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Abstract. We study certain differential operators of the form AD arising
from a first-order approach to the Kato square root problem. We show that
if such operators are R-bisectorial in Lp, they remain R-bisectorial in Lq for
all q close to p. In combination with our earlier results with Portal, which
required such R-bisectoriality in different Lq spaces to start with, this shows
that the R-bisectoriality in just one Lp actually implies bounded H∞-calculus
in Lq for all q close to p. We adapt the approach to related second-order
results developed by Auscher, Hofmann and Martell, and also employ abstract
extrapolation theorems due to Kalton and Mitrea.

1. Introduction

Recall that an operator A on a Banach space X is called bisectorial of angle
ω ∈ [0, π/2) if its spectrum satisfies

σ(A) ⊆ Sω := Σω ∪ (−Σω), Σω := {z ∈ C; | arg(z)| ≤ ω},

and there holds

‖(I + τA)−1‖L (X) ≤ Cω′ ∀ τ /∈ Sω′ , ∀ ω′ > ω.

For such an operator, one can define a calculus of bounded operators by formal
substitution to the Cauchy integral formula,

ψ(A) :=
1

2πi

ˆ
∂Sω′

ψ(λ)(I − 1
λ
A)−1 dλ

λ
,

ψ ∈ H∞0 (Sω′′) := {φ ∈ H∞(Sω′′) : φ ∈ O
(
(

z

1 + z2
)α
)
, α > 0}, ω′′ > ω′ > ω,

and it is of interest whether this calculus may be boundedly extended to all ψ ∈
H∞(Sω′′) (bounded holomorphic functions in the interior of Sω′′). If this is the
case for all ω′′ > ω, then A is said to have a bounded H∞-calculus of angle ω.

A bisectorial operator A is called R-bisectorial of angle ω if all sequences of
operators Tk taken from the (bounded) collection of resolvents (I+τA)−1, τ /∈ Sω′ ,
for any ω′ > ω, satisfy the stronger R-boundedness condition

E
∥∥∥∑

k

εkTkuk

∥∥∥
X
≤ CE

∥∥∥∑
k

εkuk

∥∥∥
X
,

where the εk are random signs and E is the corresponding expectation. This is a
condition of boundedness on the space RadX of all sequences (uk)k ⊂ X for which
the series

∑
k εkuk converges almost surely and equipped with the norm on the

right of the previous displayed line.
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In our two papers with Portal [12, 13], we have used this R-bisectoriality esti-
mate to characterize the boundedness of the H∞-calculus of certain first-order dif-
ferential operators, which are related to a first-order approach to the Kato square
root problem for second-order divergence-form operators as developed by Axels-
son, Keith and McIntosh [6] and streamlined in [4], where further applications
of this formalism to boundary value problems are also described. The main re-
sults of [12, 13] state that the considered operators have a bounded H∞-calculus
of angle ω in X = Lp(Rn; CN ) for all p in an open interval, if and only if they
are R-bisectorial of angle ω in Lp for all p in the same interval. Notice that in
this situation RadX h Lp(Rn; Rad CN ) h Lp(Rn; `2(CN )), so that the abstract
R-bisectoriality condition reduces to a classical-style square function estimate.

The most immediate deficiency of the mentioned results in [12, 13] is that they
only work for an open interval of exponents, rather than a fixed one. The aim of this
paper is to remove this deficiency by showing that, in fact, the R-bisectoriality of the
specific operators of interest already self-improves from one Lp to an open interval
of Lq spaces, thus making the previous results applicable with the a priori weaker
assumption. In doing so, we follow the line of investigation of extrapolating Lp
inequalities, which was started by Blunck and Kunstmann [7] (with some prehistory
going back to Duong and Robinson [9]) and elaborated in the context of operators
related to Kato’s problem by Auscher, Hofmann and Martell [2, 10]. However, it
seems that the existing extrapolation results by these authors have always dealt
with the related second-order operators only. There are also more recent first-order
results by Ajiev [1], but the scopes of his and our assumptions and conclusions are
not immediately comparable.

Although we are able to adapt the main lines of the approach of [10], with
an intermediate application of a result from [2], to our situation, this was not
completely obvious. One key difference of the first-order operators compared to
the second-order counterparts is the existence of non-trivial null-spaces which have
to be dealt with. While, in principle, the strategy just consists of separating the
treatment on the complementary subspaces of the range and the kernel, finding the
right places in the proof to make the splitting in a technically correct way required
some trial and error.

We also adopt the generality of the related first-order papers [1, 4, 6, 13] by
considering coefficient matrices A, which are only required to satisfy a coercivity
condition ‖Au‖p & ‖u‖p in the Lp sense and only on the (in general not dense)
range of a relevant differential operator D. This is in contrast to the usual uniform
ellipticity assumptions made in the second-order treatments like [2, 10]. We have
included a comparison of the different coercivity conditions in an appendix where
we also show, for all constant-coefficient matrices A, that the Lp coercivity on
the range of D is equivalent to the uniform pointwise coercivity on the range of
the Fourier multiplier symbol of D. For a general A, however, our necessary and
sufficient pointwise conditions do not meet. See [3, Section 2] and [5, Section 1]
for a related discussion of L2 and pointwise accretivity conditions for second and
higher order divergence-form operators.

Let us finally note that, for quite a while, we also had in mind another poten-
tial strategy towards eliminating the need of assumptions concerning an interval
of values of p. In fact, the proofs of [12, 13] contain just one particular obstruc-
tion against the possibility of working with a fixed p, namely, an Lp version of
Carleson’s embedding theorem. In contrast to the classical L2 result, it needs an
assumption for p+ ε to get a conclusion for the given p > 2. Our alternative hope
was to eliminate this ε from the Lp Carleson inequality but we now know that this
cannot be achieved, at least not on the level of the general embedding result. A
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counterexample for p = 4 was first constructed and shown to one of us by Michael
Lacey (personal communication, September 2009), and it can be extended to all
p > 2. The details are presented in a more general context elsewhere [11].

