# CR deformation of cyclic quotient surface singularities 

Kimio Miyajima<br>Abstract. We compute the first order CR deformation of cyclic quotient surface singularities.

## Introduction

The purpose of this paper is to fix the first order CR deformation of cyclic quotient surface singularities $A_{n, q}$ (cf. Theorem 3.13). Although the first order deformation of $A_{n, q}$ was computed in $[\mathbf{R i 1}]$ by an algebraic way, deformation of $A_{n, q}$ is still interesting and a new duality phenomenon is recently discovered (cf. [Ri2]). On the other hand, after establishing general CR deformation theory of normal isolated singularities in $[\mathbf{B}-\mathbf{E}]$ and $[\mathbf{M 1}], \mathrm{CR}$ analysis on the 3 -sphere was applied to describe deformations of rational quotient singularities; $[\mathbf{B}]$ for $A_{n, 1}$ and $[\mathbf{K}]$ for $A_{n, n-1}(n \geq 2), D_{n+2}(n \geq 2), E_{6}, E_{7}, E_{8}$. In this paper, we compute the first order CR deformation of the remaining $A_{n, q}$.

Acknowledgements. This work was partially supported by Grant-in-Aid for Scientific Research, JSPS (No. 20540087). The author is grateful to the referee for his careful reading of this paper and for a valuable suggestion.

## 1. CR deformation of normal isolated singularities

In this section, we recall the formalism of the CR deformation of normal isolated singularities in $[\mathbf{M 1}]$. Since we are concentrated in the first order deformations, we will pay no attention to the obstruction to higher order deformations.
1.1. CR structure. A CR structure is given by a sub-bundle $\overline{S_{M}} \subset \mathbb{C} T M$ such that
(i) $S_{M} \bigcap \overline{S_{M}}=\{0\}$ with denoting $S_{M}=\overline{\overline{S_{M}}}$,
(ii) $\overline{S_{M}}$ is involutive; that is, $[X, Y] \in \Gamma\left(M, \overline{S_{M}}\right)$ holds for any $X, Y \in$ $\Gamma\left(M, \overline{S_{M}}\right)$.

We fix a sub bundle $\mathbb{C} F_{M} \subset \mathbb{C} T M$ such that $\mathbb{C} F_{M} \simeq \mathbb{C} T M /\left(S_{M} \oplus \overline{S_{M}}\right)$ holds. Then we have type decompositions of $\mathbb{C} T M$ and $\mathbb{C} T^{*} M$, respectively:

$$
\begin{aligned}
\mathbb{C} T M & =\mathbb{C} F_{M} \oplus S_{M} \oplus \overline{S_{M}}, \\
\mathbb{C} T^{*} M & =\mathbb{C} F_{M}^{*} \oplus S_{M}^{*} \oplus{\overline{S_{M}}}^{*} .
\end{aligned}
$$

We denote $T^{\prime} M=\mathbb{C} F_{M} \oplus S_{M}$.

If we denote $A_{M}^{0, q}:=\Gamma\left(M, \wedge^{q}{\overline{S_{M}}}^{*}\right)$, the above type decompositions induce the tangential Cauchy-Riemann complexes;

$$
\begin{gather*}
0 \longrightarrow A_{M}^{0} \xrightarrow{\bar{\partial}_{b}} A_{M}^{0,1} \xrightarrow{\bar{\partial}_{b}} \cdots  \tag{1.1}\\
0 \longrightarrow A_{M}^{0}\left(T^{\prime} M\right) \xrightarrow{\bar{\partial}_{T^{\prime}}} A_{M}^{0,1}\left(T^{\prime} M\right) \xrightarrow{\bar{\partial}_{T^{\prime}}} \cdots . \tag{1.2}
\end{gather*}
$$

1.2. CR deformation. Let $(V, 0)$ be a germ of a reduced normal Stein space in $\mathbf{C}^{N}$ satisfying $\operatorname{Sing}(V)=\{0\}$. We denote $f: V \rightarrow \mathbf{C}^{N}$ the natural embedding and $h_{1}\left(w_{1}, \cdots, w_{N}\right)=\cdots=h_{m}\left(w_{1}, \cdots, w_{N}\right)=0$ the defining equation of $V$. We fix a strongly pseudo-convex domain $0 \in \Omega \subset \mathbf{C}^{N}$ so that $V$ and $\partial \Omega$ intersect transversely. We denote $M:=V \bigcap \partial \Omega$.

A (formal) CR deformation of $(V, 0)$ is given by a $(\phi(t), g(t), k(t)) \in K_{M}^{1}\left[\left[t_{1}, \ldots, t_{d}\right]\right]$ (where $\left.K_{M}^{1}=A_{M}^{0,1}\left(T^{\prime} M\right) \oplus A_{M}^{0}\left(T^{1,0} \mathbb{C}^{N}{ }_{\mid M}\right) \oplus H^{0}(M)^{m}\right)$ satisfying

$$
\begin{equation*}
(\phi(0), g(0), k(0))=(0,0,0) \tag{1.3}
\end{equation*}
$$

$$
\begin{equation*}
\left(\bar{\partial}_{T^{\prime}} \phi(t)-R(\phi(t)),\left(\bar{\partial}_{b}-\phi(t)\right)(f+g(t)),(h+k) \circ(f+g(t))\right)=(0,0,0), \tag{1.4}
\end{equation*}
$$

where $R(\phi)$ is a non-linear partial differential operator (cf. [M1]).
1.3. Deformation complex. Let $K_{M}^{\bullet \bullet \bullet}$ be the following double-complex;

where $H^{0}\left(M, T^{1,0} \mathbb{C}^{N}{ }_{\mid M}\right)\left(\right.$ resp. $\left.H^{0}(M)\right)$ denote the space of CR sections of $T^{1,0} \mathbb{C}^{N}{ }_{\mid M}$ (resp. the space of CR functions) and $F:=\rho^{1,0} \circ d f$ and $H$ denotes the homomorphism given by $H(v)=\left(v\left(h_{1}\right), \ldots, v\left(h_{m}\right)\right)$ for $v \in T^{1,0} \mathbb{C}^{N}$, and $i$ denote the natural inclusion map.

We denote $\left(K_{M}^{\bullet}, d\right)$ its total simple complex. That is

$$
\begin{gathered}
K_{M}^{q}:=K_{M}^{0, q} \oplus K_{M}^{1, q-1} \oplus K_{M}^{2, q-2}, \\
d\left(a_{q}, b_{q-1}, c_{q-2}\right):=\left(\bar{\partial}_{T^{\prime}} a_{q}, \bar{\partial}_{b} b_{q-1}+(-1)^{q} F a_{q}, \bar{\partial}_{b} c_{q-2}+(-1)^{q-1} H b_{q-1}\right)
\end{gathered}
$$

where we denote $\bar{\partial}_{b} b_{-1}:=i b_{-1}, \bar{\partial}_{b} c_{-1}:=i c_{-1}$.
Theorem 1.1. ([B-E], $[\mathbf{M 1}])$ The first order $C R$ deformation space is $H_{d}^{1}\left(K_{M}^{\bullet}\right)$.

