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Abstract. In this note we present a different approach to the A∞ extrapola-
tion via Carleson measures developed in [HM] and we illustrate the use of this

technique by reproving a well known result of [FKP].

1. Introduction

The extrapolation method for Carleson measures was introduced in [LM] and
developed further in [HL], [AHLT], [AHMTT], [HM]. The method is a bootstrap-
ping technique for proving scale invariant estimates on cubes (e.g., reverse Hölder
estimates, Carleson measure estimates, BMO estimates), given that (very roughly
speaking) the desired estimate holds on those cubes Q for which some controlling
Carleson measure µ is sufficiently small in the associated Carleson box RQ. The
exact nature of this control (involving sawtooth subdomains in RQ) will be made
precise later.

In [LM] and [HL] “Carleson → A∞” extrapolation was used to obtain reverse
Hölder inequalities for some measures associated to PDE which in turn imply solv-
ability of the Dirichlet problem. The Carleson measure condition appears naturally
in the quantitative description of the boundary in [LM] and in the control of the
coefficients in [HL]. In this latter reference a new proof of the well known result
of R. Fefferman, Kenig and Pipher [FKP] is given using the extrapolation method.
Roughly speaking, one wants to perturb a given real symmetric second order el-
liptic operator which is known to be solvable on some Lebesgue space. Assuming
that the disagreement between the matrices of the two operators satisfies a Car-
leson measure condition, the authors show solvability for the perturbed operator
on some Lebesgue space Lp with p < ∞. We call attention to the fact that the
solvability on Lp is equivalent to a reverse Hölder condition for the Poisson kernel
(or what is the same, that the harmonic measure is an A∞ weight with respect to
surface measure).

Other extrapolation results appear in [AHLT] and [AHMTT] and involve “Car-
leson→ Carleson” extrapolation, in which a non-negative measure in the half space
Rn+1

+ is shown to be a Carleson measure, using properties of another controlling
Carleson measure. In [AHLT], the technique was applied to prove the restricted ver-
sion of the Kato square root conjecture, for divergence form elliptic operators that
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were small complex perturbations of real symmetric ones. An interesting feature
of the “Carleson → Carleson” extrapolation arguments in [AHLT] and [AHMTT]
is that they were purely real variable in nature —the bootstrapping procedure was
separated from the applications to PDE.

A real variable treatment of “Carleson → A∞” extrapolation appears in [HM].
The main result states that in order to show that a given non-negative Borel mea-
sure ω satisfies an A∞ type condition, it suffices to consider cubes for which a
controlling Carleson measure is small at all the subscales on some dyadic sawtooth
domain, and to verify that the image of ω under a certain projection operator (re-
lated to the sawtooth) satisfies an A∞ condition. This extrapolation result can be
used to reprove the main theorem in [FKP]. In doing that, a new version of the
“Main Lemma” in [DJK] adapted to discrete sawtooth domains and the projection
operators is obtained.

The goal of this note is to give an alternative version, with a different A∞
type condition, of the main result in [HM]. The class A∞ can be defined and
characterized using different conditions. For instance, A∞ = ∪p≥1Ap = ∪q>1RHq.
There are other ways that give quantitative information for the measure induced by
the weights in terms of the Lebesgue measure. For instance, if ω is a non-negative
Borel regular measure, ω ∈ A∞ if and only if there exist 0 < α, β < 1 such that for
every Q ⊂ Rn

E ⊂ Q, |E|
|Q|

> α =⇒ ω(E)
ω(Q)

> β.

One can restrict this condition to subcubes of a given cube Q0 and this defines
A∞(Q0), and consider only dyadic cubes with respect to Q0 in which case we get
Adyadic
∞ (Q0) (here one also assumes that ω is dyadically doubling, see below). This

A∞ type condition appears both in the hypotheses (for the projection operator)
and also in the conclusion (for the given measure) in the main result in [HM]. In
this paper we use yet a different condition for A∞: ω ∈ A∞ if and only if there
exist 0 < α < 1 and β > 0 such that for every Q ⊂ Rn

|{x ∈ Q : k(x) ≤ β kQ}| ≤ α |Q|,

where k = dω/dx and kQ is the average of k on Q. Our extrapolation result
(Theorem 2.6) is written in terms of the previous condition (restricted to dyadic
cubes of a given cube Q0, we also allow Q0 to be Rn) both in the hypotheses (for
the projection operator) and also in the conclusion (for ω). As an application of
the extrapolation method we modify the new proof of [FKP] given in [HM], in such
a way that it can be carried out with this different A∞ type condition. In passing,
we also give some characterizations of the A∞-dyadic class paying special attention
to the dyadically doubling property.

The plan of the paper is as follows. In Section 2 we state our main result.
Also, we give the two A∞-dyadic conditions considered and study the different
conditions that equivalently define them. In Section 3 we present the application of
our extrapolation method to the perturbation result in [FKP]. We sketch the proof
of this application in Section 4 and in Section 5 we prove some results concerning
the A∞-dyadic classes.

2. Main result

2.1. Notation.

• We write |x− y|∞ = max{|xi − yi| : 1 ≤ i ≤ n}.
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• We assume that all the cubes are “1/2-open”, i.e., they are Cartesian products of
intervals closed at the left-hand endpoint, and open on the right. Given a cube
Q ∈ Rn we denote its center by xQ and its sidelength by `(Q). For any τ > 0
we write τ Q for the cube with center xQ and sidelength τ `(Q). By D(Q) we
denote the collection of dyadic subcubes† of Q and also D(Q)∗ = D(Q) \ {Q}.
We write D = D(Rn) for the collection of (“classical”) dyadic cubes in Rn. We
denote by Q(x, l) the cube centered at x with sidelength l.