In the following section, we give a precise formulation of our extrapolation result
sketched above, which is then proven in the rest of the paper. The coercivity
conditions, as mentioned, are further discussed in an appendix.

2. Set-up and main results

We work in the Lebesgue spaces Lq := Lq(Rn; CN ) with q ∈ (1,∞).

2.1. The operator D. We denote by D a first order constant-coefficient differen-
tial operator

D = −i
n∑
j=1

D̂j∂j , D̂j ∈ L (CN ), (D0)

acting on CN -valued Schwartz distributions. It can also be viewed as the Fourier
multiplier operator with symbol D̂(ξ) =

∑n
j=1 D̂jξj . This induces an unbounded

operator on each Lq with domain Dq(D) := {u ∈ Lq;Du ∈ Lq}. The symbol is
required to satisfy the following properties:

κ|ξ||e| ≤ |D̂(ξ)e| ∀ ξ ∈ Rn, ∀ e ∈ R(D̂(ξ)), (D1)

where R(D̂(ξ)) stands for the range of D̂(ξ), and

σ(D̂(ξ)) ⊆ Sω := Σω ∪ (−Σω), Σω := {z ∈ C; | arg(z)| ≤ ω}, (D2)

where κ > 0 and ω ∈ [0, π/2) are some constants.
Under these assumptions, it has been shown in [13, Lemma 4.1] that

σ(D̂(ξ)) ⊆ [Sω ∩A(κ|ξ|,M |ξ|)] ∪ {0}, CN = N(D̂(ξ))⊕ R(D̂(ξ)), (2.2)

where A(a, b) := {z ∈ C; a ≤ |z| ≤ b} and M := sup|ξ|=1 |D̂(ξ)| < ∞, and
N(D̂(ξ)) stands for the kernel of D̂(ξ). This condition, conversely, implies the
original assumptions on D̂(ξ) (possibly with a different κ). In particular, (2.2)
gives that the spectrum of D̂(ξ) restricted to its range satisfies σ

(
D̂(ξ)|R(D̂(ξ))

)
⊆

A(κ|ξ|,M |ξ|), and then, by Cramer’s rule, that the inverse of this restricted operator
has norm bounded by C|ξ|−1, which is a reformulation of (D1). Moreover, the
condition (2.2) is equivalent to the corresponding statement for D̂(ξ)∗, and hence
everything we say about D is also true for D∗. This fact was implicitly used in [13].

It was proven in [13, Theorem 5.1] that D is bisectorial and has a bounded H∞-
calculus of angle ω in Lq for all q ∈ (1,∞). Consequently, there is a direct sum
decomposition Lq = Nq(D)⊕Rq(D) into the kernel Nq(D) := {u ∈ Dq(D);Du = 0}
and the closure of the range Rq(D) = {Du;u ∈ Dq(D)}. The two components are
complemented in Lp with the common projections P0

D and P1
D, where for instance

the former can be represented by

P0
Du = lim

τ→∞
(I + τD)−1u,

where the limit is along τ /∈ Sω′ with ω′ > ω. Hence, the kernels Nq(D) form an
interpolation scale for q ∈ (1,∞), and the same is true for the spaces Rq(D).

Moreover [13, Proposition 5.2], D satisfies the property, for all q ∈ (1,∞), that

‖∇u‖q . ‖Du‖q ∀ u ∈ Dq(D) ∩ Rq(D) ⊆W 1,q.
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2.3. The operators A and AD. Let

A ∈ L∞(Rn; L (CN )) (A)

be a bounded matrix-valued function, frequently identified with the pointwise mul-
tiplication operator acting boundedly on all Lq. Its adjoint A∗ is an operator of
the same type.

Our primary interest is in the composition of the two operators just defined.
Many operators of interest in partial differential equations arise in this form. In

particular, with A =
(
I 0
0 A1

)
and D =

(
0 −div
∇ 0

)
, we have (AD)2 =

(
L 0
0 L̃

)
,

where L is the second-order divergence form operator L = −divA1∇. Proving the
boundedness of the H∞-calculus of AD in Lp implies the Kato square root estimate
‖
√
Lu‖p h ‖∇u‖p; see [4, Sec. 2] and Corollary 2.9 below.
An important property of the operators AD is that their resolvents (I+τAD)−1,

as soon as bounded on Lp, automatically satisfy the following localized bounds,
often called off-diagonal estimates. (The result is stated in [4, Proposition 5.1] for
p = 2, but the same proof works for any p ∈ (1,∞).)

2.4. Lemma (Off-diagonal estimates; [4], Prop. 5.1). Let A and D be as in (A),
(D0), (D1) and (D2). There is an α > 0 with the following property. Suppose that
‖(I+ τAD)−1‖p→p . 1. If E and F are disjoint Borel sets and u ∈ Lp is supported
on F , then

‖1E(I + τAD)−1u‖p . e−α dist(E,F )/|τ |‖u‖p .
(dist(E,F )

|τ |

)−K
‖u‖p

for any K > 0.

We are now ready for the formulation of the main theorem.

2.5. Theorem. Let A and D be as in (A), (D0), (D1) and (D2). Suppose that the
following conditions hold for some p ∈ (1,∞): the operator AD is R-bisectorial of
angle ω in Lp, the operator A∗D∗ is R-bisectorial of angle ω in Lp

′
, and we have

the coercivity estimates

‖Au‖p & ‖u‖p ∀u ∈ Rp(D), ‖A∗v‖p′ & ‖v‖p′ ∀v ∈ Rp′(D∗). (2.6)

Then these conditions remain valid with p replaced by any q in some open interval
containing p. Hence AD has a bounded H∞-calculus of angle ω in Lq for all these
q, in particular for q = p.

