CR deformation of cyclic quotient surface singularities

Kimio Miyajima

ABSTRACT. We compute the first order CR deformation of cyclic quotient surface singularities.

Introduction

The purpose of this paper is to fix the first order CR deformation of cyclic quotient surface singularities $A_{n,q}$ (cf. Theorem 3.13). Although the first order deformation of $A_{n,q}$ was computed in [**Ri1**] by an algebraic way, deformation of $A_{n,q}$ is still interesting and a new duality phenomenon is recently discovered (cf. [Ri2]). On the other hand, after establishing general CR deformation theory of normal isolated singularities in $[\mathbf{B}-\mathbf{E}]$ and $[\mathbf{M}\mathbf{1}]$, CR analysis on the 3-sphere was applied to describe deformations of rational quotient singularities; [**B**] for $A_{n,1}$ and $[\mathbf{K}]$ for $A_{n,n-1}$ $(n \ge 2)$, D_{n+2} $(n \ge 2)$, E_6 , E_7 , E_8 . In this paper, we compute the first order CR deformation of the remaining $A_{n,q}$.

Acknowledgements. This work was partially supported by Grant-in-Aid for Scientific Research, JSPS (No. 20540087). The author is grateful to the referee for his careful reading of this paper and for a valuable suggestion.

1. CR deformation of normal isolated singularities

In this section, we recall the formalism of the CR deformation of normal isolated singularities in [M1]. Since we are concentrated in the first order deformations, we will pay no attention to the obstruction to higher order deformations.

1.1. CR structure. A CR structure is given by a sub-bundle $\overline{S_M} \subset \mathbb{C}TM$ such that

(i) $S_M \cap \overline{S_M} = \{0\}$ with denoting $S_M = \overline{\overline{S_M}}$, (ii) $\overline{S_M}$ is involutive; that is, $[X, Y] \in \Gamma(M, \overline{S_M})$ holds for any $X, Y \in$ $\Gamma(M, \overline{S_M}).$

We fix a sub bundle $\mathbb{C}F_M \subset \mathbb{C}TM$ such that $\mathbb{C}F_M \simeq \mathbb{C}TM/(S_M \oplus \overline{S_M})$ holds. Then we have type decompositions of $\mathbb{C}TM$ and $\mathbb{C}T^*M$, respectively:

$$\mathbb{C}TM = \mathbb{C}F_M \oplus S_M \oplus \overline{S_M},$$
$$\mathbb{C}T^*M = \mathbb{C}F_M^* \oplus S_M^* \oplus \overline{S_M}^*.$$

We denote $T'M = \mathbb{C}F_M \oplus S_M$.

If we denote $A_M^{0,q} := \Gamma(M, \wedge^q \overline{S_M}^*)$, the above type decompositions induce the tangential Cauchy-Riemann complexes;

$$0 \longrightarrow A_M^0 \xrightarrow{\overline{\partial}_b} A_M^{0,1} \xrightarrow{\overline{\partial}_b} \cdots, \qquad (1.1)$$

$$0 \longrightarrow A^0_M(T'M) \xrightarrow{\partial_{T'}} A^{0,1}_M(T'M) \xrightarrow{\partial_{T'}} \cdots .$$
(1.2)

1.2. CR deformation. Let (V, 0) be a germ of a reduced normal Stein space in \mathbb{C}^N satisfying $\operatorname{Sing}(V) = \{0\}$. We denote $f: V \to \mathbb{C}^N$ the natural embedding and $h_1(w_1, \dots, w_N) = \dots = h_m(w_1, \dots, w_N) = 0$ the defining equation of V. We fix a strongly pseudo-convex domain $0 \in \Omega \subset \mathbb{C}^N$ so that V and $\partial\Omega$ intersect transversely. We denote $M := V \bigcap \partial\Omega$.

A (formal) CR deformation of (V, 0) is given by a $(\phi(t), g(t), k(t)) \in K^1_M[[t_1, \ldots, t_d]]$ (where $K^1_M = A^{0,1}_M(T'M) \oplus A^0_M(T^{1,0}\mathbb{C}^N_{|M}) \oplus H^0(M)^m$) satisfying

$$(\phi(0), g(0), k(0)) = (0, 0, 0), \tag{1.3}$$

$$\left(\bar{\partial}_{T'}\phi(t) - R(\phi(t)), \, (\bar{\partial}_b - \phi(t))(f + g(t)), \, (h+k) \circ (f + g(t))\right) = (0,0,0), \quad (1.4)$$

where $R(\phi)$ is a non-linear partial differential operator (cf. [M1]).

1.3. Deformation complex. Let $K_M^{\bullet,\bullet}$ be the following double-complex;

where $H^0(M, T^{1,0}\mathbb{C}^N|_M)$ (resp. $H^0(M)$) denote the space of CR sections of $T^{1,0}\mathbb{C}^N|_M$ (resp. the space of CR functions) and $F := \rho^{1,0} \circ df$ and H denotes the homomorphism given by $H(v) = (v(h_1), \ldots, v(h_m))$ for $v \in T^{1,0}\mathbb{C}^N$, and i denote the natural inclusion map.

We denote (K_M^{\bullet}, d) its total simple complex. That is

$$\begin{split} K_M^q &:= K_M^{0,q} \oplus K_M^{1,q-1} \oplus K_M^{2,q-2}, \\ d(a_q, b_{q-1}, c_{q-2}) &:= (\bar{\partial}_{T'} a_q, \bar{\partial}_b b_{q-1} + (-1)^q F a_q, \bar{\partial}_b c_{q-2} + (-1)^{q-1} H b_{q-1}) \end{split}$$

where we denote $\bar{\partial}_b b_{-1} := ib_{-1}, \ \bar{\partial}_b c_{-1} := ic_{-1}.$

THEOREM 1.1. ([**B-E**], [**M1**]) The first order CR deformation space is $H^1_d(K^{\bullet}_M)$.

2. CR deformation of cyclic quotient singularities

Let ζ_n be a primitive *n*-th root of 1 and $V_{n,q} := \mathbb{C}^2/G_{n,q}$ with 0 < q < n and (n, q) = 1 where $G_{n,q}$ is a cyclic group generated by the action $(z, w) \to (\zeta_n z, \zeta_n^q w)$. If $M_{n,q} := S^3/G_{n,q}$, then $M_{n,q}$ is a strongly pseudo-convex boundary of a Stein domain of $V_{n,q}$ with only isolated singularity at the origin.