• Given a cube Q we write fQ := −
∫
Q
f(x) dx = 1

|Q|
∫
Q
f(x) dx for any f ∈ L1(Q).

Analogously, if ω is a non-negative Borel measure we write ωQ = ω(Q)/|Q|. Also,
we set −

∫
Q
f(x) dν(x) := 1

ν(Q)

∫
Q
f(x) dν(x).

• Let Q be a cube. We denote the associated Carleson box by RQ := Q×(0, `(Q)).

• We write C for the set of Carleson measures in Rn+1
+ , i.e., the non-negative Borel

measures µ on Rn+1
+ for which the“Carleson norm”

|||µ|||C := sup
Q⊂Rn

|Q|−1 µ(RQ) (2.1)

is finite; here, the supremum runs over all cubes Q ⊂ Rn. Analogously, given
Q0 ⊂ Rn we write C(Q0) for the set of Borel measures that satisfy the previous
condition restricted to Q ∈ D(Q0), thus

|||µ|||C(Q0) := sup
Q∈D(Q0)

|Q|−1 µ(RQ).

By slight abuse of notation‡, if Q0 = Rn we simply write C = C(Q0).

• GivenQ and a family of pairwise disjoint dyadic subcubes F = {Qk}k ⊂ D(Q) we
define the discrete sawtooth function ψF (x) :=

∑
k `(Qk) χQk(x). Notice that

ψ is a step function supported in ∪kQk. We write ΩF = ΩψF for the domain
above the graph of ψF , that is, ΩF := {(x, t) ∈ Rn+1

+ : t ≥ ψF (x)}. Notice that
ΩF = Rn+1

+ \ (∪kRQk). We allow F to be empty in which case ψF (x) = 0 and
ΩF = Rn+1

+ . See Figure 1.

• If µ is a non-negative Borel measure on Rn+1
+ , then µF := µχΩF

will denote its
restriction to the dyadic sawtooth ΩF .

• Given Q and F as before, we define the projection operator

PFf(x) := f(x)χRn\(∪kQk)(x) +
∑
k

(
−
∫
Qk

f(y) dy
)

χQk(x).

One has that PF ◦PF = PF , PF is selfadjoint and ‖PFf‖Lp(Rn) ≤ ‖f‖Lp(Rn) for
every 1 ≤ p ≤ ∞. Observe that if ω is a non-negative Borel measure and E ⊂ Q,
then we may naturally define the measure PF ω as follows:

PF ω(E) :=
∫
PF (χE) dω = ω(E \ ∪kQk) +

∑
k

ωQk |E ∩Qk|.

In particular, PF ω(Q) = ω(Q). If ω � dx and we write k = dω/dx for its
Radon-Nikodym derivative it follows that PFω � dx and d(PFω)/dx = PFk.

†Note that the term “dyadic” here refers to the grid induced by Q; the cubes in D(Q) are
dyadic cubes of Rn if and only if Q itself is such.
‡Indeed, the abuse is very slight, since one may cover an arbitrary cube Q by a purely dimen-

sional number of dyadic cubes of comparable size, to show that (2.1) is controlled by the analogous

supremum taken only over dyadic cubes.
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Figure 1. Discrete sawtooth ΩF

• Given Q and F as before, we introduce a new family F ′ consisting of all the
dyadic “children” of the cubes in F . Notice that F ′ is a family of pairwise
disjoint cubes in D(Q), therefore we define P ′F := PF ′ , which is the projection
operator associated with the family F ′, and it satisfies the previous proper-
ties. We observe that if ω is a non-negative Borel measure and E ⊂ Q, then
P ′Fω(E) ≤ 2n PFω(E). The converse inequality does not hold in general, how-
ever if one assumes that ω is dyadically doubling in Q (see the definition below)
then P ′Fω(E) ≈ PFω(E); thus it seems more natural to use PF in place of P ′F .

2.2. Adyadic
∞ weights. We introduce two different Adyadic

∞ conditions and give char-
acterizations of them. Under doubling the results that we present here are classical
(see [CF], [GR]). For the sake of completeness and since we want to pay special
attention to the non-doubling case we include the proofs (that follow the classi-
cal ideas as well) in Section 5. In what follows all the measures are assumed to
be non-negative, regular and Borel. For such a measure ω, we also assume that
0 < ω(Q) <∞ for all Q ∈ D(Q0) with Q0 being either a fixed cube or Rn.

Definition 2.1. Let Q0 be either Rn or a fixed cube and let ω, ν be two non-
negative regular Borel measures on Q0. Assume that ν is “dyadically doubling”,
that is, ν(Q) ≤ Cν (Q′), for every Q ∈ D(Q0), and for every dyadic “child” Q′ of
Q.
• We say that ω � ν if there exist 0 < α, β < 1 such that for every Q ∈ D(Q0)

we have

E ⊂ Q, ν(E)
ν(Q)

< α =⇒ ω(E)
ω(Q)

< β. (2.2)

• We say that ω ∈ Adyadic,∗
∞ (Q0, ν) if ω � ν.

• We say that ω ∈ Adyadic
∞ (Q0, ν) if ω is dyadically doubling and ω � ν.

