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Abstract. We compute the first order CR deformation of cyclic quotient
surface singularities.

Introduction

The purpose of this paper is to fix the first order CR deformation of cyclic
quotient surface singularities An,q (cf. Theorem 3.13). Although the first order
deformation of An,q was computed in [Ri1] by an algebraic way, deformation of
An,q is still interesting and a new duality phenomenon is recently discovered (cf.
[Ri2]). On the other hand, after establishing general CR deformation theory of
normal isolated singularities in [B-E] and [M1], CR analysis on the 3-sphere was
applied to describe deformations of rational quotient singularities; [B] for An,1 and
[K] for An,n−1 (n ≥ 2), Dn+2 (n ≥ 2), E6, E7, E8. In this paper, we compute the
first order CR deformation of the remaining An,q.
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1. CR deformation of normal isolated singularities

In this section, we recall the formalism of the CR deformation of normal isolated
singularities in [M1]. Since we are concentrated in the first order deformations, we
will pay no attention to the obstruction to higher order deformations.

1.1. CR structure. A CR structure is given by a sub-bundle SM ⊂ CTM
such that

(i) SM
⋂
SM = {0} with denoting SM = SM ,

(ii) SM is involutive; that is, [X,Y ] ∈ Γ(M,SM ) holds for any X, Y ∈
Γ(M,SM ).

We fix a sub bundle CFM ⊂ CTM such that CFM $ CTM/(SM ⊕ SM ) holds.
Then we have type decompositions of CTM and CT ∗M , respectively:

CTM = CFM ⊕ SM ⊕ SM ,

CT ∗M = CF ∗
M ⊕ S∗

M ⊕ SM
∗
.

We denote T ′M = CFM ⊕ SM .
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56 CR DEFORMATION OF CYCLIC QUOTIENT SURFACE SINGULARITIES

If we denote A0,q
M := Γ(M,∧qSM

∗
), the above type decompositions induce the

tangential Cauchy-Riemann complexes;

0 −−−−→ A0
M

∂b−−−−→ A0,1
M

∂b−−−−→ · · · , (1.1)

0 −−−−→ A0
M (T ′M)

∂T ′−−−−→ A0,1
M (T ′M)

∂T ′−−−−→ · · · . (1.2)

1.2. CR deformation. Let (V, 0) be a germ of a reduced normal Stein space
in CN satisfying Sing(V ) = {0}. We denote f : V → CN the natural embedding
and h1(w1, · · · , wN ) = · · · = hm(w1, · · · , wN ) = 0 the defining equation of V . We
fix a strongly pseudo-convex domain 0 ∈ Ω ⊂ CN so that V and ∂Ω intersect
transversely. We denote M := V

⋂
∂Ω.

A (formal) CR deformation of (V, 0) is given by a (φ(t), g(t), k(t)) ∈ K1
M [[t1, . . . , td]]

(where K1
M = A0,1

M (T ′M)⊕A0
M (T 1,0CN

|M )⊕H0(M)m) satisfying

(φ(0), g(0), k(0)) = (0, 0, 0), (1.3)

(
∂̄T ′φ(t)−R(φ(t)), (∂̄b − φ(t))(f + g(t)), (h+ k) ◦ (f + g(t))

)
= (0, 0, 0), (1.4)

where R(φ) is a non-linear partial differential operator (cf. [M1]).

1.3. Deformation complex. Let K•,•
M be the following double-complex;

0 −−−−→ H0(M,T 1,0CN
|M )

H−−−−→ H0(M)m
%

%i

%i

K0,0
M := A0

M (T ′M)
F−−−−→ A0

M (T 1,0CN
|M )

H−−−−→ (A0
M )m

%∂̄T ′

%∂̄b

%∂̄b

A0,1
M (T ′M)

F−−−−→ A0,1
M (T 1,0CN

|M )
H−−−−→ (A0,1

M )m
%∂̄T ′

%∂̄b

%∂̄b

A0,2
M (T ′M)

F−−−−→ A0,2
M (T 1,0CN

|M )
H−−−−→ (A0,2

M )m
%∂̄T ′

%∂̄b

%∂̄b

...
...