Since the CR analysis on $M_{n,q}$ is treated as a CR analysis on S^3 which is invariant under $G_{n,q}$ -action, we will describe CR-deformations of $V_{n,q}$ by means of invariant CR structures on S^3 .

2.1. CR structure on S^3 . Let $S^3 \subset \mathbb{C}^2$ be the unit 3-sphere defined by the equation $|z|^2 + |w|^2 = 1$ then the complex structure of \mathbb{C}^2 induces a CR structure on S^3 by

$$\overline{S} := \mathbb{C}TS^3 \bigcap T^{0,1} \mathbb{C}^2_{|S^3|}$$

We denote this canonical CR structure on S^3 by ${}^{\circ}T''$ and its complex conjugate by ${}^{\circ}T'$. Then, ${}^{\circ}T''$ and ${}^{\circ}T'$ are C^{∞} trivial line bundle generated by \overline{Z} and Z, respectively, where

$$\overline{Z} := w \frac{\partial}{\partial \overline{z}} - z \frac{\partial}{\partial \overline{w}}, \ Z := \overline{w} \frac{\partial}{\partial z} - \overline{z} \frac{\partial}{\partial w}.$$

Let

$$T := \operatorname{Im}(z\frac{\partial}{\partial z} + w\frac{\partial}{\partial w})$$

and $\mathbb{C}F$ be a C^{∞} sub-bundle of $\mathbb{C}TS^3$ generated by T. We use the abbreviations T' and $A^{0,q}$ for $T'S^3$ and $A^{0,q}_{S^3}$, respectively. Then we have

LEMMA 2.1. (1)
$$\bar{\partial}_b f = (\bar{Z}f) \otimes \bar{Z}^*$$
 for $f \in C^{\infty}(S^3)$,
(2) $\bar{\partial}_{T'}(\phi Z + \psi T) = (\bar{Z}\phi)Z \otimes \bar{Z}^* - 2\sqrt{-1}\phi T \otimes \bar{Z}^* + (\bar{Z}\psi)T \otimes \bar{Z}^*$ for $\phi Z + \psi T \in A^0(T')$.

PROOF. (1) is trivial.

(2) Since $[\bar{Z}, Z] = -2\sqrt{-1}T$ and $[\bar{Z}, T] = 0$, $\bar{\partial}_{T'}(\phi Z + \psi T)(\bar{Z}) = (\bar{Z}\phi)Z + \phi[\bar{Z}, Z] + (\bar{Z}\psi)T + \psi[\bar{Z}, T] = (\bar{Z}\phi)Z - 2\sqrt{-1}\phi T + (\bar{Z}\psi)T$.

2.2. CR analysis on S^3 . A differentiable function $f \in C^{\infty}(S^3)$ is called a spherical harmonic of bidegree (p,q) if it is the restriction on the sphere S^3 of a harmonic polynomial of holomorphic degree p and anti-holomorphic degree q on the ambient space \mathbb{C}^2 ; that is, $f = \tilde{f}_{|M|}$ with

$$\tilde{f} = \sum_{\alpha+\beta=p,\,\gamma+\delta=q} c_{\alpha,\beta,\gamma,\delta} z^{\alpha} w^{\beta} \overline{z^{\gamma}} \overline{w^{\delta}} \text{ and } \Delta \tilde{f} = 0.$$

We will abbreviate it as

$$f = \sum_{\alpha + \beta = p, \, \gamma + \delta = q} c_{\alpha, \beta, \gamma, \delta} z^{\alpha} w^{\beta} \overline{z^{\gamma}} \overline{w^{\delta}}.$$

Then there exists an orthonormal bases of $L^2(S^3)$ consisting of the harmonic polynomials. We denote $H^{p,q}$ the space of all harmonic polynomials of bidegree (p,q). Clearly,

•
$$H^{p,0} = \{f = \sum_{\alpha+\beta=p} c_{\alpha,\beta,0,0} z^{\alpha} w^{\beta}\},\$$

•
$$H^{0,q} = \{ f = \sum_{\gamma+\delta=q} c_{0,0,\gamma,\delta} \overline{z^{\gamma}} \overline{w^{\delta}} \},$$

and $\dim_{\mathbf{C}} H^{p,0} = p+1$, $\dim_{\mathbf{C}} H^{0,q} = q+1$.

LEMMA 2.2. ([Ru], Proposition 18.3.3)

- (1) Z maps $H^{p,q}$ isomorphically onto $H^{p-1,q+1}$ if $p \ge 1$. (2) \overline{Z} maps $H^{p,q}$ isomorphically onto $H^{p+1,q-1}$ if $q \ge 1$.
- (3) T maps $H^{p,q}$ into itself and all functions in $H^{p,q}$ are eigen functions of
 - T with the eigen value $\sqrt{-1}(p-q)$.

3. Computation of $H^1(K^{\bullet}_{M_{n,q}})$

Let $V_{n,q} := \mathbf{C}^2/G_{n,q}$ be a cyclic quotient singularity as at the beginning of the previous section.

With the Hirzeburch-Jung continued fraction

$$\frac{n}{n-q} = a_2 - \frac{1}{a_3 - \frac{1}{\dots - \frac{1}{a_{e-1}}}} \quad (a_2 \ge 2, a_3 \ge 2, \dots, a_{e-1} \ge 2),$$

the first order deformation space of $V_{n,q}$ was computed in [Ri1] as follows:

$$\dim_{\mathbf{C}} \operatorname{Ext}^{1}(\Omega^{1}_{V_{n,q}}, \mathcal{O}_{V_{n,q}}) = \begin{cases} (\sum_{\epsilon=2}^{e-1} a_{\epsilon}) - 2 \ (e \ge 4) \\ a_{2} - 1 \ (e = 3) \end{cases}$$
(3.1)

where e is the dimension of the minimal embedding of $V_{n.q.}$ Since we have the following isomorphism (cf. [M1])

$$\operatorname{Ext}^{1}(\Omega^{1}_{V_{n,q}}, \mathcal{O}_{V_{n,q}}) \simeq H^{1}(K^{\bullet}_{M_{n,q}})$$
$$\simeq \operatorname{Ker}\{H^{1}(M_{n,q}, T'M_{n,q}) \to H^{1}(M_{n,q}, T^{1,0}\mathbb{C}^{N}|_{M_{n,q}})\}, \quad (3.2)$$

CR description of the first order deformation of $V_{n,q}$ is to fix a canonical basis of the subspace Ker{ $H^1(M_{n,q}, T'M_{n,q}) \to H^1(M_{n,q}, T^{1,0}\mathbb{C}^N|_{M_{n,q}})$ } of $H^1(M_{n,q}, T'M_{n,q})$.

