satisfy (3.4). Dividing (3.4)
into two cases, case (a):

1

4
≤ l(Qj)

l(Qk)
≤ 1 (3.6)

and case (b):

1 <
l(Qj)

l(Qk)
≤ 4. (3.7)

For case (a), constructing cubes Rj, Rk and Rjk such that
1) Rj ⊂ Qj, Rk ⊂ Qk, l(Rj) = 1

2
l(Qj), l(Rk) = 1

2
l(Qk) and Rj, Rk

touch;
2) Rj, Rk ⊂ Rjk, l(Rjk) = l(Rj) + l(Rk);
3) l(Rjk) ≤ d(Rjk, Q

c).
Since Qj, Qk ∈ E touch and Qj ∩ Qk = ∅, it is easy to find cubes
Rj, Rk and Rjk satisfying 1) and 2). In order for the cube Rjk to
satisfy 3) we need only to choose Rjk such that d(Qj, Q

c) ≤ d(Rjk, Q
c)

and d(Qk, Q
c) ≤ d(Rjk, Q

c). Therefore

l(Rjk) =
1

2
l(Qj) +

1

2
l(Qk)

≤ 1

2

(
d(Qj, Q

c) +
1

2
d(Qk, Q

c)
)

≤ d(Rjk, Q
c).

From 1) and (3.5) we have

|bRj
− bQj

| = 1

|Rj|

∣∣∣ ∫
Rj

(b− bQj
) dx

∣∣∣
≤ 4

|Qj|

∫
Qj

|b− bQj
| dx

≤ 4‖b‖BMOH(Ω).

(3.8)

Similarly we get

|bRk
− bQk

| ≤ 4‖b‖BMOH(Ω). (3.9)
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By (3.6), 1) and 2) we know that

l(Rjk) =
l(Qj)

2
+
l(Qk)

2

≤ 5

2
l(Qj) = 5l(Rj)

(3.10)

and

l(Rjk) =
l(Qj)

2
+
l(Qk)

2
≤ l(Qk) = 2l(Rk).

(3.11)

Note that Rjk ⊂ Ω and l(Rjk) ≤ d(Rjk,Ω
c). Then (3.10) yields

|bRj
− bRjk

| = 1

|Rj|

∣∣∣ ∫
Rj

(b− bRjk
) dx

∣∣∣
≤ 25

|Rjk|

∫
Rjk

|b− bRjk
| dx

≤ 25‖b‖BMOH(Ω).

(3.12)

By (3.11), similar to (3.12) we have

|bRk
− bRjk

| ≤ 4‖b‖BMOH(Ω). (3.13)

Combining (3.8), (3.9), (3.12) and (3.13) we get

|bQj
− bQk

| ≤ |bQj
− bRj

|+ |bRj
− bRjk

|+ |bRjk
− bRk

|+ |bRk
− bQk

|
≤ 37‖b‖BMOH(Ω)

for all Qj, Qk satisfying (3.6).
For case (b), repeat the process above we obtain

|bQj
− bQk

| ≤ 37‖b‖BMOH(Ω)

for all Qj, Qk satisfying (3.7).
Therefore for all Qj, Qk ∈ E (j 6= k) have touching edges

|bQj
− bQk

| ≤ 37‖b‖BMOH(Ω).

This proves Claim C. �

Proof of Claim (B). The proof is similar to the argument in [J]. Let
xj ∈ Qj ∈ Fm, xQ be the center of the cube Q. Then (3.3) and
(3.4) show that there are at most 50 cubes Qk ∈ Fm intersect the line
segment xjxQ and at most m sets Ai, i = 1, 2, ...,m, intersect xjxQ.
So from Claim (C), we have

|bQj
− bQ0 | ≤ Cm‖b‖BMOH(Ω).

Claim (B) is proved. The proof of Theorem 3.1 is finished completely.
�
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Remark. It should be added that at the time Theorem 3.1 was fin-
ished, the author was unfortunately unaware of a similar work in [RR]
(with a different proof). Thanks go to P. Schvartsman (Department
of Mathematics, Techion, 3200 Haifa, Israel) for pointing this out to
him. In addition, Auscher and Russ also proved Theorem 3.1 by using
duality [AR, Theorem 6].