...

whereH0(M,T 1,0CN
|M ) (resp. H0(M)) denote the space of CR sections of T 1,0CN

|M
(resp. the space of CR functions) and F := ρ1,0 ◦ df and H denotes the homomor-
phism given by H(v) = (v(h1), . . . , v(hm)) for v ∈ T 1,0CN , and i denote the
natural inclusion map.

We denote (K•
M , d) its total simple complex. That is

Kq
M := K0,q

M ⊕K1,q−1
M ⊕K2,q−2

M ,

d(aq, bq−1, cq−2) := (∂̄T ′aq, ∂̄bbq−1 + (−1)qFaq, ∂̄bcq−2 + (−1)q−1Hbq−1)

where we denote ∂̄bb−1 := ib−1, ∂̄bc−1 := ic−1.

Theorem 1.1. ([B-E], [M1]) The first order CR deformation space is H1
d(K

•
M ).
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2. CR deformation of cyclic quotient singularities

Let ζn be a primitive n-th root of 1 and Vn,q := C2/Gn,q with 0 < q < n and
(n, q) = 1 where Gn,q is a cyclic group generated by the action (z, w) → (ζnz, ζqnw).
If Mn,q := S3/Gn,q, then Mn,q is a strongly pseudo-convex boundary of a Stein
domain of Vn,q with only isolated singularity at the origin.

Since the CR analysis on Mn,q is treated as a CR analysis on S3 which is
invariant under Gn,q-action, we will describe CR-deformations of Vn,q by means of
invariant CR structures on S3.

2.1. CR structure on S3. Let S3 ⊂ C2 be the unit 3-sphere defined by the
equation |z|2 + |w|2 = 1 then the complex structure of C2 induces a CR structure
on S3 by

S := CTS3
⋂

T 0,1C2
|S3 .

We denote this canonical CR structure on S3 by ◦T ′′ and its complex conjugate
by ◦T ′. Then, ◦T ′′ and ◦T ′ are C∞ trivial line bundle generated by Z and Z,
respectively, where

Z := w
∂

∂z
− z

∂

∂w
, Z := w

∂

∂z
− z

∂

∂w
.

Let

T := Im(z
∂

∂z
+ w

∂

∂w
)

and CF be a C∞ sub-bundle of CTS3 generated by T . We use the abbreviations
T ′ and A0,q for T ′S3 and A0,q

S3 , respectively. Then we have

Lemma 2.1. (1) ∂̄bf = (Z̄f)⊗ Z̄∗ for f ∈ C∞(S3),
(2) ∂̄T ′(φZ+ψT ) = (Z̄φ)Z⊗Z̄∗−2

√
−1φT⊗Z̄∗+(Z̄ψ)T⊗Z̄∗ for φZ+ψT ∈

A0(T ′).

Proof. (1) is trivial.
(2) Since [Z̄, Z] = −2

√
−1T and [Z̄, T ] = 0, ∂̄T ′(φZ + ψT )(Z̄) = (Z̄φ)Z +

φ[Z̄, Z] + (Z̄ψ)T + ψ[Z̄, T ] = (Z̄φ)Z − 2
√
−1φT + (Z̄ψ)T . !

2.2. CR analysis on S3. A differentiable function f ∈ C∞(S3) is called a
spherical harmonic of bidegree (p, q) if it is the restriction on the sphere S3 of a
harmonic polynomial of holomorphic degree p and anti-holomorphic degree q on
the ambient space C2; that is, f = f̃|M with

f̃ =
∑

α+β=p, γ+δ=q

cα,β,γ,δz
αwβzγwδ and ∆f̃ = 0.

We will abbreviate it as

f =
∑

α+β=p, γ+δ=q

cα,β,γ,δz
αwβzγwδ.