When ν = dx (which is dyadically doubling for any dyadic grid), we simply write
Adyadic
∞ (Q0) or Adyadic,∗

∞ (Q0)

Proposition 2.2. Let Q0 be either Rn or a fixed cube, and let ω, ν be a non-
negative regular Borel measures on Q0. Assume that ν is dyadically doubling. The
following statements are equivalent:

(a) ω ∈ Adyadic,∗
∞ (Q0, ν), that is, ω � ν.
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(b) There exist 0 < θ <∞ and 1 ≤ C0 <∞ such that for every Q ∈ D(Q0) and
for all Borel sets E ⊂ Q we have

ω(E)
ω(Q)

≤ C0

(
ν(E)
ν(Q)

)θ
.

(c) ω � ν and if we write kω = dω/dν for its Radon-Nikodym derivative, we
have that there exist 0 < α < 1 and 0 < β <∞ such that for all Q ∈ D(Q0)

ν{x ∈ Q : kω(x) ≤ β −
∫
Q
kω dν} ≤ αν(Q).

(d) ω � ν and if we write kω = dω/dν for its Radon-Nikodym derivative, there
exist 0 < β,C1 <∞ such that for all Q ∈ D(Q0) and all λ > −

∫
Q
kω dν

ω{x ∈ Q : kω(x) ≥ λ} ≤ C1 λ ν{x ∈ Q : kω(x) > β λ}.

(e) ω � ν and if we write kω = dω/dν for its Radon-Nikodym derivative, there
exists 0 < δ <∞ such that k ∈ RHdyadic

1+δ (Q0, ν), that is, there is 1 ≤ C2 <∞
such that for all Q ∈ D(Q0)(

−
∫
Q

kω(x)1+δ dν(x)
) 1

1+δ

≤ C2−
∫
Q

kω(x) dν(x).

Remark 2.3. Let us observe that the fact that ω � ν is only assumed in (c), (d)
and (e): one needs this property to state the corresponding conditions. Notice that
(b) easily implies that ω � ν. In the proof, we see that (a) (that is, ω � ν) also
yields the absolute continuity.

Proposition 2.4. Let Q0 be either Rn or a fixed cube. Let ω and ν be a non-
negative regular Borel measures.

(i) If both ω and ν are dyadically doubling, then ω ∈ Adyadic
∞ (Q0, ν), if and only

if, ν ∈ Adyadic
∞ (Q0, ω).

(ii) Adyadic
∞ (Q0, · ) defines an equivalence relationship on the set of dyadically

doubling measures.

Remark 2.5. Notice that the set of Adyadic,∗
∞ (Q0, ν) measures that are dyadically

doubling coincides with Adyadic
∞ (Q0, ν), and therefore statements (b)–(e) character-

ize Adyadic
∞ (Q0, ν) (in the presence of a dyadic doubling hypothesis). Also, by (i)

it follows that if both measures ω and ν are dyadically doubling then in any of
the properties (a)–(e) in Proposition 2.2 one can switch ω and ν. In particular, if
ω ∈ Adyadic

∞ (Q0, ν) there exist 0 < θ, θ′ < ∞ and 1 ≤ C0 < ∞ such that for every
Q ∈ D(Q0) and for all Borel sets E ⊂ Q we have

C−1
0

(
ν(E)
ν(Q)

)θ′
≤ ω(E)
ω(Q)

≤ C0

(
ν(E)
ν(Q)

)θ
.

2.3. A∞ estimates via extrapolation of Carleson measures.

Theorem 2.6. Let Q0 be either Rn or a fixed cube. Given M0 > 0, let µ ∈ C(Q0)
with

|||µ|||C(Q0) ≤M0

and let ω be a non-negative Borel measure in Q0. Assume that ω � dx and write
k = dω/dx for its Radon-Nikodym derivative. Suppose that there exists δ > 0 such
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that for every Q ∈ D(Q0) and every family of pairwise disjoint dyadic subcubes
F = {Qk}k ⊂ D(Q) verifying

|||µF |||C(Q) := sup
Q′∈D(Q)

µ(RQ′ ∩ ΩF )
|Q′|

≤ δ , (2.3)

we have that P ′F ω satisfies the following property: for all 0 < α < 1 there exists
β > 0 such that∣∣{x ∈ Q : P ′Fk(x) ≤ β (P ′Fω)Q}

∣∣ =
∣∣{x ∈ Q : P ′Fk(x) ≤ β ωQ}

∣∣ ≤ α |Q|. (2.4)

Then, there exist 0 < α0 < 1 and β0 > 0 such that for every cube Q ∈ D(Q0)∣∣{x ∈ Q : k(x) ≤ β0 ωQ}
∣∣ ≤ α0 |Q|. (2.5)

Consequently ω ∈ Adyadic,∗
∞ (Q0).

Remark 2.7. This result should be compare with the main theorem in [HM] where
it is not assumed that ω � dx and the Adyadic

∞ type conditions (2.4) and (2.5) are
given in terms of (2.2) —indeed, the equivalent conditions with “≥” in place of
“<”.

Remark 2.8. The key hypothesis of the theorem, and the main point that must be
verified in applications, is that (2.3) implies (2.4), for sufficiently small δ.