We know that any f in H1
z(Ω) has a decomposition (see [CKS], [C]

and [JSW] for bounded domains, [AR] for unbounded domains)

f =
∞∑

k=0

λkak

with
∑

k |λk| ≤ C‖f‖H1
z(Ω), where the ak’s are H1

z(Ω)-atoms: there
exist cubes Qk ⊂ Ω such that supp ak ⊂ Qk,

∫
Qk
ak dx = 0 and

‖ak‖L2(Qk) ≤ |Qk|−1/2. In the following proposition we prove that the
supports of these atoms can be away from the boundary of Ω by using
Theorem 3.1. Let H1

z,2at(Ω) denote the space of f ∈ H1
z(Ω) which can

be decomposed into a sum of H1
z(Ω)-atoms supported in cubes Q with

2Q ⊂ Ω.

Proposition 3.2. For a strongly Lipschitz domain Ω in RN

H1
z(Ω) = H1

z,2at(Ω).

Proof. Obviously we have that H1
z,2at(Ω) ⊂ H1

z(Ω). So to prove the

proposition we only need to show that H1
z,2at(Ω)∗ ⊂ BMOr(Ω) =

BMOH(Ω) := {f : ‖f‖BMOH(Ω) < ∞}. Suppose that L is a bounded
linear functional on H1

z,2at(Ω). Follow the lines of the proof of Theorem
1 in [S2, Chapter IV] or Theorem 2.5 in [GHL], we see that there exists
a function g ∈ BMOH(Ω) such that

L(f) =

∫
Ω

f(x)g(x) dx

for all f ∈ H1
z,2at(Ω). The proof is finished. �

4. An Application

In this section we give an application of Theorem 3.1 which improves
a coercivity result by Zhang. In [Z], Zhang studied the coercivity of
strongly elliptic quadratic forms with measurable coefficients, defined
on a bounded domain Ω in R2 with Lipschitz boundary,

a(u,Ω) =

∫
Ω

Aij
α,β(x)

∂ui

∂xα

∂uj

∂xβ

dx, u ∈ W 1,2
0 (Ω,R2),
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where Aij
α,β ∈ L∞(Ω) and satisfy Legendre-Hadamard condition

Aij
α,β(x)ξαξβη

iηj ≥ c|ξ|2|η|2.

From [M], Aij
α,βP

i
αP

j
β can be written in the form

Aij
α,βP

i
αP

j
β = Bij

α,βP
i
αP

j
β + b(x) det P, (4.1)

where P ∈ M2×2, the set of real-valued 2× 2 matrices, Bij
α,β ∈ L∞(Ω)

and satisfying

C1|P |2 ≤ Bij
α,β(x)P i

αP
j
β ≤ C2|P |2, (4.2)

for constants C1, C2 > 0.
As one of the main results in [Z], the following theorem was proved by

Zhang which establishes the necessary condition such that a(u,Ω) ≥ 0.

Theorem 4.1. Suppose that Ω ⊂ R2 is a strongly Lipschitz domain,
Aij

α,β : Ω → R2 is measurable for 1 ≤ i, j, α, β ≤ 2, such that (4.1) holds,

where b ∈ BMOr(Ω) and Bij
α,β are measurable functions satisfying (4.2)

for constants 0 < C1 < C2. Then there exists a constant C3 depending
only on C2 such that a(u,Ω) ≥ 0 for all u ∈ W 1,2

0 (Ω,R2) implies that
‖b‖BMOH(Ω) ≤ C3.

Theorem 4.1 tells us that if a(u,Ω) ≥ 0 for all u ∈ W 1,2
0 (Ω,R2),

then ‖b‖BMOH(Ω) ≤ C, that is, ‖b‖BMOr(Ω) ≤ C by Theorem 3.1. From
the Remark in [Z, page 426], if ‖b‖BMOr(Ω) is sufficient small, then
a(u,Ω) ≥ 0. We see that ‖b‖BMOr(Ω) ≤ C is “almost” a necessary and

sufficient condition of a(u,Ω) ≥ 0 for all u ∈ W 1,2
0 (Ω,R2).
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