## 2. CR deformation of cyclic quotient singularities

Let $\zeta_{n}$ be a primitive $n$-th root of 1 and $V_{n, q}:=\mathbf{C}^{2} / G_{n, q}$ with $0<q<n$ and $(n, q)=1$ where $G_{n, q}$ is a cyclic group generated by the action $(z, w) \rightarrow\left(\zeta_{n} z, \zeta_{n}^{q} w\right)$. If $M_{n, q}:=S^{3} / G_{n, q}$, then $M_{n, q}$ is a strongly pseudo-convex boundary of a Stein domain of $V_{n, q}$ with only isolated singularity at the origin.

Since the CR analysis on $M_{n, q}$ is treated as a CR analysis on $S^{3}$ which is invariant under $G_{n, q}$-action, we will describe CR-deformations of $V_{n, q}$ by means of invariant CR structures on $S^{3}$.
2.1. CR structure on $S^{3}$. Let $S^{3} \subset \mathbb{C}^{2}$ be the unit 3 -sphere defined by the equation $|z|^{2}+|w|^{2}=1$ then the complex structure of $\mathbb{C}^{2}$ induces a CR structure on $S^{3}$ by

$$
\bar{S}:=\mathbb{C} T S^{3} \bigcap T^{0,1} \mathbb{C}_{\mid S^{3}}^{2}
$$

We denote this canonical CR structure on $S^{3}$ by ${ }^{\circ} T^{\prime \prime}$ and its complex conjugate by ${ }^{\circ} T^{\prime}$. Then, ${ }^{\circ} T^{\prime \prime}$ and ${ }^{\circ} T^{\prime}$ are $C^{\infty}$ trivial line bundle generated by $\bar{Z}$ and $Z$, respectively, where

$$
\bar{Z}:=w \frac{\partial}{\partial \bar{z}}-z \frac{\partial}{\partial \bar{w}}, Z:=\bar{w} \frac{\partial}{\partial z}-\bar{z} \frac{\partial}{\partial w} .
$$

Let

$$
T:=\operatorname{Im}\left(z \frac{\partial}{\partial z}+w \frac{\partial}{\partial w}\right)
$$

and $\mathbb{C} F$ be a $C^{\infty}$ sub-bundle of $\mathbb{C} T S^{3}$ generated by $T$. We use the abbreviations $T^{\prime}$ and $A^{0, q}$ for $T^{\prime} S^{3}$ and $A_{S^{3}}^{0, q}$, respectively. Then we have

Lemma 2.1. (1) $\bar{\partial}_{b} f=(\bar{Z} f) \otimes \bar{Z}^{*}$ for $f \in C^{\infty}\left(S^{3}\right)$,
(2) $\bar{\partial}_{T^{\prime}}(\phi Z+\psi T)=(\bar{Z} \phi) Z \otimes \bar{Z}^{*}-2 \sqrt{-1} \phi T \otimes \bar{Z}^{*}+(\bar{Z} \psi) T \otimes \bar{Z}^{*}$ for $\phi Z+\psi T \in$ $A^{0}\left(T^{\prime}\right)$.
Proof. (1) is trivial.
(2) Since $[\bar{Z}, Z]=-2 \sqrt{-1} T$ and $[\bar{Z}, T]=0, \bar{\partial}_{T^{\prime}}(\phi Z+\psi T)(\bar{Z})=(\bar{Z} \phi) Z+$ $\phi[\bar{Z}, Z]+(\bar{Z} \psi) T+\psi[\bar{Z}, T]=(\bar{Z} \phi) Z-2 \sqrt{-1} \phi T+(\bar{Z} \psi) T$.
2.2. CR analysis on $S^{3}$. A differentiable function $f \in C^{\infty}\left(S^{3}\right)$ is called a spherical harmonic of bidegree $(p, q)$ if it is the restriction on the sphere $S^{3}$ of a harmonic polynomial of holomorphic degree $p$ and anti-holomorphic degree $q$ on the ambient space $\mathbf{C}^{2}$; that is, $f=\tilde{f}_{\mid M}$ with

$$
\tilde{f}=\sum_{\alpha+\beta=p, \gamma+\delta=q} c_{\alpha, \beta, \gamma, \delta} z^{\alpha} w^{\beta} \overline{z^{\gamma}} \overline{w^{\delta}} \text { and } \Delta \tilde{f}=0 .
$$

We will abbreviate it as

$$
f=\sum_{\alpha+\beta=p, \gamma+\delta=q} c_{\alpha, \beta, \gamma, \delta} z^{\alpha} w^{\beta} \overline{z^{\gamma}} \overline{w^{\delta}} .
$$

Then there exists an orthonormal bases of $L^{2}\left(S^{3}\right)$ consisting of the harmonic polynomials. We denote $H^{p, q}$ the space of all harmonic polynomials of bidegree $(p, q)$. Clearly,

- $H^{p, 0}=\left\{f=\sum_{\alpha+\beta=p} c_{\alpha, \beta, 0,0} z^{\alpha} w^{\beta}\right\}$,
- $H^{0, q}=\left\{f=\sum_{\gamma+\delta=q} c_{0,0, \gamma, \delta} \overline{z^{\gamma}} \overline{w^{\delta}}\right\}$,
and $\operatorname{dim}_{\mathbf{C}} H^{p, 0}=p+1, \operatorname{dim}_{\mathbf{C}} H^{0, q}=q+1$.

Lemma 2.2. ([Ru], Proposition 18.3.3)
(1) $Z$ maps $H^{p, q}$ isomorphically onto $H^{p-1, q+1}$ if $p \geq 1$.
(2) $\bar{Z}$ maps $H^{p, q}$ isomorphically onto $H^{p+1, q-1}$ if $q \geq 1$.
(3) $T$ maps $H^{p, q}$ into itself and all functions in $H^{p, q}$ are eigen functions of $T$ with the eigen value $\sqrt{-1}(p-q)$.

## 3. Computation of $H^{1}\left(K_{M_{n, q}}^{\bullet}\right)$

Let $V_{n, q}:=\mathbf{C}^{2} / G_{n, q}$ be a cyclic quotient singularity as at the beginning of the previous section.