Remark 2.9. We note that the implication (2.3) =⇒ (2.4) is equivalent to the
apparently stronger statement that (2.3) =⇒ PFω ∈ Adyadic,∗

∞ (Q). Indeed, for
every Q′ ∈ D(Q), we have that ‖µF‖C(Q′) ≤ ‖µF‖C(Q) ≤ δ, whence the implication
(2.3) =⇒ (2.4) holds also for all such Q′ in place of Q. In turn, the fact that (2.4)
holds for all Q′ ∈ D(Q) says precisely that PFω ∈ Adyadic,∗

∞ (Q). We also notice
that if ω is dyadically doubling in Q0, then PFω ≈ P ′Fω and therefore it suffices
to work with the “simpler” projection operator PF . In such a case the conclusion
is ω ∈ Adyadic

∞ (Q0).

Remark 2.10. One can give an analog of Theorem 2.6 adapted to tents in place of
boxes, that is, in (2.3) one can replace RQ′ ∩ ΩF by TQ′ ∩ Ω̃F where TQ′ is the
Carleson tent associated to Q′ and Ω̃F is the domain above the (regular) sawtooth
region which is formed by the union of the cones with a fixed aperture and vertices
in Rn+1

+ \ ∪kQk. The proof is almost identical, we only need to apply the original
[AHLT, Lemma 3.4] in place of our alternative version contained in Lemma 2.13.

Remark 2.11. The extrapolation theorem is written in such a way that it contains
both a global and a local version. We note also the following observations:
• When Q0 = Rn, if ω is concentrically doubling, then the conclusion of the

theorem improves immediately to ω ∈ A∞ (see the precise definition in Section
3.1).

• For the local case, if ω is concentrically doubling, then the conclusion ω ∈
Adyadic,∗
∞ (Q0) yields also that ω ∈ A∞( 1

2 Q0) (see the precise definition in
Section 3.1).

Remark 2.12. We notice that in the hypotheses of Theorem 2.6 the attention is
restricted to Q ∈ D(Q0) and thus the conclusion (2.5) holds for all Q ∈ D(Q0). If
in our hypotheses we consider all cubes Q ⊂ Q0 then (2.5) holds for all Q ⊂ Q0.
This implies both ω doubling and ω ∈ A∞(Q0). For the proof it suffices to change
the induction hypotheses (cf. “H(a)” below) and consider all cubes Q ⊂ Q0.
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2.4. Proof of Theorem 2.6. As mentioned in the introduction, the proof is a
modification of the argument in [HM] which in turn follows the strategy introduced
in [LM], and developed further in [HL], [AHLT] and [AHMTT]. The proof uses an
induction argument with continuous parameter. The induction hypothesis is the
following: given a ≥ 0,

H(a)

There exist αa ∈ (0, 1) and βa > 0 such that for every Q ∈
D(Q0) satisfying µ(RQ) ≤ a |Q|, it follows that∣∣{x ∈ Q : k(x) ≤ βa ωQ}

∣∣ ≤ αa |Q|.
The induction argument is split in two steps.
Step 1. Show that H(0) holds.
Step 2. Show that there exists b = b(n, δ) such that for all 0 ≤ a ≤ M0, H(a)

implies H(a+ b).
Once these steps have been carried out, the proof follows easily: pick k ≥ 1 such

that (k − 1) b < M0 ≤ k b (note that k only depends on b(n, δ) and M0). By Step
1 and Step 2, it follows that H(k b) holds. Observe that ‖µ‖C(Q0) ≤ M0 ≤ k b
implies µ(RQ) ≤ k b |Q| for all Q ⊂ Q0, and by H(k b) we conclude (2.5).

Step 1. H(0) holds. If µ(RQ) = 0 then we take F to be empty, so that RQ∩ΩF =
RQ, and P ′F ω = ω. Then (2.3) holds (since 0 ≤ δ) and therefore we can use (2.4)
with ω and k in place of P ′F ω and P ′F k, which is the desired property.

Step 2. H(a) implies H(a+ b). We will require the following Lemma from [HM]
(and we refer the reader to that paper for the proof). An earlier variant appeared
in [AHLT, Lemma 3.4], in the case of regular sawtooth regions (see also [AHMTT]).
Let Rshort

Q denote the “short” Carleson box Q× (0, `(Q)/2).

Lemma 2.13. Let µ be a non-negative measure on Rn+1
+ , and let a ≥ 0, b > 0.

Fix a cube Q such that µ(RQ) ≤ (a+ b) |Q|. Then there exists a family F = {Qk}k
of non-overlapping dyadic subcubes of Q such that

|||µF |||C(Q) := sup
Q′∈D(Q)

µ(RQ′ ∩ ΩF )
|Q′|

≤ 2n+2 b , |B| ≤ a+ b

a+ 2 b
|Q|, (2.6)

where B is the union of those Qk verifying µ(Rshort
Qk

) > a |Qk|.
Taking this lemma for granted, we return to the proof of Step 2. Fix 0 ≤ a ≤M0

and Q ∈ D(Q0) such that µ(RQ) ≤ (a+b) |Q|, where we choose b so that 2n+2 b := δ.
We may now apply the previous lemma to construct the non-overlapping family of
cubes F with the stated properties. Set

A = Q \
⋃

Qk∈F
Qk, G =

⋃
Qk∈Fgood

Qk, B =
⋃

Qk∈F\Fgood

Qk,

where Fgood =
{
Qk ∈ F : µ(Rshort

Qk
) ≤ a |Qk|

}
. Set 1 − θ0 := (M0 + b)/(M0 + 2 b)

and then |B| ≤ (1− θ0) |Q| by (2.6) and since a ≤M0. Thus, |A ∪G| ≥ θ0 |Q|.
Given Qk ∈ Fgood we have that µ(Rshort