Then there exists an orthonormal bases of L2(S3) consisting of the harmonic poly-
nomials. We denote Hp,q the space of all harmonic polynomials of bidegree (p, q).
Clearly,

• Hp,0 = {f =
∑

α+β=p cα,β,0,0z
αwβ},

• H0,q = {f =
∑

γ+δ=q c0,0,γ,δz
γwδ},

and dimCHp,0 = p+ 1, dimCH0,q = q + 1.
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Lemma 2.2. ([Ru], Proposition 18.3.3)

(1) Z maps Hp,q isomorphically onto Hp−1,q+1 if p ≥ 1.
(2) Z̄ maps Hp,q isomorphically onto Hp+1,q−1 if q ≥ 1.
(3) T maps Hp,q into itself and all functions in Hp,q are eigen functions of

T with the eigen value
√
−1(p− q).

3. Computation of H1(K•
Mn,q

)

Let Vn,q := C2/Gn,q be a cyclic quotient singularity as at the beginning of the
previous section.

With the Hirzeburch-Jung continued fraction

n

n− q
= a2 −

1

a3 −
1

· · ·−
1

ae−1

(a2 ≥ 2, a3 ≥ 2, . . . , ae−1 ≥ 2),

the first order deformation space of Vn,q was computed in [Ri1] as follows:

dimCExt
1(Ω1

Vn,q
,OVn,q ) =

{
(
∑e−1

ε=2 aε)− 2 (e ≥ 4)

a2 − 1 (e = 3)
(3.1)

where e is the dimension of the minimal embedding of Vn,q.
Since we have the following isomorphism (cf. [M1])

Ext1(Ω1
Vn,q

,OVn,q ) $ H1(K•
Mn,q

)

$ Ker{H1(Mn,q, T
′Mn,q) → H1(Mn,q, T

1,0CN
|Mn,q

)}, (3.2)

CR description of the first order deformation of Vn,q is to fix a canonical basis of the
subspace Ker{H1(Mn,q, T ′Mn,q) → H1(Mn,q, T 1,0CN

|Mn,q
)} of H1(Mn,q, T ′Mn,q).

We denote the Gn,q-action by

g : (z, w) &→ (ζnz, ζ
q
nw).

First, we remark that

Proposition 3.1. For p ≥ 0,

(1) ∆Zp(zαwβ) = ∆Z̄p(zαwβ) = 0,
(2) ∆(g∗Zp(zαwβ)) = ∆(g∗Z̄p(zαwβ)) = 0.

Proof. (1) is trivial.
(2) follows from (1) and the following lemma. !

Lemma 3.2. For f ∈ C∞(S3),

(1) g∗Z(f) = ζ−q−1
n Z(g∗f),

(2) g∗Z̄(f) = ζq+1
n Z̄(g∗f).

Proof. (1) g∗Z(f) = ζn
q
wg∗ ∂f

∂z − ζnzg∗
∂f
∂w = ζn

−q−1
Z(g∗f).

(2) follows from (1). !

Hence, {Zp(zαwβ)}α+β=s (resp. {Z̄p(zαwβ)}α+β=s) forms a basis of Hs−p,p

(resp. Hp,s−p).
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Lemma 3.3. (1) g−1
∗ Z = ζ

1+q
n Z,

(2) g−1
∗ T = T ,

(3) g∗Z̄∗ = ζ
1+q
n Z̄∗.

Proof. (1) g−1
∗ Z = g−1

∗ (w ∂
∂z − z ∂

∂w ) = ζ
1+q
n Z.

(2) Since g−1
∗ (z ∂

∂z + w ∂
∂w ) = (z ∂

∂z + w ∂
∂w ), we have g−1

∗ T = T .

(3) g∗(wdz − zdw) = ζ
1+q
n Z̄∗. !

Proposition 3.4. Let us consider the natural projection S3 → Mn,q.

(1) fs,t =
∑

α+β=s+t fα,β,0,0Z
t(zαwβ) ∈ C∞(S3) is pullback of a function on

Mn,q if and only if

fα,β,0,0 = 0 for (α− t) + (β − t)q $= 0 mod n.