With the Hirzeburch-Jung continued fraction

$$
\frac{n}{n-q}=a_{2}-\frac{1}{a_{3}-\frac{1}{\cdots-\frac{1}{a_{e-1}}}}\left(a_{2} \geq 2, a_{3} \geq 2, \ldots, a_{e-1} \geq 2\right)
$$

the first order deformation space of $V_{n, q}$ was computed in $[\mathbf{R i} 1]$ as follows:

$$
\operatorname{dim}_{\mathbf{C}} \operatorname{Ext}^{1}\left(\Omega_{V_{n, q}}^{1}, \mathcal{O}_{V_{n, q}}\right)=\left\{\begin{array}{l}
\left(\sum_{\epsilon=2}^{e-1} a_{\epsilon}\right)-2(e \geq 4)  \tag{3.1}\\
a_{2}-1(e=3)
\end{array}\right.
$$

where $e$ is the dimension of the minimal embedding of $V_{n, q}$.
Since we have the following isomorphism (cf. [M1])

$$
\begin{align*}
\operatorname{Ext}^{1}\left(\Omega_{V_{n, q}}^{1}, \mathcal{O}_{V_{n, q}}\right) & \simeq H^{1}\left(K_{M_{n, q}}^{\bullet}\right) \\
& \simeq \operatorname{Ker}\left\{H^{1}\left(M_{n, q}, T^{\prime} M_{n, q}\right) \rightarrow H^{1}\left(M_{n, q}, T^{1,0} \mathbb{C}^{N}{ }_{\mid M_{n, q}}\right)\right\} \tag{3.2}
\end{align*}
$$

CR description of the first order deformation of $V_{n, q}$ is to fix a canonical basis of the subspace $\operatorname{Ker}\left\{H^{1}\left(M_{n, q}, T^{\prime} M_{n, q}\right) \rightarrow H^{1}\left(M_{n, q}, T^{1,0} \mathbb{C}^{N}{ }_{\mid M_{n, q}}\right)\right\}$ of $H^{1}\left(M_{n, q}, T^{\prime} M_{n, q}\right)$.

We denote the $G_{n, q}$-action by

$$
g:(z, w) \mapsto\left(\zeta_{n} z, \zeta_{n}^{q} w\right)
$$

First, we remark that
Proposition 3.1. For $p \geq 0$,
(1) $\Delta Z^{p}\left(z^{\alpha} w^{\beta}\right)=\Delta \bar{Z}^{p}\left(\overline{z^{\alpha}} \overline{w^{\beta}}\right)=0$,
(2) $\Delta\left(g^{*} Z^{p}\left(z^{\alpha} w^{\beta}\right)\right)=\Delta\left(g^{*} \bar{Z}^{p}\left(\overline{z^{\alpha}} \overline{w^{\beta}}\right)\right)=0$.

Proof. (1) is trivial.
(2) follows from (1) and the following lemma.

Lemma 3.2. For $f \in C^{\infty}\left(S^{3}\right)$,
(1) $g^{*} Z(f)=\zeta_{n}^{-q-1} Z\left(g^{*} f\right)$,
(2) $g^{*} \bar{Z}(f)=\zeta_{n}^{q+1} \bar{Z}\left(g^{*} f\right)$.

Proof. (1) $g^{*} Z(f)=\bar{\zeta}_{n}{ }^{q} \bar{w} g^{*} \frac{\partial f}{\partial z}-\overline{\zeta_{n}} \bar{z} g^{*} \frac{\partial f}{\partial w}=\bar{\zeta}_{n}{ }^{q-1} Z\left(g^{*} f\right)$.
(2) follows from (1).

Hence, $\left\{Z^{p}\left(z^{\alpha} w^{\beta}\right)\right\}_{\alpha+\beta=s}$ (resp. $\left\{\bar{Z}^{p}\left(\overline{z^{\alpha}} \overline{w^{\beta}}\right)\right\}_{\alpha+\beta=s}$ ) forms a basis of $H^{s-p, p}$ (resp. $H^{p, s-p}$ ).

Lemma 3.3. (1) $g_{*}^{-1} Z=\bar{\zeta}_{n}^{1+q} Z$,
(2) $g_{*}^{-1} T=T$,
(3) $g^{*} \bar{Z}^{*}=\bar{\zeta}_{n}^{1+q} \bar{Z}^{*}$.

Proof. (1) $g_{*}^{-1} Z=g_{*}^{-1}\left(\bar{w} \frac{\partial}{\partial z}-\bar{z} \frac{\partial}{\partial w}\right)=\bar{\zeta}_{n}^{1+q} Z$.
(2) Since $g_{*}^{-1}\left(z \frac{\partial}{\partial z}+w \frac{\partial}{\partial w}\right)=\left(z \frac{\partial}{\partial z}+w \frac{\partial}{\partial w}\right)$, we have $g_{*}^{-1} T=T$.
(3) $g^{*}(\bar{w} d \bar{z}-\bar{z} d \bar{w})=\bar{\zeta}_{n}^{1+q} \bar{Z}^{*}$.

Proposition 3.4. Let us consider the natural projection $S^{3} \rightarrow M_{n, q}$.
(1) $f^{s, t}=\sum_{\alpha+\beta=s+t} f_{\alpha, \beta, 0,0} Z^{t}\left(z^{\alpha} w^{\beta}\right) \in C^{\infty}\left(S^{3}\right)$ is pullback of a function on $M_{n, q}$ if and only if

$$
f_{\alpha, \beta, 0,0}=0 \quad \text { for }(\alpha-t)+(\beta-t) q \neq 0 \bmod n
$$

(2) $f^{s, t}=\sum_{\gamma+\delta=s} f_{0,0, \gamma, \delta} \bar{Z}^{s}\left(\overline{z^{\gamma}} \overline{w^{\delta}}\right) \in C^{\infty}\left(S^{3}\right)$ is pullback of a function on $M_{n, q}$ if and only if

$$
f_{0,0, \gamma, \delta}=0 \text { for }(\gamma-s)+(\delta-s) q \neq 0 \bmod n
$$

(3) $\phi^{s, t} \bar{Z}^{*}=\sum_{\alpha+\beta=s+t} \phi_{\alpha, \beta, 0,0} Z^{t}\left(z^{\alpha} w^{\beta}\right) \bar{Z}^{*} \in A_{S^{3}}^{0,1}$ is pullback of a tangential (0,1)-form on $M_{n, q}$ if and only if

$$
\phi_{\alpha, \beta, 0,0}=0 \text { for }(\alpha-t-1)+(\beta-t-1) q \neq 0 \bmod n
$$

(4) $\phi^{s, t} \bar{Z}^{*}=\sum_{\gamma+\delta=s} \phi_{0,0, \gamma, \delta} \bar{Z}^{s}\left(\overline{z^{\gamma}} \overline{w^{\delta}}\right) \bar{Z}^{*} \in A_{S^{3}}^{0,1}$ is pullback of a tangential (0,1)-form on $M_{n, q}$ if and only if

$$
\phi_{0,0, \gamma, \delta}=0 \text { for }(\gamma-s+1)+(\delta-s+1) q \neq 0 \bmod n
$$

(5) $\phi^{s, t} Z+\psi^{s, t} T \in A_{S^{3}}^{0}\left(T^{\prime}\right)$, where $\phi^{s, t}=\sum_{\alpha+\beta=s} \phi_{\alpha, \beta, 0,0} Z^{t}\left(z^{\alpha} w^{\beta}\right)$ and $\psi^{s, t}=\sum_{\alpha+\beta=s} \psi_{\alpha, \beta, 0,0} Z^{t}\left(z^{\alpha} w^{\gamma}\right)$, is pullback of a tangent vector field on $M_{n, q}$ if and only if

$$
\phi_{\alpha, \beta, 0,0}=0 \text { for }(\alpha-t-1)+(\beta-t-1) q \neq 0 \bmod n
$$

and

$$
\psi_{\alpha, \beta, 0,0}=0 \quad \text { for }(\alpha-t)+(\beta-t) q \neq 0 \bmod n .
$$