We denote the $G_{n,q}$ -action by

$$g: (z, w) \mapsto (\zeta_n z, \zeta_n^q w).$$

First, we remark that

PROPOSITION 3.1. For $p \ge 0$,

(1) $\Delta Z^p(z^{\alpha}w^{\beta}) = \Delta \bar{Z}^p(\overline{z^{\alpha}}w^{\beta}) = 0,$ (2) $\Delta(q^*Z^p(z^{\alpha}w^{\beta})) = \Delta(q^*\overline{Z}^p(\overline{z^{\alpha}}w^{\beta})) = 0.$

PROOF. (1) is trivial.

(2) follows from (1) and the following lemma.

LEMMA 3.2. For $f \in C^{\infty}(S^3)$, $\begin{array}{ll} (1) & g^*Z(f) = \zeta_n^{-q-1}Z(g^*f), \\ (2) & g^*\bar{Z}(f) = \zeta_n^{q+1}\bar{Z}(g^*f). \end{array}$ PROOF. (1) $g^*Z(f) = \overline{\zeta_n}^q \overline{w} g^* \frac{\partial f}{\partial z} - \overline{\zeta_n} \overline{z} g^* \frac{\partial f}{\partial w} = \overline{\zeta_n}^{-q-1} Z(g^* f).$ (2) follows from (1).

Hence, $\{Z^p(z^{\alpha}w^{\beta})\}_{\alpha+\beta=s}$ (resp. $\{\overline{Z}^p(\overline{z^{\alpha}w^{\beta}})\}_{\alpha+\beta=s}$) forms a basis of $H^{s-p,p}$ (resp. $H^{p,s-p}$).

LEMMA 3.3. (1)
$$g_*^{-1}Z = \overline{\zeta}_n^{1+q}Z$$
,
(2) $g_*^{-1}T = T$,
(3) $g^*\overline{Z}^* = \overline{\zeta}_n^{1+q}\overline{Z}^*$.

PROOF. (1)
$$g_*^{-1}Z = g_*^{-1}(\overline{w}\frac{\partial}{\partial z} - \overline{z}\frac{\partial}{\partial w}) = \overline{\zeta}_n^{1+q}Z.$$

(2) Since $g_*^{-1}(z\frac{\partial}{\partial z} + w\frac{\partial}{\partial w}) = (z\frac{\partial}{\partial z} + w\frac{\partial}{\partial w})$, we have $g_*^{-1}T = T.$
(3) $g^*(\overline{w}d\overline{z} - \overline{z}d\overline{w}) = \overline{\zeta}_n^{1+q}\overline{Z}^*.$

PROPOSITION 3.4. Let us consider the natural projection $S^3 \to M_{n,q}$.

(1) $f^{s,t} = \sum_{\alpha+\beta=s+t} f_{\alpha,\beta,0,0} Z^t(z^{\alpha}w^{\beta}) \in C^{\infty}(S^3)$ is pullback of a function on $M_{n,q}$ if and only if

 $f_{\alpha,\beta,0,0} = 0$ for $(\alpha - t) + (\beta - t)q \neq 0 \mod n$.

(2) $f^{s,t} = \sum_{\gamma+\delta=s} f_{0,0,\gamma,\delta} \overline{Z}^s(\overline{z^{\gamma}} \overline{w^{\delta}}) \in C^{\infty}(S^3)$ is pullback of a function on $M_{n,q}$ if and only if

$$f_{0,0,\gamma,\delta} = 0 \text{ for } (\gamma - s) + (\delta - s)q \neq 0 \mod n$$

(3) $\phi^{s,t}\bar{Z}^* = \sum_{\alpha+\beta=s+t} \phi_{\alpha,\beta,0,0} Z^t(z^{\alpha}w^{\beta})\bar{Z}^* \in A^{0,1}_{S^3}$ is pullback of a tangential (0,1)-form on $M_{n,q}$ if and only if

 $\phi_{\alpha,\beta,0,0} = 0 \text{ for } (\alpha - t - 1) + (\beta - t - 1)q \neq 0 \mod n.$

(4) $\phi^{s,t}\bar{Z}^* = \sum_{\gamma+\delta=s} \phi_{0,0,\gamma,\delta}\bar{Z}^s(\overline{z^{\gamma}w^{\delta}})\bar{Z}^* \in A^{0,1}_{S^3}$ is pullback of a tangential (0,1)-form on $M_{n,q}$ if and only if

$$\phi_{0,0,\gamma,\delta} = 0 \text{ for } (\gamma - s + 1) + (\delta - s + 1)q \neq 0 \mod n.$$

(5) $\phi^{s,t}Z + \psi^{s,t}T \in A^0_{S^3}(T')$, where $\phi^{s,t} = \sum_{\alpha+\beta=s} \phi_{\alpha,\beta,0,0} Z^t(z^{\alpha}w^{\beta})$ and $\psi^{s,t} = \sum_{\alpha+\beta=s} \psi_{\alpha,\beta,0,0} Z^t(z^{\alpha}w^{\gamma})$, is pullback of a tangent vector field on $M_{n,q}$ if and only if

$$\phi_{\alpha,\beta,0,0} = 0 \text{ for } (\alpha - t - 1) + (\beta - t - 1)q \neq 0 \mod n$$

and

$$\psi_{\alpha,\beta,0,0} = 0 \text{ for } (\alpha - t) + (\beta - t)q \neq 0 \mod n.$$