Qk
) ≤ a |Qk|. Moreover,

Rshort
Qk

=
2n⋃
j=1

RQjk
, Qjk ∈ D(Qk) with Qk =

2n⋃
j=1

Qjk, `(Qjk) = `(Qk)/2;

that is, the union runs over the dyadic “children” of Qk. Then by pigeon-holing,
there exists at least one j0 such that Qj0k =: Q′k satisfies

µ(RQ′k) ≤ a |Q′k| (2.7)
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(there could be more than one j0 with this property, but we just pick one). We
write F̃good for the collection of those selected “children” Q′k, with Qk ∈ Fgood, and
G̃ = ∪Q′k∈F̃good

Q′k. Then, it follows that

|A ∪ G̃| = |A|+ |G̃| = |A|+ 2−n |G| ≥ 2−n |A ∪G| ≥ 2−n θ0 |Q|.

By (2.6), we may deduce that (2.3) follows, so in turn, by hypothesis, for 0 <
α < 1 to be chosen, there exists β > 0 such that (2.4) holds. Let us define

F1 = {Q′k ∈ F̃good : ωQ′k ≤ β ωQ}, G1 = ∪Q′k∈F1Q
′
k.

Let 0 < β0 < β min{1, βa} (βa is given by H(a)) and set Eβ0 = {x ∈ Q : k(x) ≤
β0 ωQ}. By (2.7) we can use H(a) for every Q′k and then

|Eβ0 ∩ (G̃ \G1)| =
∑

Q′k∈F̃good\F1

∣∣{x ∈ Q′k : k(x) ≤ β0 ωQ}
∣∣

≤
∑

Q′k∈F̃good\F1

∣∣{x ∈ Q′k : k(x) ≤ βa ωQ′k}
∣∣

≤ αa
∑

Q′k∈F̃good\F1

|Q′k| ≤ αa |A ∪ G̃|.

On the other hand, by the definition of P ′F it follows that

|G1| =
∑

Q′k∈F1

|Q′k|

=
∑

Q′k∈F1

∣∣{x ∈ Q′k : ωQ′k ≤ β ωQ}
∣∣

=
∣∣{x ∈ G̃ : P ′F k(x) ≤ β P ′F ωQ}

∣∣.
and also that

|Eβ0 ∩A| ≤
∣∣{x ∈ A : k(x) ≤ β ωQ}

∣∣ =
∣∣{x ∈ A : P ′F k(x) ≤ β P ′F ωQ}

∣∣.
Then, (2.4) yields

|Eβ0 ∩ (A ∪ G̃)| ≤ |Eβ0 ∩A|+ |G1|+ |Eβ0 ∩ (G̃ \G1)|

≤
∣∣{x ∈ Q : P ′F k(x) ≤ β P ′F ωQ}

∣∣+ αa |A ∪ G̃|

≤ α |Q|+ αa |A ∪ G̃|.

Therefore,

|Eβ0 | ≤ |Eβ0 ∩ (A ∪ G̃)|+ |Q \ (A ∪ G̃)| ≤ (α+ 1) |Q| − (1− αa) |A ∪ G̃|
≤ (α+ 1− 2−n θ0 (1− αa)) |Q| =: α0 |Q|.

To complete the proof it suffices to take 0 < α < 2−n θ0 (1−αa) and this guarantees
that 0 < α0 < 1. �

Remark 2.14. As mentioned above, if ω is dyadically doubling one can equivalently
work with PF in place of P ′F . Indeed, the proof just presented can be easily adapted
to that projection operator with the following modifications: The new collection
F1 consists of those Q′k ∈ F̃good so that ωQk ≤ β ωQ. That ω is dyadically doubling
implies ωQk ≤ Cω 2−n ωQ′k . Using this, one obtains that |Eβ0∩(G̃\G1)| ≤ αa |A∪G̃|
provided 0 < β0 < β C−1

ω 2n βa. On the other hand, one easily estimates |G1| and
|Eβ0 ∩A| taking into account the definitions of F1 and PF .
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3. Application to second order elliptic boundary value problems

3.1. Additional Notation.

• Given X ∈ Rn+1
+ we write X = (x, %(X)), that is, %(X) = dist(X, ∂Rn+1

+ ) .

• For any X, Y ∈ Rn+1
+ , we write |X − Y |∞ = max{|x − y|∞, |%(X) − %(Y )|},

notice that this is the `∞-distance in Rn+1
+ . In this way, for any X ∈ Rn+1

+ and
0 < r ≤ 2 %(X), we write R(X, r) = {Y ∈ Rn+1

+ : |Y −X|∞ < r/2} which is the
cube in Rn+1

+ with center X and sidelength r (that is, radius r/2).

• If R is a cube in Rn+1
+ , we denote its center by XR and its sidelength by `(R) such

that R = R(XR, `(R)). Notice that R ⊂ Rn+1
+ yields `(R) ≤ 2 %(XR). Given τ

we denote by τ R the τ -dilation of R, that is, the cube with center XR and with
sidelength τ `(R).

• Given a cube Q ⊂ Rn we set XQ = (xQ, 4 `(Q)) and AQ = (xQ, `(Q)).