(6) $\phi^{s, t} Z+\psi^{s, t} T \in A_{S^{3}}^{0}\left(T^{\prime}\right)$, where $\phi^{s, t}=\sum_{\gamma+\delta=s} \phi_{0,0, \gamma, \delta} \bar{Z}^{s}\left(\overline{z^{\gamma}} \overline{w^{\delta}}\right)$ and $\psi^{s, t}=\sum_{\gamma+\delta=s} \psi_{0,0, \gamma, \delta} \bar{Z}^{s}\left(\overline{z^{\gamma}} \overline{w^{\delta}}\right)$, is pullback of a tangent vector field on $M_{n, q}$ if and only if

$$
\phi_{0,0, \gamma, \delta}=0 \text { for }(\gamma-s+1)+(\delta-s+1) q \neq 0 \bmod n
$$

and

$$
\psi_{0,0, \gamma, \delta}=0 \text { for }(\gamma-s)+(\delta-s) q \neq 0 \bmod n
$$

(7) $\phi^{s, t} Z \otimes \bar{Z}^{*}+\psi^{s, t} T \otimes \bar{Z}^{*} \in A_{S^{3}}^{0,1}\left(T^{\prime}\right)$, where $\phi^{s, t}=\sum_{\alpha+\beta=s} \phi_{\alpha, \beta, 0,0} Z^{t}\left(z^{\alpha} w^{\gamma}\right)$ and $\psi^{s, t}=\sum_{\alpha+\beta=s} \psi_{\alpha, \beta, 0,0} Z^{t}\left(z^{\alpha} w^{\gamma}\right)$, is pullback of a $T^{\prime}$-valued tangential (0,1)-form on $M_{n, q}$ if and only if

$$
\phi_{\alpha, \beta, 0,0}=0 \text { for }(\alpha-t-2)+(\beta-t-2) q \neq 0 \bmod n
$$

and

$$
\psi_{\alpha, \beta, 0,0}=0 \text { for }(\alpha-t-1)+(\beta-t-1) q \neq 0 \bmod n
$$

(8) $\phi^{s, t} Z \otimes \bar{Z}^{*}+\psi^{s, t} T \otimes \bar{Z}^{*} \in A_{S^{3}}^{0,1}\left(T^{\prime}\right)$, where $\phi^{s, t}=\sum_{\gamma+\delta=s} \phi_{0,0, \gamma, \delta} \bar{Z}^{s}\left(\overline{z^{\gamma}} \overline{w^{\delta}}\right)$ and $\psi^{s, t}=\sum_{\gamma+\delta=s} \psi_{0,0, \gamma, \delta} \bar{Z}^{s}\left(\overline{z^{\gamma}} \overline{w^{\delta}}\right)$, is pullback of a $T^{\prime}$-valued tangential (0,1)-form on $M_{n, q}$ if and only if

$$
\phi_{0,0, \gamma, \delta}=0 \text { for }(\gamma-s+2)+(\delta-s+2) q \neq 0 \bmod n
$$

and

$$
\psi_{0,0, \gamma, \delta}=0 \text { for }(\gamma-s+1)+(\delta-s+1) q \neq 0 \bmod n
$$

Proof. We will prove (2), (4), (6) and (8). The other part will be proved by similar calculations.
(2) By Lemma 3.2 (2), we have

$$
g^{*} \bar{Z}^{s}\left(\overline{z^{\gamma}} \overline{w^{\delta}}\right)=\zeta_{n}^{1+q} s \bar{Z}^{s} g^{*}\left(\overline{z^{\gamma}} \overline{w^{\delta}}\right)=\bar{\zeta}_{n}^{(\gamma-s)+(\delta-s) q} \bar{Z}^{s}\left(\overline{z^{\gamma}} \overline{w^{\delta}}\right)
$$

Since $\left\{\bar{Z}^{s}\left(\overline{z^{\gamma}} \overline{w^{\delta}}\right)\right\}_{\gamma+\delta=s+t}$ is linearly independent, $g^{*} f^{s, t}=f^{s, t}$ holds if and only if $f_{0,0, \gamma, \delta}=0$ holds for $(\gamma-s)+(\delta-s) q \neq 0 \bmod n$.
(4) By the same calculation as in the proof of (2) and by Lemma 3.3 (3),

$$
g^{*} \bar{Z}^{s}\left(\overline{z^{\gamma}} \overline{w^{\delta}}\right) g^{*}\left(\bar{Z}^{*}\right)=\bar{\zeta}_{n}^{(\gamma-s+1)+(\delta-s+1) q} \bar{Z}^{s}\left(\overline{z^{\gamma}} \overline{w^{\delta}}\right) \bar{Z}^{*}
$$

Hence, $g^{*} \phi^{s, t} \bar{Z}^{*}=\phi^{s, t} \bar{Z}^{*}$ if and only if $\phi_{0,0, \gamma, \delta}=0$ for $(\gamma-s+1)+(\delta-s+1) q \neq$ $0 \bmod n$.
(6) By the same calculation as in the proof of (2) and by Lemma 3.3 (1) and (2),

$$
\begin{gathered}
g^{*} \bar{Z}^{s}\left(\overline{z^{\gamma}} \overline{w^{\delta}}\right) g_{*}^{-1} Z=\bar{\zeta}_{n}^{(\gamma-s)+(\delta-s) q} \bar{Z}^{s}\left(\overline{z^{\gamma}} \overline{w^{\delta}}\right) \bar{\zeta}_{n}^{1+q} Z, \\
g^{*} \bar{Z}^{s}\left(\overline{z^{\gamma}} \overline{w^{\delta}}\right) g_{*}^{-1} T=\bar{\zeta}_{n}^{(\gamma-s)+(\delta-s) q} \bar{Z}^{s}\left(\overline{z^{\gamma}} \overline{w^{\delta}}\right) T .
\end{gathered}
$$

Hence

$$
\begin{gathered}
\sum_{\gamma+\delta=s} \phi_{0,0, \gamma, \delta} g^{*} \bar{Z}^{s}\left(\overline{z^{\gamma}} \overline{w^{\delta}}\right) g_{*}^{-1} Z=\sum_{\gamma+\delta=s} \phi_{0,0, \gamma, \delta} \bar{Z}^{s}\left(\overline{z^{\gamma}} \overline{w^{\delta}}\right) Z \text { and } \\
\sum_{\gamma+\delta=s} \psi_{0,0, \gamma, \delta} g^{*} \bar{Z}^{s}\left(\overline{z^{\gamma}} \overline{w^{\delta}}\right) g_{*}^{-1} T=\sum_{\gamma+\delta=s} \psi_{0,0, \gamma, \delta} \bar{Z}^{s}\left(\overline{z^{\gamma}} \overline{w^{\delta}}\right) T
\end{gathered}
$$

hold if and only if

$$
\begin{gathered}
\phi_{0,0, \gamma, \delta}=0 \text { for }(\gamma-s+1)+(\delta-s+1) q \neq 0 \bmod n \text { and } \\
\psi_{0,0, \gamma, \delta}=0 \text { for }(\gamma-s)+(\delta-s) q \neq 0 \bmod n .
\end{gathered}
$$