(6) $\phi^{s,t}Z + \psi^{s,t}T \in A^0_{S^3}(T')$, where $\phi^{s,t} = \sum_{\gamma+\delta=s} \phi_{0,0,\gamma,\delta} \overline{Z}^s(\overline{z^{\gamma}w^{\delta}})$ and $\psi^{s,t} = \sum_{\gamma+\delta=s} \psi_{0,0,\gamma,\delta} \overline{Z}^s(\overline{z^{\gamma}w^{\delta}})$, is pullback of a tangent vector field on $M_{n,q}$ if and only if

$$\phi_{0,0,\gamma,\delta} = 0 \quad for \ (\gamma - s + 1) + (\delta - s + 1)q \neq 0 \ \text{mod} \ n$$

and

$$\psi_{0,0,\gamma,\delta} = 0 \text{ for } (\gamma - s) + (\delta - s)q \neq 0 \mod n$$

(7) $\phi^{s,t}Z \otimes \overline{Z}^* + \psi^{s,t}T \otimes \overline{Z}^* \in A^{0,1}_{S^3}(T')$, where $\phi^{s,t} = \sum_{\alpha+\beta=s} \phi_{\alpha,\beta,0,0} Z^t(z^{\alpha}w^{\gamma})$ and $\psi^{s,t} = \sum_{\alpha+\beta=s} \psi_{\alpha,\beta,0,0} Z^t(z^{\alpha}w^{\gamma})$, is pullback of a T'-valued tangential (0,1)-form on $M_{n,q}$ if and only if

$$\phi_{\alpha,\beta,0,0} = 0 \text{ for } (\alpha - t - 2) + (\beta - t - 2)q \neq 0 \mod n$$

and

$$\psi_{\alpha,\beta,0,0} = 0 \text{ for } (\alpha - t - 1) + (\beta - t - 1)q \neq 0 \mod n$$

(8) $\phi^{s,t}Z \otimes \bar{Z}^* + \psi^{s,t}T \otimes \bar{Z}^* \in A^{0,1}_{S^3}(T')$, where $\phi^{s,t} = \sum_{\gamma+\delta=s} \phi_{0,0,\gamma,\delta} \bar{Z}^s(\overline{z^{\gamma}w^{\delta}})$ and $\psi^{s,t} = \sum_{\gamma+\delta=s} \psi_{0,0,\gamma,\delta} \overline{Z}^s(\overline{z^{\gamma}w^{\delta}})$, is pullback of a T'-valued tangential (0,1)-form on $M_{n,q}$ if and only if

$$\phi_{0,0,\gamma,\delta} = 0 \text{ for } (\gamma - s + 2) + (\delta - s + 2)q \neq 0 \mod n$$

and

$$\psi_{0,0,\gamma,\delta} = 0 \text{ for } (\gamma - s + 1) + (\delta - s + 1)q \neq 0 \mod n$$

PROOF. We will prove (2), (4), (6) and (8). The other part will be proved by similar calculations.

(2) By Lemma 3.2 (2), we have

$$g^*\bar{Z}^s(\overline{z^{\gamma}w^{\delta}}) = \zeta_n^{1+q}s\bar{Z}^sg^*(\overline{z^{\gamma}w^{\delta}}) = \overline{\zeta}_n^{(\gamma-s)+(\delta-s)q}\bar{Z}^s(\overline{z^{\gamma}w^{\delta}}).$$

Since $\{\overline{Z}^s(\overline{z^{\gamma}w^{\delta}})\}_{\gamma+\delta=s+t}$ is linearly independent, $g^*f^{s,t} = f^{s,t}$ holds if and only if $f_{0,0,\gamma,\delta} = 0 \text{ holds for } (\gamma - s) + (\delta - s)q \neq 0 \text{ mod } n.$ (4) By the same calculation as in the proof of (2) and by Lemma 3.3 (3),

$$g^* \bar{Z}^s(\overline{z^{\gamma}} \overline{w^{\delta}}) g^*(\overline{Z}^*) = \overline{\zeta}_n^{(\gamma-s+1)+(\delta-s+1)q} \bar{Z}^s(\overline{z^{\gamma}} \overline{w^{\delta}}) \overline{Z}^*.$$

Hence, $g^* \phi^{s,t} \overline{Z}^* = \phi^{s,t} \overline{Z}^*$ if and only if $\phi_{0,0,\gamma,\delta} = 0$ for $(\gamma - s + 1) + (\delta - s + 1)q \neq 0$ $0 \mod n$.

(6) By the same calculation as in the proof of (2) and by Lemma 3.3 (1) and (2),

$$\begin{split} g^* \bar{Z}^s(\overline{z^{\gamma}w^{\delta}}) g_*^{-1} Z &= \overline{\zeta}_n^{(\gamma-s)+(\delta-s)q} \bar{Z}^s(\overline{z^{\gamma}w^{\delta}}) \overline{\zeta}_n^{1+q} Z, \\ g^* \bar{Z}^s(\overline{z^{\gamma}w^{\delta}}) g_*^{-1} T &= \overline{\zeta}_n^{(\gamma-s)+(\delta-s)q} \bar{Z}^s(\overline{z^{\gamma}w^{\delta}}) T. \end{split}$$

Hence

$$\sum_{\gamma+\delta=s} \phi_{0,0,\gamma,\delta} g^* \bar{Z}^s (\overline{z^{\gamma}} \overline{w^{\delta}}) g_*^{-1} Z = \sum_{\gamma+\delta=s} \phi_{0,0,\gamma,\delta} \bar{Z}^s (\overline{z^{\gamma}} \overline{w^{\delta}}) Z \quad \text{and} \quad \sum_{\gamma+\delta=s} \psi_{0,0,\gamma,\delta} g^* \bar{Z}^s (\overline{z^{\gamma}} \overline{w^{\delta}}) g_*^{-1} T = \sum_{\gamma+\delta=s} \psi_{0,0,\gamma,\delta} \bar{Z}^s (\overline{z^{\gamma}} \overline{w^{\delta}}) T$$

hold if and only if

$$\phi_{0,0,\gamma,\delta} = 0 \text{ for } (\gamma - s + 1) + (\delta - s + 1)q \neq 0 \mod n \text{ and}$$

$$\psi_{0,0,\gamma,\delta} = 0 \text{ for } (\gamma - s) + (\delta - s)q \neq 0 \mod n.$$