2.7. Remark. (i) If A is invertible on Lp (and then A∗ on Lp
′
), then the R-

bisectoriality of AD in Lp implies the R-bisectoriality of

A∗D∗ = A∗(D∗A∗)(A∗)−1 = A∗(AD)∗(A∗)−1

in Lp
′
by duality and similarity, and so the conditions on the dual operators can be

removed.
(ii) More generally, the weaker assumption

Lp
′

= Np′(A∗D∗)⊕ Rp′(A∗D∗)

also allows us to remove the conditions on the dual operators because it implies that
A∗D∗ on Rp′(A∗D∗) is similar to D∗A∗ = (AD)∗ on Rp′(D∗A∗). In fact, writing
Ã−∗ : Rp′(A∗D∗) → Rp′(D∗) = Rp′(D∗A∗) for the inverse of A∗ : Rp′(D∗) →
Rp′(A∗D∗), we have that A∗D∗ = A∗(D∗A∗)Ã−∗ on Rp′(A∗D∗). This restricted
similarity suffices, since the resolvent bounds of A∗D∗ on Np′(A∗D∗) are trivial.

(iii) Only the claim starting with “Then” requires proof in Theorem 2.5; the
claim starting with “Hence” then follows from [13, Corollary 8.17]. In fact, the
mentioned Corollary is stated for operators of the form DA rather than AD. But
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our assumptions are symmetric in AD and A∗D∗ = (DA)∗, so once we have proven
the R-bisectoriality of AD in Lq and thus, by symmetry, of A∗D∗ in Lq

′
, we also

have the R-bisectoriality of D∗A∗ in Lq
′
and DA in Lq by duality. Then [13,

Corollary 8.17] applies directly to give the bounded H∞-calculus of D∗A∗ and DA,
and we get back to AD and A∗D∗ by duality again.

As a matter of fact, one can somewhat weaken the R-bisectoriality assumptions
in Theorem 2.5:

2.8. Theorem. Let A and D be as in (A), (D0), (D1) and (D2). For some p ∈
(1,∞), let AD be bisectorial of angle ω in Lp, let A∗D∗ be bisectorial of angle ω
in Lp

′
, and assume the coercivity (2.6) and the following weak-type R-bisectoriality

inequalities:{
x ∈ Rn; E

∣∣∣∑
k

εk(I + τkAD)−1uk

∣∣∣ > α
}
≤ C

αp

ˆ
Rn

E
∣∣∣∑
k

εkuk

∣∣∣p dx,

and let further A∗D∗ have similar bounds in the dual space Lp
′
:{

x ∈ Rn; E
∣∣∣∑
k

εk(I + τkA
∗D∗)−1vk

∣∣∣ > α
}
≤ C

αp′

ˆ
Rn

E
∣∣∣∑
k

εkvk

∣∣∣p′ dx,
both uniformly for all τk /∈ Sω′ (ω′ > ω) and α > 0. Then the conclusions of
Theorem 2.5 still hold.

We note that the majority of the results in [13], and all the results in [12], are
actually formulated somewhat differently from the AD (or DA) formalism of [4]
employed here, treating instead operators of the form Γ + B1 ΓB2 (with Γ and Γ
differentiation, B1 and B2 multiplication operators) introduced in [6]. However,
one can usually transfer results back and forth between the two frameworks (cf. [4,
Section 10.1] and the proofs of [13, Corollaries 8.17, 9.3]), and it now seems that
the AD operators are conceptually simpler and at least equally useful.

Here is a consequence for the Kato square root problem for systems [5]:

2.9. Corollary. Let A1 ∈ L∞(Rn; L (Cm ⊗Cn)) satisfy
ˆ
Rn

∇ū(x) ·A1(x)∇u(x) dx & ‖∇u‖22, (2.10)

for all u ∈ W 1,2(Rn; Cm). Then AD, with A =
(
I 0
0 A1

)
and D =

(
0 − div
∇ 0

)
,

has a bounded H∞(Sω)-calculus in Lp(Rn; Cm ⊕ [Cm ⊗ Cn]) for all p ∈ (p0, p1),
for some p0 < 2 < p1 and ω ∈ (0, π/2). In particular, L = −divA1∇ satisfies
‖
√
Lu‖p h ‖∇u‖p for all u ∈W 1,p(Rn; Cm) and p ∈ (p0, p1).

Proof. It is immediate that (2.10) implies (2.6) with p = 2. It has been shown in
[4] (cf. [6]) that these conditions imply the bisectoriality (and in fact the bounded
H∞(Sω)-calculus) of AD and A∗D∗ in L2(Rn; Cm ⊕ [Cm ⊗ Cn]). In a Hilbert
space, bisectoriality coincides with R-bisectoriality. Hence all the assumptions of
Theorem 2.5 are verified, and the mentioned theorem implies the asserted conclu-
sion. �

The estimate ‖
√
Lu‖p h ‖∇u‖p for p in a neighbourhood of 2 (with more precise

information on the values p0 and p1) was shown by Auscher [2] in the case of
scalar-valued functions, i.e., m = 1 in Corollary 2.9.
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3. Beginning of the proof

3.1. Preparation for the proof. Interestingly, the specific form of the inequality
that we want to extrapolate plays very little role in the proof. What matters is
that we are concerned with the boundedness of some operators

T = (Tk)k : u = (uk)k 7→ (Tkuk)k

on Lp(Rn; Rad(CN )), or from Lp(Rn; Rad(CN )) to Lp,∞(Rn; Rad(CN )), where
the components Tk are in the H∞-calculus of AD. In fact, Tk = (I + τkAD)−1 in
the situation at hand.