(8) By the same calculation as in the proof of (2) and by Lemma 3.3,

$$
\begin{aligned}
& g^{*} \bar{Z}^{s}\left(\overline{z^{\gamma}} \overline{w^{\delta}}\right) g_{*}^{-1} Z \otimes g^{*} \bar{Z}^{*}=\bar{\zeta}_{n}^{(\gamma-s)+(\delta-s) q} \bar{Z}^{s}\left(\overline{z^{\gamma}} \overline{w^{\delta}}\right) \bar{\zeta}_{n}^{2+2 q} Z \otimes \bar{Z}^{*} \\
&=\bar{\zeta}_{n}^{(\gamma-s+2)+(\delta-s+2) q} \bar{Z}^{s}\left(\overline{z^{\gamma}} \overline{w^{\delta}}\right) Z \otimes \bar{Z}^{*}
\end{aligned}
$$

and

$$
\begin{aligned}
& g^{*} \bar{Z}^{s}\left(\overline{z^{\gamma}} \overline{w^{\delta}}\right) g_{*}^{-1} T \otimes g^{*} \bar{Z}^{*}=\bar{\zeta}_{n}^{(\gamma-s)+(\delta-s) q} \bar{Z}^{s}\left(\overline{z^{\gamma}} \overline{w^{\delta}}\right) \bar{\zeta}_{n}^{1+q} T \otimes \bar{Z}^{*} \\
&=\bar{\zeta}_{n}^{(\gamma-s+1)+(\delta-s+1) q} \bar{Z}^{s}\left(\overline{z^{\gamma}} \bar{w}^{\delta}\right) T \otimes \bar{Z}^{*}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \sum_{\gamma+\delta=s} \phi_{0,0, \gamma, \delta} g^{*} \bar{Z}^{s}\left(\overline{z^{\gamma}} \overline{w^{\delta}}\right) g_{*}^{-1} Z \otimes g^{*} \bar{Z}^{*}=\sum_{\gamma+\delta=s} \phi_{0,0, \gamma, \delta} \bar{Z}^{s}\left(\overline{z^{\gamma}} \overline{w^{\delta}}\right) Z \otimes \bar{Z}^{*} \text { and } \\
& \sum_{\gamma+\delta=s} \psi_{0,0, \gamma, \delta} g^{*} \bar{Z}^{s}\left(\overline{z^{\gamma}} \overline{w^{\delta}}\right) g_{*}^{-1} T \otimes g^{*} \bar{Z}^{*}=\sum_{\gamma+\delta=s} \psi_{0,0, \gamma, \delta} \bar{Z}^{s}\left(\overline{z^{\gamma}} \overline{w^{\delta}}\right) T \otimes \bar{Z}^{*}
\end{aligned}
$$

hold if and only if

$$
\begin{gathered}
\phi_{0,0, \gamma, \delta}=0 \text { for }(\gamma-s+2)+(\delta-s+2) q \neq 0 \bmod n \text { and } \\
\psi_{0,0, \gamma, \delta}=0 \text { for }(\gamma-s+1)+(\delta-s+1) q \neq 0 \bmod n
\end{gathered}
$$

We note that $\bar{\partial}_{b}$ and $\bar{\partial}_{T^{\prime}}$ commute with the pullbacks.
Next, we consider the embedding $M_{n, q} \hookrightarrow \mathbf{C}^{N}$.
Set $\Lambda_{n, q}:=\{(\alpha, \beta) \mid 0 \leq \alpha \leq n, 0 \leq \beta \leq n, \alpha+\beta q \equiv 0 \bmod n\}$ and $N:=$ $\# \Lambda_{n, q}$.
$q_{n, q}: \mathbf{C}^{2} \rightarrow \mathbf{C}^{N}$ be a holomorphic map given by

$$
X_{\alpha, \beta}=z^{\alpha} w^{\beta}\left((\alpha, \beta) \in \Lambda_{n, q}\right) .
$$

We denote $q_{n, q \mid S^{3}}: S^{3} \rightarrow \mathbf{C}^{N}$ by the same symbol $q_{n, q}$.
The tangent map $\rho^{1,0} \circ d q_{n, q}: T^{\prime} \rightarrow q_{n, q}^{*} T^{1,0} \mathbf{C}^{N}$ is given by

$$
\begin{equation*}
g_{\alpha, \beta}=\phi Z\left(z^{\alpha} w^{\beta}\right)+\sqrt{-1}(\alpha+\beta) \psi z^{\alpha} w^{\beta} \tag{3.3}
\end{equation*}
$$

if $\rho^{1,0} \circ d q_{n, q}(\phi Z+\psi T)=\sum_{(\alpha, \beta) \in \Lambda_{n, q}} g_{\alpha, \beta} \frac{\partial}{\partial X_{\alpha, \beta}}$.
By Lemmas 2.2 and 2.1,
Lemma 3.5. For $\phi=\sum_{t \geq 0} \phi^{0, t} Z \otimes \bar{Z}^{*}+\sum_{t \geq 1} \psi^{0, t} T \otimes \bar{Z}^{*}\left(\phi^{0, t}, \psi^{0, t} \in H^{0, t}\right)$,

$$
\phi \in \bar{\partial}_{T^{\prime}} A_{M_{n, q}}^{0}\left(T^{\prime} M_{n, q}\right) \text { holds if and only if } \phi=0 .
$$

Proposition 3.6. Let

$$
\phi=\sum_{t \geq 0} \phi^{0, t} Z \otimes \bar{Z}^{*}+\sum_{t \geq 1} \psi^{0, t} T \otimes \bar{Z}^{*} \in A_{M_{n, q}}^{0,1}\left(T^{\prime} M_{n, q}\right)
$$

and $\phi^{0, t}=\sum_{\gamma+\delta=t} \phi_{0,0, \gamma, \delta} \overline{z^{\gamma}} \overline{w^{\delta}}$ and $\psi^{0, t}=\sum_{\gamma+\delta=t} \psi_{0,0, \gamma, \delta} \overline{z^{\gamma}} \overline{w^{\delta}}$.
Suppose

$$
\begin{gathered}
\phi_{0,0, \gamma, \delta}=0 \text { for }(\gamma+2)+(\delta+2) q \not \equiv 0 \bmod n, \\
\psi_{0,0, \gamma, \delta}=0 \text { for }(\gamma+1)+(\delta+1) q \not \equiv 0 \bmod n
\end{gathered}
$$

hold. Then, if $\rho^{1,0} \circ d q_{n, q} \phi \in \bar{\partial}_{b} A_{M_{n, q}}^{0}\left(T^{1,0} \mathbf{C}_{\mid M_{n, q}}^{N}\right)$, the following equations hold:

$$
\left.\begin{array}{l}
\begin{array}{rl}
(\alpha+\beta+c+d+1)(\alpha d-\beta c) \phi_{0,0, \alpha+c-1, \beta+d-1} \\
& +\sqrt{-1}(\alpha+\beta)(\alpha+c)(\beta+d) \psi_{0,0, \alpha+c, \beta+d}=0
\end{array} \\
\quad \text { for all }(\alpha, \beta) \in \Lambda_{n, q} \quad \text { and } c \geq 0, d \geq 0 \text { such that } \alpha+c \geq 1, \beta+d \geq 1
\end{array}\right\} \begin{aligned}
& \psi_{0,0, \alpha+c, 0}=\psi_{0,0,0, \beta+d}=0 \\
& \quad \text { for all }(\alpha, 0),(0, \beta) \in \Lambda_{n, q} \text { and } c \geq 0, d \geq 0
\end{aligned}
$$