(8) By the same calculation as in the proof of (2) and by Lemma 3.3,

$$g^* \bar{Z}^s (\overline{z^{\gamma} w^{\delta}}) g_*^{-1} Z \otimes g^* \bar{Z}^* = \overline{\zeta}_n^{(\gamma-s)+(\delta-s)q} \bar{Z}^s (\overline{z^{\gamma} w^{\delta}}) \overline{\zeta}_n^{2+2q} Z \otimes \bar{Z}^* \\ = \overline{\zeta}_n^{(\gamma-s+2)+(\delta-s+2)q} \bar{Z}^s (\overline{z^{\gamma} w^{\delta}}) Z \otimes \bar{Z}^*$$

and

$$\begin{split} g^* \bar{Z}^s(\overline{z^{\gamma}w^{\delta}}) g_*^{-1}T \otimes g^* \bar{Z}^* &= \overline{\zeta}_n^{(\gamma-s)+(\delta-s)q} \bar{Z}^s(\overline{z^{\gamma}w^{\delta}}) \overline{\zeta}_n^{1+q} T \otimes \bar{Z}^* \\ &= \overline{\zeta}_n^{(\gamma-s+1)+(\delta-s+1)q} \bar{Z}^s(\overline{z^{\gamma}w^{\delta}}) T \otimes \bar{Z}^*. \end{split}$$

Hence

$$\sum_{\gamma+\delta=s} \phi_{0,0,\gamma,\delta} g^* \bar{Z}^s(\overline{z^{\gamma}} \overline{w^{\delta}}) g_*^{-1} Z \otimes g^* \bar{Z}^* = \sum_{\gamma+\delta=s} \phi_{0,0,\gamma,\delta} \bar{Z}^s(\overline{z^{\gamma}} \overline{w^{\delta}}) Z \otimes \bar{Z}^* \text{ and}$$
$$\sum_{\gamma+\delta=s} \psi_{0,0,\gamma,\delta} g^* \bar{Z}^s(\overline{z^{\gamma}} \overline{w^{\delta}}) g_*^{-1} T \otimes g^* \bar{Z}^* = \sum_{\gamma+\delta=s} \psi_{0,0,\gamma,\delta} \bar{Z}^s(\overline{z^{\gamma}} \overline{w^{\delta}}) T \otimes \bar{Z}^*$$

hold if and only if

$$\begin{aligned} \phi_{0,0,\gamma,\delta} &= 0 \quad \text{for } (\gamma - s + 2) + (\delta - s + 2)q \neq 0 \mod n \text{ and} \\ \psi_{0,0,\gamma,\delta} &= 0 \quad \text{for } (\gamma - s + 1) + (\delta - s + 1)q \neq 0 \mod n. \end{aligned}$$

We note that $\bar{\partial}_b$ and $\bar{\partial}_{T'}$ commute with the pullbacks.

Next, we consider the embedding $M_{n,q} \hookrightarrow \mathbf{C}^N$. Set $\Lambda_{n,q} := \{(\alpha, \beta) \mid 0 \le \alpha \le n, \ 0 \le \beta \le n, \ \alpha + \beta q \equiv 0 \mod n\}$ and N := $#\Lambda_{n,q}.$

 $q_{n,q}^{n,q}: \mathbf{C}^2 \to \mathbf{C}^N$ be a holomorphic map given by

$$X_{\alpha,\beta} = z^{\alpha} w^{\beta} \ ((\alpha,\beta) \in \Lambda_{n,q})$$

We denote $q_{n,q|S^3}: S^3 \to \mathbb{C}^N$ by the same symbol $q_{n,q}$.

The tangent map $\rho^{1,0} \circ dq_{n,q} : T' \to q_{n,q}^* T^{1,0} \mathbf{C}^N$ is given by

$$g_{\alpha,\beta} = \phi Z(z^{\alpha}w^{\beta}) + \sqrt{-1}(\alpha+\beta)\psi z^{\alpha}w^{\beta}$$
(3.3)

if $\rho^{1,0} \circ dq_{n,q}(\phi Z + \psi T) = \sum_{(\alpha,\beta) \in \Lambda_{n,q}} g_{\alpha,\beta} \frac{\partial}{\partial X_{\alpha,\beta}}$. By Lemmas 2.2 and 2.1,

LEMMA 3.5. For $\phi = \sum_{t\geq 0} \phi^{0,t} Z \otimes \bar{Z}^* + \sum_{t\geq 1} \psi^{0,t} T \otimes \bar{Z}^* \ (\phi^{0,t}, \psi^{0,t} \in H^{0,t}),$ $\phi \in \bar{\partial}_{T'} A^0_{M_{n,q}}(T'M_{n,q})$ holds if and only if $\phi = 0$.

PROPOSITION 3.6. Let

$$\phi = \sum_{t \ge 0} \phi^{0,t} Z \otimes \bar{Z}^* + \sum_{t \ge 1} \psi^{0,t} T \otimes \bar{Z}^* \in A^{0,1}_{M_{n,q}}(T'M_{n,q})$$

and $\phi^{0,t} = \sum_{\gamma+\delta=t} \phi_{0,0,\gamma,\delta} \overline{z^{\gamma} w^{\delta}}$ and $\psi^{0,t} = \sum_{\gamma+\delta=t} \psi_{0,0,\gamma,\delta} \overline{z^{\gamma} w^{\delta}}.$ Suppose

$$\phi_{0,0,\gamma,\delta} = 0 \quad for \ (\gamma+2) + (\delta+2)q \not\equiv 0 \mod n$$

$$\psi_{0,0,\gamma,\delta} = 0 \quad for \ (\gamma+1) + (\delta+1)q \not\equiv 0 \mod n$$

hold. Then, if $\rho^{1,0} \circ dq_{n,q} \phi \in \bar{\partial}_b A^0_{M_{n,q}}(T^{1,0}\mathbf{C}^N_{|M_{n,q}})$, the following equations hold:

$$(\alpha + \beta + c + d + 1)(\alpha d - \beta c)\phi_{0,0,\alpha+c-1,\beta+d-1} + \sqrt{-1}(\alpha + \beta)(\alpha + c)(\beta + d)\psi_{0,0,\alpha+c,\beta+d} = 0$$

for all $(\alpha, \beta) \in \Lambda_{n,q}$ and $c \ge 0, d \ge 0$ such that $\alpha + c \ge 1, \beta + d \ge 1$, (3.4)