The inequality assumed in Theorem 2.8 says that

|{x ∈ Rn; |Tu| > α}| ≤ C

αp
‖u‖pp,

where we write simply | | for the norm of Rad CN and ‖ ‖p for the norm of
Lp(Rn; Rad CN ). It will suffice to prove a similar weak-type inequality for all
q in an open neighbourhood of p, for then the asserted strong-type inequalities in
the same range follow from Marcinkiewicz’ interpolation theorem.

Note that we are not assuming the resolvents (I + τkAD)−1 to act a priori
boundedly on Lq, and so the expression Tu need not be well-defined for all u ∈
Lq(Rn; Rad CN ). Of course, we will first consider u in a dense subspace consisting
of functions in Lp ∩ Lq, but the choice of the subspace now needs slightly more
care than in the usual Calderón–Zygmund theory, and we return to this issue in a
moment.

3.2. Abstract operator extrapolation. The first coercivity condition in (2.6)
says that the mapping A : Rp(D)→ Lp is bounded from below. By an extrapolation
result of Kalton and Mitrea [14, Theorem 2.5], using that both Rq(D) and Lq form
interpolation scales, it remains bounded from below for all q in some open interval
(p0, p1) containing p, i.e.,

‖Au‖q & ‖u‖q ∀u ∈ Rq(D), ∀q ∈ (p0, p1).

This in turn implies that Nq(AD) = Nq(D) and Rq(AD) = ARq(D), and so even
the spaces Nq(AD) (by equality to Nq(D)) and Rq(AD) (by isomorphism to Rq(D))
form interpolation scales for q ∈ (p0, p1).

The assumed bisectoriality implies the topological direct sum splitting Lp =
Np(AD) ⊕ Rp(AD), with the associated projections denoted by P0

AD and P1
AD.

(Recall also the corresponding splitting Lp = Np(D)⊕ Rp(D), with projections P0
D

and P1
D.) An equivalent formulation of this topological splitting is the isomorphism

of the mapping

Jp : Np(AD)⊕ Rp(AD)→ Lp, (u0, u1) 7→ u0 + u1.

The similarly defined mapping Jq is obviously bounded for every q ∈ (p0, p1) and
of course it coincides with Jp on the intersection of their domains. Since the in-
volved spaces form interpolation scales again, another extrapolation result (see [14,
Theorem 2.7]; the particular case needed here actually goes back to Šnĕıberg [16])
shows that Jq remain an isomorphism for all q in a possibly smaller open interval
containing p. By adjusting the numbers p0 and p1 if necessary, we keep denoting
this interval by (p0, p1). Thus

Lq = Nq(AD)⊕ Rq(AD), ∀q ∈ (p0, p1).
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3.3. Splitting the proof into kernel and range. We first concentrate on the
exponents q ∈ (p0, p), and want to establish the weak-type R-bisectoriality estimate
there. The topological splitting just established allows the separate treatment of
uk ∈ Nq(AD) and uk ∈ Rq(AD). We now choose appropriate subspaces of these
two spaces, where the operators of interest are well-defined, and can be eventually
extended by density to all Lq.

Note that Nq(AD) ∩ Lp ⊆ Np(AD) and similarly with q and p interchanged;
hence

Lq ∩ Lp = [Nq(AD) ∩ Np(AD)]⊕ [Rq(AD) ∩ Rp(AD)].

Since this space is dense in Lq, the two components on the right are dense in
Nq(AD) and Rq(AD).

For the kernel, we simply take the subspace

Nq(AD) ∩ Np(AD) ⊆ Nq(AD),

and observe that the estimate of interest is a triviality there, since (I+τkAD)−1uk =
uk for uk ∈ Np(AD).

By definition, Rq(AD) is dense in Rq(AD). Elements of this space are of the
form ADf , where f ∈ Dq(D), and replacing f by P1

Df , we may assume that f ∈
Dq(D)∩Rq(D) ⊆W 1,q. Let us then approximate f in theW 1,q norm by an element
f̃ ∈ W 1,q ∩W 1,p ⊆ Dq(D) ∩ Dp(D). Then ADf̃ ∈ Rq(AD) ∩ Rp(AD) is close to
ADf in the Lq norm. The key estimate will then be proven for the functions

uk = ADfk ∈ Rq(AD) ∩ Rp(AD) ⊆ Rq(AD),

where we can further assume that

fk ∈ Dq(D) ∩ Rq(D) ∩ Dp(D) ∩ Rp(D) ⊆W 1,q ∩W 1,p,

since the spaces Rq(D) are complemented in the respective Lq by the common
projection P1

D.

3.4. Calderón–Zygmund decomposition. We make use of the Calderón–Zyg-
mund decomposition for Sobolev functions due to Auscher [2, Lemma 5.12] and
then follow the procedure of Blunck and Kunstmann [7], or perhaps more precisely
its variant in Hofmann and Martell [10]. For α > 0 and f ∈ Ẇ 1,q(Rn; Rad CN ), as
we have, Auscher’s result provides a representation

f = g +
∑
j

bj ,

where

‖∇g‖∞ . α, bj ∈W 1,q
0 (Qj ; Rad CN ),

 
Qj

|∇bj |q dx . αq

and the Qj are cubes with∑
j

|Qj | . α−q
ˆ
Rn

|∇f |q dx,
∑
j

1Qj
. 1.

As a consequence of these estimates, it follows that (using the bounded overlap
of the cubes Qj in the first step)∥∥∥∑

j

∇bj
∥∥∥
q
.
(∑

j

‖∇bj‖qq
)1/q

. ‖∇f‖q . ‖Df‖q . ‖ADf‖q = ‖u‖q;
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hence also ‖∇g‖q =
∥∥∥∇f −∑

j

∇bj
∥∥∥
q
. ‖u‖q, and in combination with the L∞

bound for ∇g we have

‖∇g‖pp . αp−q‖u‖qq, p ∈ (q,∞).

The decomposition of f immediately leads to a decomposition of u = (uk)k =
(ADfk)k = ADf ,

u = ADg +ADb = ADg +
∑
j

ADbj .