(2) fs,t =
∑

γ+δ=s f0,0,γ,δZ̄
s(zγwδ) ∈ C∞(S3) is pullback of a function on

Mn,q if and only if

f0,0,γ,δ = 0 for (γ − s) + (δ − s)q $= 0 mod n.

(3) φs,tZ̄∗ =
∑

α+β=s+t φα,β,0,0Zt(zαwβ)Z̄∗ ∈ A0,1
S3 is pullback of a tangential

(0,1)-form on Mn,q if and only if

φα,β,0,0 = 0 for (α− t− 1) + (β − t− 1)q $= 0 mod n.

(4) φs,tZ̄∗ =
∑

γ+δ=s φ0,0,γ,δZ̄s(zγwδ)Z̄∗ ∈ A0,1
S3 is pullback of a tangential

(0,1)-form on Mn,q if and only if

φ0,0,γ,δ = 0 for (γ − s+ 1) + (δ − s+ 1)q $= 0 mod n.

(5) φs,tZ + ψs,tT ∈ A0
S3(T ′), where φs,t =

∑
α+β=s φα,β,0,0Zt(zαwβ) and

ψs,t =
∑

α+β=s ψα,β,0,0Zt(zαwγ), is pullback of a tangent vector field on
Mn,q if and only if

φα,β,0,0 = 0 for (α− t− 1) + (β − t− 1)q $= 0 mod n

and

ψα,β,0,0 = 0 for (α− t) + (β − t)q $= 0 mod n.

(6) φs,tZ + ψs,tT ∈ A0
S3(T ′), where φs,t =

∑
γ+δ=s φ0,0,γ,δZ̄s(zγwδ) and

ψs,t =
∑

γ+δ=s ψ0,0,γ,δZ̄s(zγwδ), is pullback of a tangent vector field on
Mn,q if and only if

φ0,0,γ,δ = 0 for (γ − s+ 1) + (δ − s+ 1)q $= 0 mod n

and

ψ0,0,γ,δ = 0 for (γ − s) + (δ − s)q $= 0 mod n.

(7) φs,tZ⊗Z̄∗+ψs,tT⊗Z̄∗ ∈ A0,1
S3 (T ′), where φs,t =

∑
α+β=s φα,β,0,0Zt(zαwγ)

and ψs,t =
∑

α+β=s ψα,β,0,0Zt(zαwγ), is pullback of a T ′-valued tangential
(0,1)-form on Mn,q if and only if

φα,β,0,0 = 0 for (α− t− 2) + (β − t− 2)q $= 0 mod n

and

ψα,β,0,0 = 0 for (α− t− 1) + (β − t− 1)q $= 0 mod n.
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(8) φs,tZ⊗Z̄∗+ψs,tT⊗Z̄∗ ∈ A0,1
S3 (T ′), where φs,t =

∑
γ+δ=s φ0,0,γ,δZ̄s(zγwδ)

and ψs,t =
∑

γ+δ=s ψ0,0,γ,δZ̄s(zγwδ), is pullback of a T ′-valued tangential
(0,1)-form on Mn,q if and only if

φ0,0,γ,δ = 0 for (γ − s+ 2) + (δ − s+ 2)q $= 0 mod n

and

ψ0,0,γ,δ = 0 for (γ − s+ 1) + (δ − s+ 1)q $= 0 mod n.

Proof. We will prove (2), (4), (6) and (8). The other part will be proved by
similar calculations.

(2) By Lemma 3.2 (2), we have

g∗Z̄s(zγwδ) = ζ1+q
n sZ̄sg∗(zγwδ) = ζ

(γ−s)+(δ−s)q
n Z̄s(zγwδ).

Since {Z̄s(zγwδ)}γ+δ=s+t is linearly independent, g∗fs,t = fs,t holds if and only if
f0,0,γ,δ = 0 holds for (γ − s) + (δ − s)q $= 0 mod n.