 $\psi_{0,0,\alpha+c,0} = \psi_{0,0,0,\beta+d} = 0$

for all
$$(\alpha, 0), (0, \beta) \in \Lambda_{n,q}$$
 and $c \ge 0, d \ge 0.$ (3.5)

PROOF. Let $\rho^{1,0} \circ dq_{n,q}\phi = \sum_{(\alpha,\beta)\in\Lambda_{n,q}} g_{\alpha,\beta} \frac{\partial}{\partial X_{\alpha,\beta}} \otimes \bar{Z}^*$. Then, by (3.3), $g_{\alpha,\beta} = \sum_{t\geq 0} \sum_{\gamma+\delta=t} \phi_{0,0,\gamma,\delta} \overline{z^{\gamma}} \overline{w^{\delta}} (\alpha z^{\alpha-1} w^{\beta} \overline{w} - \beta z^{\alpha} w^{\beta-1} \overline{z})$ $+ \sqrt{-1} (\alpha+\beta) \sum_{t\geq 1} \sum_{\gamma+\delta=t} \psi_{0,0,\gamma,\delta} \overline{z^{\gamma}} \overline{w^{\delta}} z^{\alpha} w^{\beta}.$

We note that $\rho^{1,0} \circ dq_{n,q} \phi \in \bar{\partial}_b A^0_{M_{n,q}}(T^{1,0}\mathbf{C}^N_{|M_{n,q}})$ implies

$$\langle g_{\alpha,\beta}, \overline{z^c} w^d \rangle = 0$$
 for all $c \ge 0, d \ge 0$.

For the case of $\alpha + c \ge 1$, $\beta + d \ge 1$;

$$< g_{\alpha,\beta}, \overline{z^{c}}w^{d} >= \phi_{0,0,\alpha+c-1,\beta+d-1}(\alpha ||\overline{z^{\alpha+c-1}}w^{\beta+d}||^{2} - \beta ||\overline{z^{\alpha+c}}w^{\beta+d-1}||^{2}) + \sqrt{-1}(\alpha+\beta)\psi_{0,0,\alpha+c,\beta+d}||\overline{z^{\alpha+c}}w^{\beta+d}||^{2} = \frac{(\alpha+c-1)!(\beta+d-1)!(\alpha d-\beta c)}{(\alpha+\beta+c+d)!}\phi_{0,0,\alpha+c-1,\beta+d-1} + \sqrt{-1}\frac{(\alpha+\beta)(\alpha+c)!(\beta+d)!}{(\alpha+\beta+c+d+1)!}\psi_{0,0,\alpha+c,\beta+d}$$

For the case of $\beta + d = 0$;

$$\langle g_{\alpha,0}, \overline{z^c} \rangle = \sqrt{-1} \alpha \psi_{0,0,\alpha+c,0} ||\overline{z^{\alpha+c}}||^2.$$

For the case of $\alpha + c = 0$;

$$< g_{0,\,\beta},\,\overline{w^d} > = \sqrt{-1}\beta\psi_{0,0,0,\beta+d}||\overline{w^{\beta+d}}||^2.$$

Hence, we have the lemma.

For $\mathbf{e} := (\alpha, \beta) \in \Lambda_{n,q}$, we denote

$$\begin{cases} X_{\phi}(\mathbf{e}) := \phi_{0,0,\alpha-2,\beta-2} \\ X_{\psi}(\mathbf{e}) := \psi_{0,0,\alpha-1,\beta-1} \end{cases}$$

Note that $X_{\psi}((1,1)) = 0$ in the case of (n, q) = (n, n-1).

Then, the equation (3.4) and (3.5) are written as follows:

$$(\alpha + \beta + \gamma + \delta - 1)(\alpha \delta - \beta \gamma - \alpha + \beta)X_{\phi}(\mathbf{e} + \mathbf{e}') + \sqrt{-1}(\alpha + \beta)(\alpha + \gamma - 1)(\beta + \delta - 1)X_{\psi}(\mathbf{e} + \mathbf{e}') = 0 \quad (3.6)$$

for all $\mathbf{e} = (\alpha, \beta), \mathbf{e}' = (\gamma, \delta) \in \Lambda_{n,q}$ satisfying $\gamma \ge 1, \delta \ge 1$ and $\alpha + \gamma \ge 2, \beta + \delta \ge 2$,

$$X_{\phi}(\mathbf{e}) = X_{\psi}(\mathbf{e}) = 0 \tag{3.7}$$

for $\mathbf{e} = (\alpha, \beta)$ with $\alpha = 0$ or $\beta = 0$, and

$$X_{\phi}(\mathbf{e}) = 0 \tag{3.8}$$

for $\mathbf{e} = (\alpha, \beta)$ with $\alpha = 1$ or $\beta = 1$. We compute $X_{\phi}(\mathbf{e})$ and $X_{\psi}(\mathbf{e})$.

By the Hirzeburch-Jung algorithm, we obtain a minimal generators of $\Lambda_{n,q}$ as follows (cf. [**Ri1**]). Let

$$\frac{n}{n-q} = a_2 - \frac{1}{a_3 - \frac{1}{\dots - \frac{1}{a_{e-1}}}} \quad (a_2 \ge 2, a_3 \ge 2, \dots, a_{e-1} \ge 2)$$

be the continued fractional expansion. Then, $i_1 = n > i_2 = n - q > i_3 > \cdots > i_{e-1} = 1 > i_e = 0$ and $j_1 = 0 < j_2 = 1 < j_3 < \cdots < j_{e-1} < j_e = n$ are defined by

$$i_{\epsilon} + j_{\epsilon}q \equiv 0 \mod n \quad (\epsilon = 1, \cdots, e),$$
(3.9)

$$i_{\epsilon-1} = a_{\epsilon}i_{\epsilon} - i_{\epsilon+1} \quad (\epsilon = 2, \cdots, e-1), \tag{3.10}$$

$$j_{\epsilon-1} = a_{\epsilon}j_{\epsilon} - j_{\epsilon+1} \quad (\epsilon = 2, \cdots, e-1). \tag{3.11}$$