Then (recalling the abbreviation T = ((I + τkDA)−1)k)

|{|Tu| > 3α}| ≤ |{|TADg| > α}|+ |{|TADb| > 2α}|

As usual, the good part is estimated by the boundedness properties already known
to us in Lp:

|{|TADg| > α}| . 1
αp
‖ADg‖pp .

1
αp
‖∇g‖pp .

1
αp
αp−q‖u‖qq =

1
αq
‖u‖qq.

4. Analysis of the bad part

We turn to the estimation of the bad part, where the Blunck–Kunstmann pro-
cedure [7] deviates from the classical Calderón–Zygmund theory. The idea of the
following further decomposition goes back to Duong and Robinson [9]:

TADb =
∑
j

TADbj =
∑
j

T (I − S`(Qj))ADbj +
∑
j

TS`(Qj)ADb
j ,

where St is an approximation of the identity adapted to the operator AD. See
also [8].

To ensure a high degree of approximation, which plays a role in certain estimates
below, we follow [7] to introduce the auxiliary function

ϕ(z) :=
M∑
m=0

(
M

m

)
(−1)m(1 + imz)−1 ∈ H∞(Sω′) ∀ω′ < π/2.

This satisfies |ϕ(z)| . min{|z|M , 1} for all z ∈ Sω′ , where the uniform bound is
clear and the decay at zero follows from

ϕ(k)(0) = k!
M∑
m=0

(
M

m

)
(−1)m(−im)k = k!

(
− iz d

dz

)k(1− z)M
∣∣∣
z=1

= 0

for all k = 0, . . . ,M − 1. Then we define St by

I − St := ϕ(tAD) =
M∑
m=0

(
M

m

)
(−1)m(I + itmAD)−1.

Blunck and Kunstmann [7] formulated an abstract version of such higher order
approximate identities, and applied it to questions of H∞-calculus with e−tmL in
place of (I+itmAD)−1 above. These semigroup-based mollifiers were also exploited
by Auscher, Hofmann and Martell [2, 10]; variants involving the resolvent, as here,
appear in Ajiev [1].

Let further E∗ := Rn \
⋃
j 2Qj . Then

|{|TADb| > 2α}| ≤
∑
j

|2Qj |+
∣∣∣{x ∈ E∗; ∣∣∣∑

j

T (I − S`(Qj))ADbj
∣∣∣ > α

}∣∣∣
+
∣∣∣{x ∈ Rn;

∣∣∣∑
j

TS`(Qj)ADb
j
∣∣∣ > α

}∣∣∣,
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and ∑
j

|2Qj | . α−q‖∇f‖qq . α−q‖u‖qq

by the properties of Auscher’s Calderón–Zygmund decomposition, so we are left
with estimating the size of the two remaining sets.

In their treatment, we will follow the approach of Hofmann and Martell [10]. Its
perhaps most distinctive difference compared to, say, [2] is pushing the operators T ,
St and AD to the dual side, which effectively decouples the use of the assumptions
on these operators from the use of the properties of the Calderón–Zygmund decom-
position. This conceptual simplification was helpful to us for getting the details of
the proof correctly organized.

4.1. The mollified term with TSt. As S`(Qj) is a linear combination of the
resolvents (I + im`(Qj)AD)−1, m = 1, . . . ,M , it suffices to consider just one of
them. Then, using the assumed weak-type Lp-inequality for T ,∣∣∣{∣∣∣∑

j

T (I + im`(Qj)AD)−1ADbj
∣∣∣ > α

}∣∣∣ ≤ 1
αp

∥∥∥∑
j

(I + im`(Qj)AD)−1ADbj
∥∥∥p
p
.

We estimate this expression by dualising with an h ∈ Lp
′
(Rn; Rad(CN )). Let

further

S(j, 0) := 2Qj , S(j, r) := 2r+1Qj \ 2rQj , r = 1, 2, . . . ,

and hj,r := 1S(j,r)h. Then∣∣∣〈∑
j

(I + im`(Qj)AD)−1ADbj , h
〉∣∣∣ ≤∑

j

∞∑
r=0

|〈(I + im`(Qj)AD)−1ADbj , hj,r〉|

=
∑
j

∞∑
r=0

|〈bj , (AD)∗(I + im`(Qj)(AD)∗)−1hj,r〉|

=:
∑
j

∞∑
r=0

|〈bj , h̃j,r〉| ≤
∑
j

∞∑
r=0

‖bj‖p‖1Qj h̃j,r‖p′ ,

where the last step used the fact that bj is supported on Qj .
Next, recalling that bj ∈W 1,q

0 (Qj ; Rad CN ),

‖bj‖p . |Qj |1/p−1/q+1/n‖∇bj‖q . α|Qj |1/p+1/n

by Sobolev’s inequality and properties of the Calderón–Zygmund decomposition.
(Here it is required that 1/p − 1/q + 1/n ≥ 0. If necessary, we replace the lower
end-point p0 of our considered interval (p0, p) 3 q by max{p0,

pn

p+ n
} to ensure

this.) On the other hand,

‖1Qj
h̃j,r‖p′ =

1
m`(Qj)

‖1Qj
[I − (I + im`(Qj)(AD)∗)−1]hj,r‖p′

.
1

`(Qj)

( `(Qj)
2r`(Qj)

)−K
‖hj,r‖p′

. |Qj |−1/n2−rK(2rn|Qj |)1/p′
( 

2r+1Qj

|h|p
′
dx
)1/p′

by the off-diagonal estimates satisfied by the resolvents (I + τAD)−1 in Lp, which
are easily seen to dualise.
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Substituting back and taking K > n/p′, it follows that∑
j

∞∑
r=0

|〈bj , h̃j,r〉| .
∑
j

∞∑
r=0

α|Qj |2r(n/p
′−K)