• A weight w is a non-negative locally integrable function. A weight induces a Borel
measure as follows: for any measurable set E we write w(E) :=

∫
E
w(x) dx.

• Given a weight w and 1 < p <∞ we say that w ∈ RHp if there exists a constant
Cp such that for every Q(

−
∫
Q

w(x)p dx
) 1
p ≤ Cp−

∫
Q

w(x) dx.

Given a cube Q0, if the previous condition holds for any cube Q ⊂ Q0 we write
w ∈ RHp(Q0).

• Let A∞ be the set of Muckenhoupt weights in Rn. That is, given ω a non-
negative Borel measure on Rn we say that ω ∈ A∞ if there exist 0 < α, β < 1
such that for every cube Q and for every measurable set E ⊂ Q we have

|E|
|Q|

< α =⇒ ω(E)
ω(Q)

< β.

It is easy to see that this yields that ω is doubling —one estimates ω(λQ \
Q)/ω(λQ) for λ sufficiently close to 1 and then iterates. This condition implies
that ω is absolutely continuous with respect to the Lebesgue measure and that
its Radon-Nikodym derivative k = dω/dx (which is a weight) satisfies k ∈ RHp,
see Proposition 2.2 or [GR, Chapter 4] for details. Indeed one can alternatively
define A∞ as the class of non-negative Borel measures absolutely continuous with
respect to the Lebesgue measure with Radon-Nikodym derivatives in ∪qRHq.
Also, A∞ can be defined in terms of (2.2) or the corresponding conditions in
Proposition 2.2.

3.2. Introduction. We work with real symmetric second order elliptic operators:
Lf(X) = −div(A(X)∇f(X)), X ∈ Rn+1

+ , with A(X) = (ai,j(X))1≤i,j≤n+1 being
a real, symmetric (n+ 1)× (n+ 1) matrix such that ai,j ∈ L∞(Rn+1

+ ) for 1 ≤ i, j ≤
n+ 1, and A is uniformly elliptic, that is, there exists 0 < λ ≤ 1 such that

λ |ξ|2 ≤ A(X) ξ · ξ ≤ λ−1 |ξ|2,

for all ξ ∈ Rn+1 and almost every X ∈ Rn+1
+ .

Some of the material below is taken from [Ken, Chapter 1], the reader might
find convenient to have this reference handy.
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The solutions of the Dirichlet problem are represented by the harmonic measure.
Namely, there exists a family of regular Borel probability measures {ωXL }X∈Rn+1

+
in

Rn such that for every f ∈ C0(Rn), the function

u(X) =
∫

Rn
f(y) dωXL (y)

is a classical solution of the Dirichlet problem Lu = 0 in Rn+1
+

u
Rn

= f
(3.1)

This family {ωXL }X∈Rn+1
+

is called the L-harmonic measure. Sometimes, we will

drop the subindex L. For a fixed X0 ∈ Rn+1
+ we let ω = ωX0 and abusing notation

ω is called the harmonic measure.
If ωXL � dx, we write the Poisson kernel as kXL , that is, kXL = dωXL /dx is the

Radon-Nikodym derivative of ωXL with respect to dx. Again for a fixed X0 ∈ Rn+1
+

we let k = kX0
L and k is called the Poisson kernel (notice that for every X ∈ Rn+1

+ ,
ωX and ω are mutually absolutely continuous).

We recall the fundamental relationship between solvability of the Dirichlet prob-
lem with Lp data, and higher integrability of the Poisson kernel, essentially as
stated in [Ken, Theorem 1.7.3].

Theorem 3.1. Given an operator L as above and 1 < p < ∞, the following
statements are equivalent:

(a) If u ∈ C0(Rn+1
+ ) is a classical solution of the Dirichlet problem (3.1) with

data f ∈ C0(Rn) then

‖u∗‖Lp′ (Rn) ≤ C ‖f‖Lp′ (Rn), (3.2)

where u∗(x) = supY ∈Γη(x) |u(Y )| with Γη(x) = {Y ∈ Rn+1
+ : |x − y|∞ <

η %(Y )}, η > 0.
(b) ω ∈ RHp; by this we mean that ω � dx and for each cube Q ⊂ Rn, we have

that the Poisson kernel satisfies kXQ ∈ RHp(Q), uniformly in Q.‡‡ That is,
there exists a uniform constant C0 such that for all Q ⊂ Rn,(

−
∫
Q′
kXQ(y)p dy

)1/p

≤ C0−
∫
Q′
kXQ(y) dy, ∀Q′ ⊂ Q. (3.3)

(c) ω � dx, and there is a uniform constant C0 such that for every Q in Rn, we
have the scale invariant Lp estimate∫

Q

kXQ(y)p dy ≤ C0|Q|1−p. (3.4)

When (a) occurs we say that (D)p′ is solvable for L or that L is solvable in Lp
′
.

In such case, for every f ∈ Lp′(Rn) there exists a unique u such that Lu = 0 in
Rn+1

+ , (3.2) holds and u converges non-tangentially to f a.e..
Given two operators L0 and L as above with associated matrices A0 and A, we

define their disagreement as

a(X) := sup
|X−Y |∞<%(X)/2

|E(Y )|, E(Y ) = A(Y )−A0(Y ).

‡‡In [Ken], condition (b) is stated in slightly different form, involving a global reverse Hölder
estimate for harmonic measure with one fixed pole; it is well known that the present version of
(b), as well as (c), are also equivalent to condition (a).
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3.3. Main application. In this section, to illustrate the use of Theorem 2.6, we
present an alternative proof of a well known result of [FKP].