Proof. Let $\rho^{1,0} \circ d q_{n, q} \phi=\sum_{(\alpha, \beta) \in \Lambda_{n, q}} g_{\alpha, \beta} \frac{\partial}{\partial X_{\alpha, \beta}} \otimes \bar{Z}^{*}$. Then, by (3.3),

$$
\begin{aligned}
& g_{\alpha, \beta}=\sum_{t \geq 0} \sum_{\gamma+\delta=t} \phi_{0,0, \gamma, \delta} \overline{z^{\gamma}} \overline{w^{\delta}}\left(\alpha z^{\alpha-1} w^{\beta} \bar{w}-\beta z^{\alpha} w^{\beta-1} \bar{z}\right) \\
&+\sqrt{-1}(\alpha+\beta) \sum_{t \geq 1} \sum_{\gamma+\delta=t} \psi_{0,0, \gamma, \delta} \overline{z^{\gamma}} \overline{w^{\delta}} z^{\alpha} w^{\beta}
\end{aligned}
$$

We note that $\rho^{1,0} \circ d q_{n, q} \phi \in \bar{\partial}_{b} A_{M_{n, q}}^{0}\left(T^{1,0} \mathbf{C}_{\mid M_{n, q}}^{N}\right)$ implies

$$
<g_{\alpha, \beta}, \overline{z^{c}} \overline{w^{d}}>=0 \text { for all } c \geq 0, d \geq 0
$$

For the case of $\alpha+c \geq 1, \beta+d \geq 1$;

$$
\begin{gathered}
<g_{\alpha, \beta}, \overline{z^{c}} \overline{w^{d}}>=\phi_{0,0, \alpha+c-1, \beta+d-1}\left(\alpha\left\|\overline{z^{\alpha+c-1} w^{\beta+d}}\right\|^{2}-\beta\left\|\overline{z^{\alpha+c}} w^{\beta+d-1}\right\|^{2}\right) \\
+\sqrt{-1}(\alpha+\beta) \psi_{0,0, \alpha+c, \beta+d}\left\|\overline{z^{\alpha+c}} \overline{w^{\beta+d}}\right\|^{2} \\
=\frac{(\alpha+c-1)!(\beta+d-1)!(\alpha d-\beta c)}{(\alpha+\beta+c+d)!} \phi_{0,0, \alpha+c-1, \beta+d-1} \\
+\sqrt{-1} \frac{(\alpha+\beta)(\alpha+c)!(\beta+d)!}{(\alpha+\beta+c+d+1)!} \psi_{0,0, \alpha+c, \beta+d}
\end{gathered}
$$

For the case of $\beta+d=0$;

$$
<g_{\alpha, 0}, \overline{z^{c}}>=\sqrt{-1} \alpha \psi_{0,0, \alpha+c, 0}\left\|\overline{z^{\alpha+c}}\right\|^{2}
$$

For the case of $\alpha+c=0$;

$$
<g_{0, \beta}, \overline{w^{d}}>=\sqrt{-1} \beta \psi_{0,0,0, \beta+d}\left\|\overline{w^{\beta+d}}\right\|^{2}
$$

Hence, we have the lemma.
For $\mathbf{e}:=(\alpha, \beta) \in \Lambda_{n, q}$, we denote

$$
\left\{\begin{array}{l}
X_{\phi}(\mathbf{e}):=\phi_{0,0, \alpha-2, \beta-2} \\
X_{\psi}(\mathbf{e}):=\psi_{0,0, \alpha-1, \beta-1} .
\end{array}\right.
$$

Note that $X_{\psi}((1,1))=0$ in the case of $(n, q)=(n, n-1)$.
Then, the equation (3.4) and (3.5) are written as follows:

$$
\begin{align*}
(\alpha+\beta+\gamma+\delta-1) & (\alpha \delta-\beta \gamma-\alpha+\beta) X_{\phi}\left(\mathbf{e}+\mathbf{e}^{\prime}\right) \\
& +\sqrt{-1}(\alpha+\beta)(\alpha+\gamma-1)(\beta+\delta-1) X_{\psi}\left(\mathbf{e}+\mathbf{e}^{\prime}\right)=0 \tag{3.6}
\end{align*}
$$

for all $\mathbf{e}=(\alpha, \beta), \mathbf{e}^{\prime}=(\gamma, \delta) \in \Lambda_{n, q}$ satisfying $\gamma \geq 1, \delta \geq 1$ and $\alpha+\gamma \geq 2, \beta+\delta \geq 2$,

$$
\begin{equation*}
X_{\phi}(\mathbf{e})=X_{\psi}(\mathbf{e})=0 \tag{3.7}
\end{equation*}
$$

for $\mathbf{e}=(\alpha, \beta)$ with $\alpha=0$ or $\beta=0$, and

$$
\begin{equation*}
X_{\phi}(\mathbf{e})=0 \tag{3.8}
\end{equation*}
$$

for $\mathbf{e}=(\alpha, \beta)$ with $\alpha=1$ or $\beta=1$.
We compute $X_{\phi}(\mathbf{e})$ and $X_{\psi}(\mathbf{e})$.