( 
2r+1Qj

|h|p
′
dx
)1/p′

.
∑
j

α|Qj | ess inf
x∈Qj

(M |h|p
′
)1/p′(x)

. α
ˆ

S
j Qj

(M |h|p
′
)1/p′ dx . α

∣∣∣⋃
j

Qj

∣∣∣1/p‖|h|p′‖1/p′1

by Kolmogorov’s lemma (see e.g. [15], Ch. VII, Lemme 10) and the weak-type (1, 1)
inequality for the Hardy–Littlewood maximal operator in the last step. Taking the
supremum over ‖h‖p′ = ‖|h|p′‖1/p

′

1 ≤ 1, and recalling the size of the Calderón–
Zygmund cubes Qj , it has been shown that∣∣∣{x ∈ Rn;

∣∣∣∑
j

TS`(Qj)ADb
j
∣∣∣ > α

}∣∣∣ . 1
αp

(
α
∣∣∣⋃
j

Qj

∣∣∣1/p)p . α−q‖u‖qq.
4.2. The remaining term with T (I − St). It remains to estimate∣∣∣{x ∈ E∗; ∣∣∣∑

j

T (I − S`(Qj))ADbj
∣∣∣ > α

}∣∣∣1/p
≤ 1
α

∥∥∥1E∗
∑
j

T (I − S`(Qj))ADbj
∥∥∥
p

= sup
1
α

∣∣∣〈∑
j

T (I − S`(Qj))ADbj , h
〉∣∣∣,

where the supremum is over all h ∈ Lp′(E∗; Rad CN ) with ‖h‖p′ ≤ 1. As before,
the pairing can be written as∑

j

∞∑
r=1

〈bj , 1Qj h̃j,r〉, h̃j,r := (AD)∗(I − S∗`(Qj))T
∗hj,r,

where hj,r = 1S(j,r)h has the same meaning as earlier. Notice, however, that the
summation can now begin from r = 1, since hj,0 = 12Qj

h = 0 by the restriction of
the support of h on E∗ only.

Estimating bj as before, this leads to∑
j

∞∑
r=1

|〈bj , h̃j,r〉| ≤
∑
j

∞∑
r=1

‖bj‖p‖1Qj h̃j,r‖p′

.
∑
j

∞∑
r=1

α|Qj |1/p+1/n × ‖1Qj (AD)∗(I − S∗`(Qj))T
∗hj,r‖p′ .

The operators (AD)∗(I−S∗`(Qj))T
∗ (or their components; recall that we are working

on sequence-valued functions) are in the H∞-calculus of (AD)∗,

(AD)∗(I − S∗`(Qj))T
∗
k =

1
2πi

ˆ
∂Sω′

zϕ(`(Qj)z)(1 + τkz)−1(I − 1
z

(AD)∗)−1 dz
z
.

The resolvents (I − z−1(AD)∗)−1 satisfy off-diagonal estimates on Lp
′
by the as-

sumed bisectoriality and duality, so it straightforwardly follows (now using the
bound |ϕ(z)| . max(|z|M , 1) and taking M > K > 1) by estimating the integral in
the two parts |z| ≤ `(Qj)−1 and |z| > `(Qj)−1, that

‖1Qj (AD)∗(I − S∗`(Qj))T
∗hj,r‖p′ . `(Qj)−12−rK‖hj,r‖p′ .
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This is exactly of the same form as in the previous part of the estimate, and so we
conclude just like there.

5. Conclusion of the proof

5.1. Conclusion of the lower extrapolation. We have shown that{
x ∈ Rn; E

∣∣∣∑
k

εk(I + τkAD)−1uk

∣∣∣ > α
}
≤ C

αq

ˆ
Rn

E
∣∣∣∑
k

εkuk

∣∣∣q dx

for all q ∈ (p0, p), for some p0 < p. Interpolating this weak-type inequality at two
different points, we deduce that

E
∥∥∥∑

k

εk(I + τkAD)−1uk

∥∥∥
q
. E

∥∥∥∑
k

εkuk

∥∥∥
q
, q ∈ (p0, p);

thus AD is also R-bisectorial in Lq for all these q.

5.2. Upper extrapolation. We turn to the question of R-bisectoriality of AD for
some q > p. First observe that the operator A∗D∗ in Lp

′
satisfies assumptions

exactly like those verified by AD in Lp. Our lower extrapolation results imply that
A∗D∗ is R-bisectorial in Lq

′
for all q′ ∈ (p′1, p

′), with some p′1 < p′. We would like
to show from this, that D∗A∗ is R-bisectorial in Lq

′
for we would then have by

duality, that AD is R-bisectorial in Lq for all q ∈ (p, p1).
By duality from the decomposition related to AD, we have

Lq
′

= Nq′(D∗A∗)⊕ Rq′(D∗A∗)

for q′ ∈ (p′1, p
′) (possibly adjusting p1), and the resolvent bounds on Nq′(D∗A∗)

are trivial, so we need to show that D∗A∗ is R-bisectorial in Rq′(D∗A∗). Now
Rq′(D∗A∗) = Rq′(D∗) (as follows from Nq(AD) = Nq(D) by duality) and

A∗Rq′(D∗) = Rq′(A∗D∗)

(possibly readjusting p1) because

‖A∗v‖q′ & ‖v‖q′ ∀v ∈ Rq′(D∗)

for all q′ ∈ (p′1, p
′) as follows from Kalton–Mitrea extrapolation as before. That is,

A∗Rq′(D∗A∗) = Rq′(A∗D∗), and so the operator D∗A∗ on Rq(D∗A∗) is similar to
A∗D∗ on Rq(A∗D∗), and hence inherits the same resolvent estimates.

Thus D∗A∗ is R-bisectorial in Lq
′
for q′ ∈ (p′1, p

′), and by duality AD is R-
bisectorial in Lq for q ∈ (p, p1).