Theorem 3.2 ([FKP]). Let L0 and L be two operators as above with a being their
disagreement, and let ω0, ω denote their respective harmonic measures. Assume
that

sup
Q∈Rn

1
|Q|

∫
RQ

a(X)2

%(X)
dX <∞. (3.5)

Then, we have that ω0 ∈ A∞ implies ω ∈ A∞. More precisely, if L0 is solvable in
some Lp

′
, 1 < p′ <∞, there exists 1 < q′ <∞ such that L is solvable in Lq

′
.

We prove this result by using the extrapolation of Carleson measures Theorem
2.6. We take dµ(X) = a(X)2

%(X) dX, that is, dµ(x, t) = a(x, t)2 dt
t dx and (3.5) gives

µ ∈ C. Therefore, to show that the harmonic measure ω ∈ A∞, it suffices to
fix Q and a family F such that (2.3) holds and show that PF ω satisfies the A∞
condition in (2.4). We will introduce some intermediate operators that allow us to
pass from L0 to L. Since the smallness in (2.3) is guaranteed above the discrete
sawtooth region, we first introduce L1 such that the disagreement with L0 lives in
that region (this is done in the first step). Once we have the solvability of L1 we
will be changing this operator in subsequent steps and in the end we will end up
with L.

Let us call the reader’s attention to the fact that in any given step we work with
Li and Li+1 in such a way that Li is the “known” and Li+1 is the “unknown” in
the sense that we have some nice properties for Li and we want to infer them to
Li+1. For any of these operators Li we write ωi for the harmonic measure and,
where it exists, ki for the Poisson kernel.

3.4. Auxiliary results. We summarize some well known results for divergence
form elliptic equations that we will use in the sequel. The reader is referred to
[Ken, Chapter 1] and the references therein for full details (see also [HM].)

Theorem 3.3. There exists a unique function G = GL : Rn+1
+ × Rn+1

+ −→ R ∪
{+∞}, G ≥ 0, such that G(X,Y ) = G(Y,X) for each X,Y ∈ Rn+1

+ , G(·, Y ) ∈
W 2

1 (Rn+1
+ \R(Y, r))∩Ẇ 1

1,0(Rn+1
+ ) for each Y ∈ Rn+1

+ and r > 0, and LG(·, Y ) = −δY
for each Y ∈ Rn+1

+ .

Lemma 3.4 (Caccioppoli). Let Q ⊂ Rn and let R be a cube in Rn+1
+ such that

τ R ⊂ RQ with τ > 1. If Lu = 0 in RQ, then

−
∫
R

|∇u(Y )|2 dY ≤ Cλ,n,τ `(R)−2−
∫
τ R

u(Y )2 dY. (3.6)

Lemma 3.5 (Doubling). There exists C = C(λ, n) such that for every cube Q ∈ Rn

ωX(2Q) ≤ C ωX(Q).

Lemma 3.6 (Caffarelli-Fabes-Mortola-Salsa). There exists a constant C = Cn,λ <
∞ such that for every cube Q, we have

ωX(Q) ≥ 1/C, ∀X ∈ 4Q× [`(Q), 5 `(Q)]. (3.7)

Moreover, given X,Y ∈ Rn+1
+ such that |X − Y |∞ > 2 %(Y ) we have

G(X,Y ) ≈ ωX(Q(y, %(Y ))
%(Y )n−1

, (3.8)

where the implicit constants depend only on dimension and ellipticity.
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Lemma 3.7. Given Q ⊂ Rn, let L1 and L2 be elliptic operators such that L1 ≡ L2

in RQ. If the corresponding harmonic measures ω1, ω2 are absolutely continuous
with respect to the Lebesgue measure (we write k1 and k2 for the Poisson kernels),
then

k
XQ
1 (y) ≈ kXQ2 (y), for a.e. y ∈ 1

2 Q.

Lemma 3.8. Let Q ⊂ Q0 and set X0 = (xQ0 , 4 `(Q0)), XQ = (xQ, 4 `(Q)) where
xQ0 and xQ are respectively the centers of Q0 and Q. If ω � dx then

kXQ(y) ≈ kX0(y)
ωX0(Q)

, for a.e. y ∈ Q. (3.9)

For an elliptic operator L, given u such that Lu = 0 in Rn+1
+ , we define the

square function

Sηu(x) =
(∫∫

Γη(x)

|∇u(x, t)|2 t1−n dt
) 1

2
,

where
Γη(x) := {(y, t) ∈ Rn+1

+ : |x− y| < η t}
is the cone with vertex x and aperture η. We then have the following:

Theorem 3.9 (Dahlberg-Jerison-Kenig [DJK]∗). Suppose that for some p′ ∈
(1,∞), (D)p′ is solvable for L. Then, if u is a solution of the Dirichlet problem
with data f ∈ Lp′(Rn), we have, for all η > 0,

‖Sηu‖Lp′ (Rn) . ‖f‖Lp′ (Rn),

where the implicit constant depends on dimension, ellipticity, η, and on the con-
stants in the Lp estimates for the Poisson kernel of L.