(4) By the same calculation as in the proof of (2) and by Lemma 3.3 (3),

g∗Z̄s(zγwδ)g∗(Z
∗
) = ζ

(γ−s+1)+(δ−s+1)q
n Z̄s(zγwδ)Z

∗
.

Hence, g∗φs,tZ
∗
= φs,tZ

∗
if and only if φ0,0,γ,δ = 0 for (γ − s+ 1) + (δ − s+ 1)q $=

0 mod n.
(6) By the same calculation as in the proof of (2) and by Lemma 3.3 (1) and

(2),

g∗Z̄s(zγwδ)g−1
∗ Z = ζ

(γ−s)+(δ−s)q
n Z̄s(zγwδ)ζ

1+q
n Z,

g∗Z̄s(zγwδ)g−1
∗ T = ζ

(γ−s)+(δ−s)q
n Z̄s(zγwδ)T.

Hence
∑

γ+δ=s

φ0,0,γ,δg
∗Z̄s(zγwδ)g−1

∗ Z =
∑

γ+δ=s

φ0,0,γ,δZ̄
s(zγwδ)Z and

∑

γ+δ=s

ψ0,0,γ,δg
∗Z̄s(zγwδ)g−1

∗ T =
∑

γ+δ=s

ψ0,0,γ,δZ̄
s(zγwδ)T

hold if and only if

φ0,0,γ,δ = 0 for (γ − s+ 1) + (δ − s+ 1)q $= 0 mod n and

ψ0,0,γ,δ = 0 for (γ − s) + (δ − s)q $= 0 mod n.

(8) By the same calculation as in the proof of (2) and by Lemma 3.3,

g∗Z̄s(zγwδ)g−1
∗ Z ⊗ g∗Z̄∗ = ζ

(γ−s)+(δ−s)q
n Z̄s(zγwδ)ζ

2+2q
n Z ⊗ Z̄∗

= ζ
(γ−s+2)+(δ−s+2)q
n Z̄s(zγwδ)Z ⊗ Z̄∗

and

g∗Z̄s(zγwδ)g−1
∗ T ⊗ g∗Z̄∗ = ζ

(γ−s)+(δ−s)q
n Z̄s(zγwδ)ζ

1+q
n T ⊗ Z̄∗

= ζ
(γ−s+1)+(δ−s+1)q
n Z̄s(zγwδ)T ⊗ Z̄∗.
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Hence
∑

γ+δ=s

φ0,0,γ,δg
∗Z̄s(zγwδ)g−1

∗ Z ⊗ g∗Z̄∗ =
∑

γ+δ=s

φ0,0,γ,δZ̄
s(zγwδ)Z ⊗ Z̄∗ and

∑

γ+δ=s

ψ0,0,γ,δg
∗Z̄s(zγwδ)g−1

∗ T ⊗ g∗Z̄∗ =
∑

γ+δ=s

ψ0,0,γ,δZ̄
s(zγwδ)T ⊗ Z̄∗

hold if and only if

φ0,0,γ,δ = 0 for (γ − s+ 2) + (δ − s+ 2)q #= 0 mod n and

ψ0,0,γ,δ = 0 for (γ − s+ 1) + (δ − s+ 1)q #= 0 mod n.

!

We note that ∂̄b and ∂̄T ′ commute with the pullbacks.
Next, we consider the embedding Mn,q ↪→ CN .
Set Λn,q := {(α,β) | 0 ≤ α ≤ n, 0 ≤ β ≤ n, α + βq ≡ 0 mod n} and N :=

#Λn,q.
qn,q : C2 → CN be a holomorphic map given by

Xα,β = zαwβ ((α,β) ∈ Λn,q).

We denote qn,q|S3 : S3 → CN by the same symbol qn,q.
The tangent map ρ1,0 ◦ dqn,q : T ′ → q∗n,qT

1,0CN is given by

gα,β = φZ(zαwβ) +
√
−1(α+ β)ψzαwβ (3.3)

if ρ1,0 ◦ dqn,q(φZ + ψT ) =
∑

(α,β)∈Λn,q
gα,β

∂
∂Xα,β

.