Interpolating this with the estimate for q ∈ (p0, p), we finally obtain R-bisect-
oriality in the original space Lp, too.

Appendix A. Remarks on the coercivity condition

In this appendix, we give some necessary and some (other) sufficient conditions
for the validity of coercivity inequalities as in (2.6), here reformulated as an estimate
for test functions

‖ADu‖p & ‖Du‖p, ∀u ∈ D(Rn; CN ) (A.1)

for some fixed p ∈ (1,∞). Here it is convenient to consider a slightly more general
situation, where the operators A and D = −i

∑n
j=1 D̂j∂j can change dimensions, so

that D̂j ∈ L (CN ,CM ) and A ∈ L∞(Rn; L (CM ,CK)). Moreover, the following
results work for any D of this form; only in the last one do we impose the additional
requirement that

dim R(D̂(ξ)) = constant =: r ∀ξ ∈ Rn \ {0}. (A.2)
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This is obviously satisfied by the fundamental operator D = ∇⊗ for which
D̂(ξ) = iξ⊗ ∈ L (CN ,CnN ) has range ξ ⊗CN of fixed dimension N . The condi-
tion (A.2) also holds for all the operators D considered earlier in the paper, i.e.,
under the assumptions (D1) and (D2) made in Section 2. In fact, the consequent
condition (2.2) implies that the projection of CN onto R(D̂(ξ)) along N(D̂(ξ)) is
given by

P1
D̂(ξ)

=
ˆ

Γ(ξ)

(λ− D̂(ξ))−1 dλ, Γ(ξ) = ∂[Sω′ ∩A(
1
2
κ|ξ|, 2M |ξ|)],

which depends continuously on ξ ∈ Rn \ {0}. Now (A.2) follows easily by a com-
pactness argument from the observation that R(D̂(ξ)) only depends on ξ0 = |ξ|−1ξ
and a simple fact about projections:

A.3. Lemma. If two finite-dimensional projections satisfy ‖P −P ′‖ < 1, then their
ranges have equal dimension.

Proof. Let u ∈ R(P ). Then P ′u = [P+(P ′−P )]u = [I+(P ′−P )]u, and I+(P ′−P )
is invertible. Thus P ′ : R(P ) → R(P ′) is injective, hence dim R(P ′) ≥ dim R(P ).
The claim follows by symmetry. �

We now turn to conditions on the symbol D̂(ξ) related to (A.1).

A.4. Proposition. Suppose that the coercivity estimate (A.1) holds for some p ∈
[1,∞). Then

|A(x)D̂(ξ)v| & |D̂(ξ)v|, ∀ξ ∈ Rn, ∀v ∈ CN , a.e. x ∈ Rn. (A.5)

Proof. If u(x) = εψ(x)eix·ξ/εv, where ψ ∈ D(Rn), v ∈ CN , then

Du(x) =
n∑
j=1

D̂jv
(
iξjψ(x) + ε∂jψ(x)

)
eix·ξ/ε,

and

‖ADu‖p =
∥∥∥A n∑

j=1

D̂jv
(
iξjψ + ε∂jψ

)∥∥∥
p
−→
ε→0

∥∥∥A n∑
j=1

D̂jξjvψ
∥∥∥
p

= ‖AD̂(ξ)vψ‖p.

Let ψ(x) = δ−n/pφ(δ−1(x− x0)), where 0 ≤ φ ∈ D(Rn) with
´
φp = 1, and x0 be

a Lebesgue point of A. Then

‖AD̂(ξ)vψ‖p =
(ˆ

Rn

|A(x)D̂(ξ)v|pφp
(x− x0

δ

) dx
δn

)1/p

−→
δ→0
|A(x0)D̂(ξ)v|.

Since the same reasoning holds with the identity I in place of A, the conclusion
follows for all x ∈ Rn, which are Lebesgue points of A ∈ L∞(Rn; L (CM ,CK)). �

A.6. Proposition. Suppose that the pointwise coercivity condition∣∣∣A(x)
n∑
j=1

D̂jvj

∣∣∣ & ∣∣∣ n∑
j=1

D̂jvj

∣∣∣, ∀v1, . . . , vn ∈ CN , a.e. x ∈ Rn. (A.7)

is satisfied. Then for all p ∈ [1,∞), the coercivity estimate (A.1) holds.

Proof. It suffices to observe that |A(x)Du(x)| & |Du(x)| by the assumption applied
to vj = ∂ju(x), take the pth power, and integrate over x ∈ Rn. �

The simple sufficient condition (A.7) is not necessary, as we will see after showing
that the weaker necessary condition (A.5) (which corresponds to vectors vj of the
special form vj = ξjv in (A.7)) is also sufficient in the following situation:
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A.8. Proposition. Suppose that D satisfies the condition (A.2) and that A ∈
L (CM ,CK) is a constant matrix such that

|AD̂(ξ)v| & |D̂(ξ)v|, ∀ξ ∈ Rn, ∀v ∈ CN , (A.9)

Then for all p ∈ (1,∞), the coercivity estimate (A.1) holds.

Proof. Let E(ξ) be the orthogonal projection of CM onto R(D̂(ξ)) = R(D̂(ξ)D̂(ξ)∗).
Since this space depends on ξ 6= 0 only through the angular component ξ0 = |ξ|−1ξ,
so does E(ξ). For a positive (in the sense of self-adjoint operators) matrix A,
the kth largest eigenvalue, which coincides with the kth singular value, depends
continuously on A with respect to the operator norm, and hence the rth largest
(and thus, by (A.2), the smallest positive) eigenvalue λr(ξ) of D̂(ξ)D̂(ξ)∗ depends
continuously on ξ. Since λr(ξ) is separated from 0 for a fixed ξ 6= 0, it follows by
compactness that λr(ξ) ≥ 2δ > 0 for all ξ in a neighbourhood of the unit sphere.
This in turn implies that

E(ξ) = I − 1
2πi

˛
|λ|=δ

(λ− D̂(ξ)D̂(ξ)∗)−1 dλ

for all these ξ, and it follows that E ∈ C∞(Rn \ {0}; L (CM )). Similarly, the
orthogonal projection F (ξ) of CK onto R(AD̂(ξ)) defines a function F ∈ C∞(Rn \
{0}; L (CK)).