By the Hirzeburch-Jung algorithm, we obtain a minimal generators of $\Lambda_{n, q}$ as follows (cf. [Ri1]). Let

$$
\frac{n}{n-q}=a_{2}-\frac{1}{a_{3}-\frac{1}{\cdots-\frac{1}{a_{e-1}}}}\left(a_{2} \geq 2, a_{3} \geq 2, \ldots, a_{e-1} \geq 2\right)
$$

be the continued fractional expansion. Then, $i_{1}=n>i_{2}=n-q>i_{3}>\cdots>$ $i_{e-1}=1>i_{e}=0$ and $j_{1}=0<j_{2}=1<j_{3}<\cdots<j_{e-1}<j_{e}=n$ are defined by

$$
\begin{gather*}
i_{\epsilon}+j_{\epsilon} q \equiv 0 \bmod n \quad(\epsilon=1, \cdots, e)  \tag{3.9}\\
i_{\epsilon-1}=a_{\epsilon} i_{\epsilon}-i_{\epsilon+1} \quad(\epsilon=2, \cdots, e-1)  \tag{3.10}\\
j_{\epsilon-1}=a_{\epsilon} j_{\epsilon}-j_{\epsilon+1} \quad(\epsilon=2, \cdots, e-1) \tag{3.11}
\end{gather*}
$$

We denote $\mathbf{e}_{\epsilon}=\left(i_{\epsilon}, j_{\epsilon}\right)$.
Definition 3.7. Let $\mathbf{e}:=(\alpha, \beta) \in \Lambda_{n, q}$.
(1) $\mathbf{e}$ is inside-decomposable if there exist $\mathbf{e}^{\prime}:=\left(\alpha^{\prime}, \beta^{\prime}\right), \mathbf{e}^{\prime \prime}:=\left(\alpha^{\prime \prime}, \beta^{\prime \prime}\right) \in$ $\Lambda_{n, q}$ such that
(i) $\alpha^{\prime} \geq 1, \beta^{\prime} \geq 1, \alpha^{\prime \prime} \geq 1, \beta^{\prime \prime} \geq 1$,
(ii) $\mathbf{e}^{\prime}, \mathbf{e}^{\prime \prime}$ are linearly independent over $\mathbf{R}$,
(iii) $\mathbf{e}=\mathbf{e}^{\prime}+\mathbf{e}^{\prime \prime}$.
(2) $\mathbf{e}$ is edge-decomposable if $\mathbf{e}=\mathbf{e}_{2}+m \mathbf{e}_{1}$ or $\mathbf{e}=\mathbf{e}_{e-1}+m \mathbf{e}_{e}(m \geq 1)$.
(3) $\mathbf{e}$ is proportional if $\mathbf{e}=m \mathbf{e}_{\epsilon}(m \geq 1)$.

Remark 3.8. There may be elements which are inside-decomposable and proportional, while there exists no element which is edge- and inside-decomposable or edge-decomposable and proportional.

Proposition 3.9. (1) $X_{\phi}\left(m \mathbf{e}_{1}\right)=X_{\psi}\left(m \mathbf{e}_{1}\right)=0(m \geq 1), X_{\phi}\left(m \mathbf{e}_{e}\right)=$ $X_{\psi}\left(m \mathbf{e}_{e}\right)=0(m \geq 1)$.
(2) $X_{\phi}\left(\mathbf{e}_{2}\right)=0, X_{\phi}\left(\mathbf{e}_{e-1}\right)=0$.
(3) If $\mathbf{e}$ is inside-decomposable, $X_{\phi}(\mathbf{e})=X_{\psi}(\mathbf{e})=0$.
(4) If $\mathbf{e}$ is edge-decomposable, $X_{\phi}(\mathbf{e})=X_{\psi}(\mathbf{e})=0$.

Proof. (1) and (2) are clear from (3.7) and (3.8).
(3) Let $\mathbf{e}=\mathbf{e}^{\prime}+\mathbf{e}^{\prime \prime}$ where $\mathbf{e}^{\prime}=(\alpha, \beta), \mathbf{e}^{\prime \prime}=(\gamma, \delta)$ with $\alpha \geq 1, \beta \geq 1, \gamma \geq$ $1, \delta \geq 1$ and $\alpha \delta-\beta \gamma \neq 0$.

By (3.6) and (3.7), we have

$$
\begin{aligned}
(\alpha+\beta+\gamma+\delta-1)(\alpha \delta-\beta \gamma-\alpha+\beta) & X_{\phi}(\mathbf{e}) \\
& +\sqrt{-1}(\alpha+\beta)(\alpha+\gamma-1)(\beta+\delta-1) X_{\psi}(\mathbf{e})=0
\end{aligned}
$$

and

$$
\begin{aligned}
(\alpha+\beta+\gamma+\delta-1)(\beta \gamma-\alpha \delta- & \gamma+\delta) X_{\phi}(\mathbf{e}) \\
& +\sqrt{-1}(\gamma+\delta)(\alpha+\gamma-1)(\beta+\delta-1) X_{\psi}(\mathbf{e})=0
\end{aligned}
$$

Since

$$
\left|\begin{array}{cc}
\alpha \delta-\beta \gamma-\alpha+\beta & \alpha+\beta \\
\beta \gamma-\alpha \delta-\gamma+\delta & \gamma+\delta
\end{array}\right|=(\alpha \delta-\beta \gamma)(\alpha+\beta+\gamma+\delta-2) \neq 0
$$

$$
X_{\phi}(\mathbf{e})=X_{\psi}(\mathbf{e})=0
$$

(4) Let $\mathbf{e}=\mathbf{e}_{2}+m_{1} \mathbf{e}_{1}$ or $\mathbf{e}=\mathbf{e}_{e-1}+m_{e} \mathbf{e}_{e}$. Then $X_{\phi}(\mathbf{e})=X_{\psi}(\mathbf{e})=0$ follows by the condition (3.7).

Proposition 3.10. (1) All elements in $\Lambda_{n, q}$ are classified into the above three types; inside-decomposable, edge-decomposable and proportional.
(2) Proportional elements which are not inside-nor edge-decomposable are;
for the case of $e \geq 4$, $\lambda \mathbf{e}_{\epsilon}\left(3 \leq \epsilon \leq e-2,1 \leq \lambda \leq a_{\epsilon}-1 ; \epsilon=\right.$ 2 or $e-1,1 \leq \lambda \leq a_{\epsilon} ; \epsilon=1$ or $\left.e, \lambda \geq 1\right)$,
for the case of $e=3, \lambda \mathbf{e}_{\epsilon}\left(\epsilon=2,1 \leq \lambda \leq a_{2}+1 ; \epsilon=1\right.$ or $\left.3, \lambda \geq 1\right)$.
By Propositions 3.9 and 3.10,
Proposition 3.11. (1) For $e \geq 4$,

$$
X_{\phi}(\mathbf{e})=X_{\psi}(\mathbf{e})=0
$$

unless $\mathbf{e}=\lambda \mathbf{e}_{\epsilon}$ for $3 \leq \epsilon \leq e-2,1 \leq \lambda \leq a_{\epsilon}-1 ; \epsilon=2$ or $e-1,1 \leq \lambda \leq a_{\epsilon}$, and

$$
X_{\phi}\left(\mathbf{e}_{2}\right)=X_{\phi}\left(\mathbf{e}_{e-1}\right)=0
$$

(2) For $e=3$,

$$
X_{\phi}(\mathbf{e})=X_{\psi}(\mathbf{e})=0
$$

unless $\mathbf{e}=\lambda \mathbf{e}_{2}$ for $1 \leq \lambda \leq a_{2}+1$ and

$$
X_{\phi}\left(\mathbf{e}_{2}\right)=0
$$

Proposition 3.12. (1) If $e \geq 4, X_{\phi}(\mathbf{e})=X_{\psi}(\mathbf{e})=0$ for $\mathbf{e}=a_{\epsilon} \mathbf{e}_{\epsilon}(\epsilon=$ $2, e-1)$.
(2) If $e=3, X_{\phi}\left(\left(a_{2}+1\right) \mathbf{e}_{2}\right)=0$ and $X_{\psi}\left(\lambda \mathbf{e}_{2}\right)=0(\lambda \geq 1)$.