By Lemmas 2.2 and 2.1,

Lemma 3.5. For φ =
∑

t≥0 φ
0,tZ ⊗ Z̄∗ +

∑
t≥1 ψ

0,tT ⊗ Z̄∗ (φ0,t, ψ0,t ∈ H0,t),

φ ∈ ∂̄T ′A0
Mn,q

(T ′Mn,q) holds if and only if φ = 0.

Proposition 3.6. Let

φ =
∑

t≥0

φ0,tZ ⊗ Z̄∗ +
∑

t≥1

ψ0,tT ⊗ Z̄∗ ∈ A0,1
Mn,q

(T ′Mn,q)

and φ0,t =
∑

γ+δ=t φ0,0,γ,δzγwδ and ψ0,t =
∑

γ+δ=t ψ0,0,γ,δzγwδ.
Suppose

φ0,0,γ,δ = 0 for (γ + 2) + (δ + 2)q #≡ 0 mod n,

ψ0,0,γ,δ = 0 for (γ + 1) + (δ + 1)q #≡ 0 mod n

hold. Then, if ρ1,0 ◦ dqn,qφ ∈ ∂̄bA0
Mn,q

(T 1,0CN
|Mn,q

), the following equations hold:

(α+ β + c+ d+ 1)(αd− βc)φ0,0,α+c−1,β+d−1

+
√
−1(α+ β)(α+ c)(β + d)ψ0,0,α+c,β+d = 0

for all (α, β) ∈ Λn,q and c ≥ 0, d ≥ 0 such that α+ c ≥ 1, β + d ≥ 1, (3.4)

ψ0,0,α+c,0 = ψ0,0,0,β+d = 0

for all (α, 0), (0, β) ∈ Λn,q and c ≥ 0, d ≥ 0. (3.5)
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Proof. Let ρ1,0 ◦ dqn,qφ =
∑

(α, β)∈Λn,q
gα, β

∂
∂Xα,β

⊗ Z̄∗. Then, by (3.3),

gα, β =
∑

t≥0

∑

γ+δ=t

φ0,0,γ,δzγwδ(αzα−1wβw − βzαwβ−1z)

+
√
−1(α+ β)

∑

t≥1

∑

γ+δ=t

ψ0,0,γ,δzγwδzαwβ .

We note that ρ1,0 ◦ dqn,qφ ∈ ∂̄bA0
Mn,q

(T 1,0CN
|Mn,q

) implies

< gα, β , zcwd >= 0 for all c ≥ 0, d ≥ 0.

For the case of α+ c ≥ 1, β + d ≥ 1;

< gα, β , zcwd >= φ0,0,α+c−1,β+d−1(α||zα+c−1wβ+d||2 − β||zα+cwβ+d−1||2)

+
√
−1(α+ β)ψ0,0,α+c,β+d||zα+cwβ+d||2

=
(α+ c− 1)!(β + d− 1)!(αd− βc)

(α+ β + c+ d)!
φ0,0,α+c−1,β+d−1

+
√
−1

(α+ β)(α+ c)!(β + d)!

(α+ β + c+ d+ 1)!
ψ0,0,α+c,β+d.

For the case of β + d = 0;

< gα, 0, zc >=
√
−1αψ0,0,α+c,0||zα+c||2.

For the case of α+ c = 0;

< g0, β , wd >=
√
−1βψ0,0,0,β+d||wβ+d||2.

Hence, we have the lemma. !

For e := (α, β) ∈ Λn,q, we denote
{
Xφ(e) := φ0,0,α−2,β−2

Xψ(e) := ψ0,0,α−1,β−1.