We then define a linear operator M(ξ) : CK → CM separately on R(F (ξ)) =
AR(E(ξ)) and R(I − F (ξ)) as follows:

M(ξ)AE(ξ) := E(ξ), M(ξ)(I − F (ξ)) := 0.

Remark A.11 below shows that this pointwise definition makesM into a continuous
function on Rn \ {0}. We can then differentiate these defining equalities, a priori
in the sense of distributions. Note that E and F are already known to be smooth,
so that their product with a distribution is well-defined. Taking the derivative of
order α ∈ Nn and moving some terms to the other side, we get

(∂αM)AE = E −
∑

0 6=β≤α

(
α

β

)
(∂α−βM)A∂βE,

(∂αM)(I − F ) =
∑

0 6=β≤α

(
α

β

)
(∂α−βM)∂βF.

Assuming that we already know that all the derivatives of M of order strictly less
than α coincide with continuous functions, say, in a neighbourhood of the unit
sphere, we obtain the same conclusion for M ; see again Remark A.11 for details.

By induction and homogeneity, we have M ∈ C∞(Rn \ {0}; L (CK ,CM )), and
such a function automatically satisfies Mihlin’s multiplier conditions. Thus Mihlin’s
multiplier theorem provides the desired estimate

‖Du‖p = ‖[MÂDu]∨‖p . ‖ADu‖p. �

A.10. Remark. It was not essential for the argument that the projections E and F
are orthogonal, only that they satisfy Mihlin’s multiplier estimates. In the special
case when D̂(ξ) and AD̂(ξ) are both bisectorial with |D̂(ξ)w| & |ξ||w| for w ∈
R(D̂(ξ)), we could take E(ξ) and F (ξ) as the corresponding spectral projections.

A.11. Remark. Let M be a function defined pointwise by conditions of the form

M(ξ)AE(ξ) = G(ξ), M(ξ)(I − F (ξ)) = H(ξ),

where A, E and F are as in the previous proof, and G and H are continuous
functions (say, of ξ 6= 0). Then |M(ξ)AE(ξ)v| = |G(ξ)E(ξ)v| . |E(ξ)v| . |AE(ξ)v|
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so M is pointwise well-defined, and M is also continuous. This justifies, first of
all, treating the pointwise-defined M in the previous proof as a distribution, and
second, identifying its derivatives as continuous functions.

Let us prove this claim. We fix some ξ 6= 0, and consider the difference of M(ξ)
and M(ξ′) for a near-by point ξ′. Let v be a fixed vector. By definition, we have
that F (ξ)v = AE(ξ)w for some vector w, which we may choose to be from R(E(ξ)).
Then |w| = |E(ξ)w| . |AE(ξ)w| = |F (ξ)v| ≤ |v|. From now on, let us write
M := M(ξ) and M ′ := M(ξ′), with a similar convention for the other relevant
functions. We have

M ′v = M ′Fv +M ′(I − F )v = M ′AEw + [M ′(I − F ′)v +M ′(F ′ − F )v]

= [M ′AE′w +M ′A(E − E′)w] +H ′v +M ′(F ′ − F )v

= G′w +M ′A(E − E′)w + [Hv + (H ′ −H)v] +M ′(F ′ − F )v,

and here Hv = M(I − F )v and

G′w = Gw + (G′ −G)w = MAEw + (G′ −G)w = MFv + (G′ −G)w.

Since Mv = MFv +M(I − F )v, it follows that

M ′v −Mv = (G′ −G)w +M ′A(E − E′)w + (H ′ −H)v +M ′(F ′ − F )v,

and all summands on the right contain bounded factors multiplied by a difference
of a continuous function at ξ and ξ′; hence the continuity of M follows.

A.12. Example (Korn’s inequality). We illustrate the sufficient condition (A.9),
and show the non-necessity of (A.7), by deducing the following well-known Korn’s
inequality from Proposition A.8: For u = (ui)ni=1 ∈ D(Rn; Cn), there holds

n∑
i,j=1

‖∂iuj‖p .
n∑

i,j=1

‖∂iuj + ∂jui‖p.

In fact, this can be written as

‖Du‖p . ‖ADu‖p,
where D = ∇⊗ satisfies (A.2) as already pointed out, and A :∈ L (Cn⊗Cn) is the
symmetrizer defined by (Aw)ij := wij +wji. The symbolic condition (A.9) follows
at once from

|AD̂(ξ)v|2 =
n∑

i,j=1

|ξivj + ξjvi|2 =
n∑

i,j=1

(
|ξivj |2 + |ξjvi|2 + 2ξiξj Re(vj v̄i)

)
= 2|ξ|2|v|2 + 2 Re(ξ · v̄)(ξ · v) = 2

(
|ξ|2|v|2 + |ξ · v|2

)
≥ 2|ξ|2|v|2 = 2|D̂(ξ)v|2, ∀v ∈ Cn,

and hence Korn’s inequality is indeed a consequence of Proposition A.8.
However, the vectors

∑n
j=1 D̂jvj =

∑n
j=1 ej ⊗ vj appearing in Proposition A.6

now cover all of Cn ⊗ Cn as v1, . . . , vn ∈ Cn. Thus condition (A.7) asks for the
boundedness from below of A on all of Cn⊗Cn, and this clearly cannot hold, since
A annihilates all the antisymmetric vectors (vij)ni,j=1 with vji = −vij .
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