Proof. (1) Recall the relation $a_{2} \mathbf{e}_{2}=\mathbf{e}_{1}+\mathbf{e}_{3}$.
By applying (3.6) and (3.7) to $\mathbf{e}:=a_{2} \mathbf{e}_{2}$ and $\mathbf{e}:=\mathbf{e}_{1}+\mathbf{e}_{3}$, we have

$$
\begin{aligned}
& \left(a_{2} i_{2}+a_{2} j_{2}-1\right)\left(j_{2}-i_{2}\right) X_{\phi}(\mathbf{e}) \\
& \quad+\sqrt{-1}\left(i_{2}+j_{2}\right)\left(a_{2} i_{2}-1\right)\left(a_{2} j_{2}-1\right) X_{\psi}(\mathbf{e})=0 \\
& \quad\left(i_{1}+i_{3}+j_{1}+j_{3}-1\right)\left(i_{1} j_{3}-j_{1} i_{3}-i_{1}+j_{1}\right) X_{\phi}(\mathbf{e}) \\
& +\sqrt{-1}\left(i_{1}+j_{1}\right)\left(i_{1}+i_{3}-1\right)\left(j_{1}+j_{3}-1\right) X_{\psi}(\mathbf{e})=0
\end{aligned}
$$

Since $\left|\begin{array}{cc}j_{2}-i_{2} & i_{2}+j_{2} \\ i_{1} j_{3}-j_{1} i_{3}-i_{1}+j_{1} & i_{1}+j_{1}\end{array}\right|=2\left|\begin{array}{cc}i_{1} & j_{1} \\ i_{2}-i_{3} & j_{2}-j_{3}\end{array}\right|=2 n(1-n) \neq 0$, we have $X_{\phi}\left(a_{2} \mathbf{e}_{2}\right)=X_{\psi}\left(a_{2} \mathbf{e}_{2}\right)=0$.
$X_{\phi}\left(a_{e-1} \mathbf{e}_{e-1}\right)=X_{\psi}\left(a_{e-1} \mathbf{e}_{e-1}\right)=0$ follows by a similar argument.
(2) First, we apply (3.4) to $\mathbf{e}:=\lambda \mathbf{e}_{2}$.

$$
\sqrt{-1}\left(i_{2}+j_{2}\right)\left(\lambda i_{2}-1\right)\left(\lambda j_{2}-1\right) X_{\psi}(\mathbf{e})=0
$$

Next, we use the relation $\left(a_{2}+1\right) \mathbf{e}_{2}=\mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}$.
By applying (3.4) to $\mathbf{e}:=\mathbf{e}_{1}+\left(\mathbf{e}_{2}+\mathbf{e}_{3}\right)$, we have

$$
\begin{aligned}
\left(i_{1}+i_{2}+i_{3}+j_{1}\right. & \left.+j_{2}+j_{3}-1\right)\left(i_{1}\left(j_{2}+j_{3}\right)-j_{1}\left(i_{2}+i_{3}\right)-i_{1}+j_{1}\right) X_{\phi}(\mathbf{e}) \\
& +\sqrt{-1}\left(i_{1}+j_{1}\right)\left(i_{1}+i_{2}+i_{3}-1\right)\left(j_{1}+j_{2}+j_{3}-1\right) X_{\psi}(\mathbf{e})=0
\end{aligned}
$$

Therefore we infer $X_{\phi}(\mathbf{e})=0$ from $X_{\psi}\left(\left(a_{2}+1\right) \mathbf{e}_{2}\right)=0$.

Taking account of (3.1) and (3.2) and by Propositions 3.11 and 3.12 and (3.6), we have

THEOREM 3.13. We have the following basis of $\operatorname{Ker}\left\{H^{1}\left(M_{n, q}, T^{\prime} M_{n, q}\right) \rightarrow H^{1}\left(M_{n, q}, T^{1,0} \mathbb{C}^{N}{ }_{\mid M_{n, q}}\right)\right\}$ :
(1) (The case of $e \geq 4$ )

$$
\begin{array}{r}
\bar{z}^{\lambda i_{\epsilon}-2} \bar{w}^{\lambda j_{\epsilon}-2} Z \otimes \bar{Z}^{*}+\sqrt{-1} \frac{\left(\lambda i_{\epsilon}+\lambda j_{\epsilon}-1\right)\left(j_{\epsilon}-i_{\epsilon}\right)}{\left(i_{\epsilon}+j_{\epsilon}\right)\left(\lambda i_{\epsilon}-1\right)\left(\lambda j_{\epsilon}-1\right)} \bar{z}^{\lambda i_{\epsilon}-1} \bar{w}^{\lambda j_{\epsilon}-1} T \otimes \bar{Z}^{*} \\
\left(\epsilon=2, \ldots, e-1, \lambda=2, \ldots, a_{\epsilon}-1\right) \\
\bar{z}^{i_{\epsilon}-2} \bar{w}^{j_{\epsilon}-2} Z \otimes \bar{Z}^{*}(\epsilon=3, \ldots, e-2), \bar{z}^{i_{\epsilon}-1} \bar{w}^{j_{\epsilon}-1} T \otimes \bar{Z}^{*}(\epsilon=2, \ldots, e-1)
\end{array}
$$

(2) (The case of $e=3$, cf. $[\mathbf{K}]$ )

$$
\bar{z}^{\lambda i_{2}-2} \bar{w}^{\lambda j_{2}-2} Z \otimes \bar{Z}^{*}\left(\lambda=2, \ldots, a_{2}\right)
$$

## Bibliography

[B] Bland, J., CR deformations for rational homogeneous surface singularities, Science in China Series A: Mathematics 48, Suppl. 1, 74-85.
[B-E] and Epstein, C. L., Embeddable CR-structures and deformations of pseudo-convex surfaces, Part I: Formal deformations, J. Alg. Geom. 5 (1996), 277-368.
[K] Kodama, M., CR description of the infinitesimal deformations of simple singularities, preprint.
[M1] Miyajima, K., CR construction of the flat deformations of normal isolated singularities, J. Alg. Geom. 8 (1999), 403-470.
[Ri1] Riemenschneider, O., Deformationen von Quotientensingularitäten (nach zyklischen Gruppen), Math. Ann. 209, (1974), 211-248.
[Ri2] , A note on the toric duality between the cyclic quotient surface singularities $A_{n, q}$ and $A_{n, n-q}$, preprint.
[Ru] Rudin, W., Function theory in the unit ball of $\mathbb{C}^{n}$, Grundlehren der mathematischen Wissenschaften 241, Springer Verlag, 1980.

Department of Mathematics and Computer Science
Graduate School of Science and Engineering
Kagoshima University, Kagoshima 890-0065, Japan
E-mail: miyajima@sci.kagoshima-u.ac.jp