Note that Xψ((1, 1)) = 0 in the case of (n, q) = (n, n− 1).
Then, the equation (3.4) and (3.5) are written as follows:

(α+ β + γ + δ − 1)(αδ − βγ − α+ β)Xφ(e+ e′)

+
√
−1(α+ β)(α+ γ − 1)(β + δ − 1)Xψ(e+ e′) = 0 (3.6)

for all e = (α, β), e′ = (γ, δ) ∈ Λn,q satisfying γ ≥ 1, δ ≥ 1 and α+γ ≥ 2, β+δ ≥ 2,

Xφ(e) = Xψ(e) = 0 (3.7)

for e = (α, β) with α = 0 or β = 0, and

Xφ(e) = 0 (3.8)

for e = (α, β) with α = 1 or β = 1.
We compute Xφ(e) and Xψ(e).
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By the Hirzeburch-Jung algorithm, we obtain a minimal generators of Λn,q as
follows (cf. [Ri1]). Let

n

n− q
= a2 −

1

a3 −
1

· · ·−
1

ae−1

(a2 ≥ 2, a3 ≥ 2, . . . , ae−1 ≥ 2)

be the continued fractional expansion. Then, i1 = n > i2 = n − q > i3 > · · · >
ie−1 = 1 > ie = 0 and j1 = 0 < j2 = 1 < j3 < · · · < je−1 < je = n are defined by

iε + jεq ≡ 0 mod n (ε = 1, · · · , e), (3.9)

iε−1 = aεiε − iε+1 (ε = 2, · · · , e− 1), (3.10)

jε−1 = aεjε − jε+1 (ε = 2, · · · , e− 1). (3.11)

We denote eε = (iε, jε).

Definition 3.7. Let e := (α, β) ∈ Λn,q.

(1) e is inside-decomposable if there exist e′ := (α′, β′), e′′ := (α′′, β′′) ∈
Λn,q such that
(i) α′ ≥ 1, β′ ≥ 1, α′′ ≥ 1, β′′ ≥ 1,
(ii) e′, e′′ are linearly independent over R,
(iii) e = e′ + e′′.

(2) e is edge-decomposable if e = e2 +me1 or e = ee−1 +mee (m ≥ 1).
(3) e is proportional if e = meε (m ≥ 1).

Remark 3.8. There may be elements which are inside-decomposable and pro-
portional, while there exists no element which is edge- and inside-decomposable or
edge-decomposable and proportional.

Proposition 3.9. (1) Xφ(me1) = Xψ(me1) = 0 (m ≥ 1), Xφ(mee) =
Xψ(mee) = 0 (m ≥ 1).

(2) Xφ(e2) = 0, Xφ(ee−1) = 0.
(3) If e is inside-decomposable, Xφ(e) = Xψ(e) = 0.
(4) If e is edge-decomposable, Xφ(e) = Xψ(e) = 0.

Proof. (1) and (2) are clear from (3.7) and (3.8).
(3) Let e = e′ + e′′ where e′ = (α, β), e′′ = (γ, δ) with α ≥ 1, β ≥ 1, γ ≥

1, δ ≥ 1 and αδ − βγ %= 0.
By (3.6) and (3.7), we have

(α+ β + γ + δ − 1)(αδ − βγ − α+ β)Xφ(e)

+
√
−1(α+ β)(α+ γ − 1)(β + δ − 1)Xψ(e) = 0,

and

(α+ β + γ + δ − 1)(βγ − αδ − γ + δ)Xφ(e)

+
√
−1(γ + δ)(α+ γ − 1)(β + δ − 1)Xψ(e) = 0.

Since ∣∣∣∣
αδ − βγ − α+ β α+ β
βγ − αδ − γ + δ γ + δ

∣∣∣∣ = (αδ − βγ)(α+ β + γ + δ − 2) %= 0,

Xφ(e) = Xψ(e) = 0.
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(4) Let e = e2 +m1e1 or e = ee−1 +meee. Then Xφ(e) = Xψ(e) = 0 follows
by the condition (3.7). !

Proposition 3.10. (1) All elements in Λn,q are classified into the above
three types; inside-decomposable, edge-decomposable and proportional.