We denote $\mathbf{e}_{\epsilon} = (i_{\epsilon}, j_{\epsilon}).$

- DEFINITION 3.7. Let $\mathbf{e} := (\alpha, \beta) \in \Lambda_{n,q}$.
- (1) **e** is inside-decomposable if there exist $\mathbf{e}' := (\alpha', \beta'), \ \mathbf{e}'' := (\alpha'', \beta'') \in \Lambda_{n,q}$ such that
 - (i) $\alpha' \ge 1, \, \beta' \ge 1, \, \alpha'' \ge 1, \, \beta'' \ge 1,$
 - (ii) $\mathbf{e}', \mathbf{e}''$ are linearly independent over \mathbf{R} ,
 - (iii) $\mathbf{e} = \mathbf{e}' + \mathbf{e}''$.
- (2) **e** is edge-decomposable if $\mathbf{e} = \mathbf{e}_2 + m\mathbf{e}_1$ or $\mathbf{e} = \mathbf{e}_{e-1} + m\mathbf{e}_e$ $(m \ge 1)$.
- (3) **e** is proportional if $\mathbf{e} = m\mathbf{e}_{\epsilon} \ (m \ge 1)$.

REMARK 3.8. There may be elements which are inside-decomposable and proportional, while there exists no element which is edge- and inside-decomposable or edge-decomposable and proportional.

PROPOSITION 3.9. (1) $X_{\phi}(m\mathbf{e}_1) = X_{\psi}(m\mathbf{e}_1) = 0 \ (m \ge 1), \ X_{\phi}(m\mathbf{e}_e) = X_{\psi}(m\mathbf{e}_e) = 0 \ (m \ge 1).$ (2) $X_{\phi}(\mathbf{e}_2) = 0, \ X_{\phi}(\mathbf{e}_{e-1}) = 0.$

- (3) If \mathbf{e} is inside-decomposable, $X_{\phi}(\mathbf{e}) = X_{\psi}(\mathbf{e}) = 0$.
- (4) If \mathbf{e} is edge-decomposable, $X_{\phi}(\mathbf{e}) = X_{\psi}(\mathbf{e}) = 0.$

PROOF. (1) and (2) are clear from (3.7) and (3.8). (3) Let $\mathbf{e} = \mathbf{e}' + \mathbf{e}''$ where $\mathbf{e}' = (\alpha, \beta)$, $\mathbf{e}'' = (\gamma, \delta)$ with $\alpha \ge 1, \beta \ge 1, \gamma \ge 1, \delta \ge 1$ and $\alpha\delta - \beta\gamma \ne 0$.

By
$$(3.6)$$
 and (3.7) , we have

$$(\alpha + \beta + \gamma + \delta - 1)(\alpha \delta - \beta \gamma - \alpha + \beta)X_{\phi}(\mathbf{e}) + \sqrt{-1}(\alpha + \beta)(\alpha + \gamma - 1)(\beta + \delta - 1)X_{\psi}(\mathbf{e}) = 0,$$

and

$$(\alpha + \beta + \gamma + \delta - 1)(\beta \gamma - \alpha \delta - \gamma + \delta)X_{\phi}(\mathbf{e}) + \sqrt{-1}(\gamma + \delta)(\alpha + \gamma - 1)(\beta + \delta - 1)X_{\psi}(\mathbf{e}) = 0.$$

Since

$$\begin{vmatrix} \alpha\delta - \beta\gamma - \alpha + \beta & \alpha + \beta \\ \beta\gamma - \alpha\delta - \gamma + \delta & \gamma + \delta \end{vmatrix} = (\alpha\delta - \beta\gamma)(\alpha + \beta + \gamma + \delta - 2) \neq 0,$$
$$X_{\phi}(\mathbf{e}) = X_{\psi}(\mathbf{e}) = 0.$$

CR DEFORMATION OF CYCLIC QUOTIENT SURFACE SINGULARITIES

(4) Let $\mathbf{e} = \mathbf{e}_2 + m_1 \mathbf{e}_1$ or $\mathbf{e} = \mathbf{e}_{e-1} + m_e \mathbf{e}_e$. Then $X_{\phi}(\mathbf{e}) = X_{\psi}(\mathbf{e}) = 0$ follows by the condition (3.7).

- PROPOSITION 3.10. (1) All elements in $\Lambda_{n,q}$ are classified into the above three types; inside-decomposable, edge-decomposable and proportional.
- (2) Proportional elements which are not inside- nor edge-decomposable are; for the case of $e \ge 4$, $\lambda \mathbf{e}_{\epsilon}$ $(3 \le \epsilon \le e - 2, 1 \le \lambda \le a_{\epsilon} - 1; \epsilon = 2 \text{ or } e - 1, 1 \le \lambda \le a_{\epsilon}; \epsilon = 1 \text{ or } e, \lambda \ge 1)$, for the case of e = 3, $\lambda \mathbf{e}_{\epsilon}$ $(\epsilon = 2, 1 \le \lambda \le a_2 + 1; \epsilon = 1 \text{ or } 3, \lambda \ge 1)$.

By Propositions 3.9 and 3.10,

PROPOSITION 3.11. (1) For
$$e \ge 4$$
,
 $X_{\phi}(\mathbf{e}) = X_{\psi}(\mathbf{e}) = 0$
 $unless \mathbf{e} = \lambda \mathbf{e}_{\epsilon} \text{ for } 3 \le \epsilon \le e-2, 1 \le \lambda \le a_{\epsilon} -1; \ \epsilon = 2 \text{ or } e-1, 1 \le \lambda \le a_{\epsilon},$

and

64

$$X_{\phi}(\mathbf{e}_2) = X_{\phi}(\mathbf{e}_{e-1}) = 0.$$

(2) For e = 3,

$$X_{\phi}(\mathbf{e}) = X_{\psi}(\mathbf{e}) = 0$$

unless $\mathbf{e} = \lambda \mathbf{e}_2$ for $1 \le \lambda \le a_2 + 1$ and

$$X_{\phi}(\mathbf{e}_2) = 0$$

PROPOSITION 3.12. (1) If $e \ge 4$, $X_{\phi}(\mathbf{e}) = X_{\psi}(\mathbf{e}) = 0$ for $\mathbf{e} = a_{\epsilon}\mathbf{e}_{\epsilon}$ ($\epsilon = 2, e-1$). (2) If $\epsilon = 2$, $Y_{\epsilon}((\epsilon + 1)\epsilon) = 0$ and $Y_{\epsilon}((\epsilon + 1)\epsilon) = 0$ (1) ≥ 1)

(2) If e = 3, $X_{\phi}((a_2 + 1)\mathbf{e}_2) = 0$ and $X_{\psi}(\lambda \mathbf{e}_2) = 0$ $(\lambda \ge 1)$.