(2) Proportional elements which are not inside- nor edge-decomposable are;
for the case of e ≥ 4, λeε (3 ≤ ε ≤ e − 2, 1 ≤ λ ≤ aε − 1; ε =
2 or e− 1, 1 ≤ λ ≤ aε; ε = 1 or e, λ ≥ 1),
for the case of e = 3, λeε (ε = 2, 1 ≤ λ ≤ a2 + 1; ε = 1 or 3, λ ≥ 1).

By Propositions 3.9 and 3.10,

Proposition 3.11. (1) For e ≥ 4,

Xφ(e) = Xψ(e) = 0

unless e = λeε for 3 ≤ ε ≤ e−2, 1 ≤ λ ≤ aε−1; ε = 2 or e−1, 1 ≤ λ ≤ aε,
and

Xφ(e2) = Xφ(ee−1) = 0.

(2) For e = 3,
Xφ(e) = Xψ(e) = 0

unless e = λe2 for 1 ≤ λ ≤ a2 + 1 and

Xφ(e2) = 0.

Proposition 3.12. (1) If e ≥ 4, Xφ(e) = Xψ(e) = 0 for e = aεeε (ε =
2, e− 1).

(2) If e = 3, Xφ((a2 + 1)e2) = 0 and Xψ(λe2) = 0 (λ ≥ 1).

Proof. (1) Recall the relation a2e2 = e1 + e3.
By applying (3.6) and (3.7) to e := a2e2 and e := e1 + e3, we have

(a2i2 + a2j2 − 1)(j2 − i2)Xφ(e)

+
√
−1(i2 + j2)(a2i2 − 1)(a2j2 − 1)Xψ(e) = 0,

(i1 + i3 + j1 + j3 − 1)(i1j3 − j1i3 − i1 + j1)Xφ(e)

+
√
−1(i1 + j1)(i1 + i3 − 1)(j1 + j3 − 1)Xψ(e) = 0.

Since

∣∣∣∣
j2 − i2 i2 + j2

i1j3 − j1i3 − i1 + j1 i1 + j1

∣∣∣∣ = 2

∣∣∣∣
i1 j1

i2 − i3 j2 − j3

∣∣∣∣ = 2n(1 − n) %= 0, we

have Xφ(a2e2) = Xψ(a2e2) = 0.
Xφ(ae−1ee−1) = Xψ(ae−1ee−1) = 0 follows by a similar argument.
(2) First, we apply (3.4) to e := λe2.

√
−1(i2 + j2)(λi2 − 1)(λj2 − 1)Xψ(e) = 0.

Next, we use the relation (a2 + 1)e2 = e1 + e2 + e3.
By applying (3.4) to e := e1 + (e2 + e3), we have

(i1 + i2 + i3 + j1 + j2 + j3 − 1)(i1(j2 + j3)− j1(i2 + i3)− i1 + j1)Xφ(e)

+
√
−1(i1 + j1)(i1 + i2 + i3 − 1)(j1 + j2 + j3 − 1)Xψ(e) = 0.

Therefore we infer Xφ(e) = 0 from Xψ((a2 + 1)e2) = 0. !
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Taking account of (3.1) and (3.2) and by Propositions 3.11 and 3.12 and (3.6),
we have

Theorem 3.13. We have the following basis of Ker{H1(Mn,q, T ′Mn,q) → H1(Mn,q, T 1,0CN
|Mn,q

)}:
(1) (The case of e ≥ 4)

zλiε−2wλjε−2Z ⊗ Z̄∗ +
√
−1

(λiε + λjε − 1)(jε − iε)

(iε + jε)(λiε − 1)(λjε − 1)
zλiε−1wλjε−1T ⊗ Z̄∗

(ε = 2, . . . , e− 1, λ = 2, . . . , aε − 1)

ziε−2wjε−2Z ⊗ Z̄∗ (ε = 3, . . . , e− 2), ziε−1wjε−1T ⊗ Z̄∗ (ε = 2, . . . , e− 1)

(2) (The case of e = 3, cf. [K])

zλi2−2wλj2−2Z ⊗ Z̄∗ (λ = 2, . . . , a2)
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