PROOF. (1) Recall the relation $a_2\mathbf{e}_2 = \mathbf{e}_1 + \mathbf{e}_3$. By applying (3.6) and (3.7) to $\mathbf{e} := a_2\mathbf{e}_2$ and $\mathbf{e} := \mathbf{e}_1 + \mathbf{e}_3$, we have

 $(a_2i_2 + a_2j_2 - 1)(j_2 - i_2)X_{\phi}(\mathbf{e})$

+
$$\sqrt{-1}(i_2+j_2)(a_2i_2-1)(a_2j_2-1)X_{\psi}(\mathbf{e}) = 0,$$

$$(i_1 + i_3 + j_1 + j_3 - 1)(i_1 j_3 - j_1 i_3 - i_1 + j_1)X_{\phi}(\mathbf{e}) + \sqrt{-1}(i_1 + j_1)(i_1 + i_3 - 1)(j_1 + j_3 - 1)X_{\psi}(\mathbf{e}) = 0.$$

Since $\begin{vmatrix} j_2 - i_2 & i_2 + j_2 \\ i_1 j_3 - j_1 i_3 - i_1 + j_1 & i_1 + j_1 \end{vmatrix} = 2 \begin{vmatrix} i_1 & j_1 \\ i_2 - i_3 & j_2 - j_3 \end{vmatrix} = 2n(1-n) \neq 0$, we have $X_{\phi}(a_2 \mathbf{e}_2) = X_{\psi}(a_2 \mathbf{e}_2) = 0$.

 $X_{\phi}(a_{e-1}\mathbf{e}_{e-1}) = X_{\psi}(a_{e-1}\mathbf{e}_{e-1}) = 0$ follows by a similar argument. (2) First, we apply (3.4) to $\mathbf{e} := \lambda \mathbf{e}_2$.

$$\sqrt{-1}(i_2+j_2)(\lambda i_2-1)(\lambda j_2-1)X_{\psi}(\mathbf{e})=0.$$

Next, we use the relation $(a_2 + 1)\mathbf{e}_2 = \mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3$. By applying (3.4) to $\mathbf{e} := \mathbf{e}_1 + (\mathbf{e}_2 + \mathbf{e}_3)$, we have

$$(i_1 + i_2 + i_3 + j_1 + j_2 + j_3 - 1)(i_1(j_2 + j_3) - j_1(i_2 + i_3) - i_1 + j_1)X_{\phi}(\mathbf{e}) + \sqrt{-1}(i_1 + j_1)(i_1 + i_2 + i_3 - 1)(j_1 + j_2 + j_3 - 1)X_{\psi}(\mathbf{e}) = 0.$$

Therefore we infer $X_{\phi}(\mathbf{e}) = 0$ from $X_{\psi}((a_2 + 1)\mathbf{e}_2) = 0$.

BIBLIOGRAPHY

Taking account of (3.1) and (3.2) and by Propositions 3.11 and 3.12 and (3.6), we have

THEOREM 3.13. We have the following basis of Ker{ $H^1(M_{n,q}, T'M_{n,q}) \rightarrow H^1(M_{n,q}, T^{1,0}\mathbb{C}^N|_{M_{n,q}})$ }: (1) (The case of $e \ge 4$)

$$\overline{z}^{\lambda i_{\epsilon}-2}\overline{w}^{\lambda j_{\epsilon}-2}Z \otimes \overline{Z}^{*} + \sqrt{-1} \frac{(\lambda i_{\epsilon} + \lambda j_{\epsilon} - 1)(j_{\epsilon} - i_{\epsilon})}{(i_{\epsilon} + j_{\epsilon})(\lambda i_{\epsilon} - 1)(\lambda j_{\epsilon} - 1)} \overline{z}^{\lambda i_{\epsilon}-1}\overline{w}^{\lambda j_{\epsilon}-1}T \otimes \overline{Z}^{*}$$

$$(\epsilon = 2, \dots, e - 1, \lambda = 2, \dots, a_{\epsilon} - 1)$$

$$\overline{z}^{i_{\epsilon}-2}\overline{w}^{j_{\epsilon}-2}Z \otimes \overline{Z}^{*} \ (\epsilon = 3, \dots, e - 2), \ \overline{z}^{i_{\epsilon}-1}\overline{w}^{j_{\epsilon}-1}T \otimes \overline{Z}^{*} \ (\epsilon = 2, \dots, e - 1)$$

$$(2) \ (The \ case \ of \ e = 3, \ cf. \ [\mathbf{K}])$$

$$\overline{z}^{\lambda i_{2}-2}\overline{w}^{\lambda j_{2}-2}Z \otimes \overline{Z}^{*} \ (\lambda = 2, \dots, a_{2})$$

Bibliography

- [B] Bland, J., CR deformations for rational homogeneous surface singularities, Science in China Series A: Mathematics 48, Suppl. 1, 74–85.
- [B-E] _____ and Epstein, C. L., Embeddable CR-structures and deformations of pseudo-convex surfaces, Part I: Formal deformations, J. Alg. Geom. 5 (1996), 277–368.
- [K] Kodama, M., CR description of the infinitesimal deformations of simple singularities, preprint.
- [M1] Miyajima, K., CR construction of the flat deformations of normal isolated singularities, J. Alg. Geom. 8 (1999), 403–470.
- [Ri1] Riemenschneider, O., Deformationen von Quotientensingularitäten (nach zyklischen Gruppen), Math. Ann. 209, (1974), 211–248.
- [Ri2] _____, A note on the toric duality between the cyclic quotient surface singularities $A_{n,q}$ and $A_{n,n-q}$, preprint.
- [Ru] Rudin, W., Function theory in the unit ball of \mathbb{C}^n , Grundlehren der mathematischen Wissenschaften 241, Springer Verlag, 1980.

Department of Mathematics and Computer Science Graduate School of Science and Engineering Kagoshima University, Kagoshima 890-0065, Japan E-mail: miyajima@sci.kagoshima-u.ac.jp