4. Proof of Theorem 3.2

We want to apply Theorem 2.6 with the Carleson measure dµ(X) = a(X)2

%(X) dX.
Given δ > 0 to be chosen, we fix Q0 and a family of pairwise disjoint subcubes
F = {Qk}k ∈ D(Q0) such that

sup
Q∈D(Q0)

µ(RQ ∩ ΩF )
|Q|

≤ δ. (4.1)

Set X0 = (x0, 4 `(Q0)) with x0 being the center of Q0.
As L0 is solvable in some space Lp

′
then ωX0

L0
= ωX0

0 ∈ RHp(Q0). This means
that ωX0

0 � dx and kX0
0 ∈ RHp(Q0). Without loss of generality we can assume

that 1 < p < 2 (as RHp1 ⊂ RHp2 for p2 < p1). As ωX0
L is doubling, it suffices to

work with PF in place of P ′F , thus our goal is to show that PF ωX0
L satisfies (2.4),

with uniform constants. Notice that for a Borel set E, from the definition we have

PF ωX0
L (E) =

∫
Rn
PF (χE)(x)dωX0

L (x) = u(X0),

where u is a solution of the Dirichlet problem with data PF (χE).

4.1. An overview of the proof. The proof that we present here runs parallel
to that in [HM]. Indeed, Steps 0, 1 and 2 remain the same and therefore we only
give the main ideas. Steps 3 and 4 need to be changed according to the Adyadic

∞
condition that is contained in Theorem 2.6.

∗In fact, the theorem in [DJK] is somewhat more general than the result stated here, but we

do not requiere the full version.
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L

L0

L0

L0 L0

L0

RQ0

Q0

Ω0

Figure 2. Definition of L1

Step 0. We first make a reduction that allows us to use qualitative properties of
the unknown harmonic measure. Indeed, we replace L by Lγ with γ > 0, which
eventually goes to 0, so that Lγ coincides with L on a γ-strip along the boundary.
This allows us to use qualitative properties of the corresponding harmonic measures.
In particular, ωLγ � dx and also ωLγ ∈ RHp. Of course in the latter the constant
will depend very badly on γ, but we will use this only in a qualitative way. Taking
this reduction into account we can assume without loss of generality that all the
harmonic measures below are absolutely continuous with respect to the Lebesgue
measure and also that the Poisson kernels satisfy (qualitatively) RHp. In our
estimates the constants will not depend on γ.

Step 1. We define a new operator L1 that agrees with L0 everywhere except for
the discrete sawtooth domain on which the new operator L1 becomes L. That is,
L1 = L in Ω0 := RQ0 ∩ ΩF = RQ0 \ (∪Qk∈FRQk) and L1 = L0 otherwise (see
Figure 2). This means that the disagreement between L0 and L1 lives in Ω0 and
the harmonic measure µ restricted to Ω0 is small at all the scales (see (4.1)).

We recall that kX0
0 ∈ RHp(Q0), and in particular we have∫

Q0

kX0
0 (y)p dy ≤ C0|Q0|1−p. (4.2)

Our immediate goal in Step 1 is to show that (4.2) remains true (with a different but
uniform constant, independent of Q0), when kX0

0 is replaced by kX0
1 , the Poisson

kernel for the operator L1 defined above. To do that, we proceed by duality and
fix a smooth function g ≥ 0 supported on Q0, such that ‖g‖Lp′ (Q0) = 1. Let u0

and u1 be the corresponding solutions to the Dirichlet problems for L0 and L1 with
boundary data g. As the disagreement between L0 and L1 gives rise to a Carleson
measure that it small at all scales by (4.1), it can be proved that u1 is a small
perturbation of u0. To be more precise, we show the following:

|u1(X0)− u0(X0)| . δ 1
2 ‖kX0

1 ‖Lp(Q0). (4.3)
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L1

L

L

L1 L1

L1

RQ0

Q0

Figure 3. Definition of L2

Since kX0
0 satisfies (4.2), we may therefore obtain (4.2) for kX0

1 by taking a supre-
mum over all g as above, and then hiding the error in (4.3) for δ small enough (here
we use the qualitative estimate ‖kX0

1 ‖Lp(Q0) <∞, see Step 0.)
In order to carry out Step 2, we need to extend (4.2) and obtain a reverse Hölder

estimate on every dyadic subcube of Q0. The key fact that will allow us to do so is
that, in (4.1), the sup is taken with respect to all such cubes. The idea of the proof
is to repeat the previous argument for a fixed Q ∈ D(Q0) to obtain the analogue
of (4.2) on Q, for the Poisson kernel associated to L1, which is now defined with
respect to

ΩQ := RQ ∩ ΩF = RQ \ (∪Qk∈FRQk).

The definition of the operator L1 will depend on Q, but we will address this issue
by use of the comparison principle. Eventually we show the following:

Conclusion (Step 1). There exists 1 < r <∞ such that for every Q ∈ D(Q0),(
−
∫
Q

kX0
1 (x)r dx

) 1
r ≤ C −

∫
Q

kX0
1 (x) dx. (4.4)

That is, ωX0
1 ∈ Adyadic

∞ (Q0). Hence we deduce that the same is true for PF ω
XQ
1 , by

the following lemma.

Lemma 4.1. Suppose that ω ∈ Adyadic
∞ (Q0), for some fixed cube Q0, and sup-

pose that F = {Qk} ⊂ D(Q0) is a non-overlapping family. Then also PF ω ∈
Adyadic
∞ (Q0).

Step 2. We define the operator L2 such that the disagreement with L1 lives inside
the Carleson boxes corresponding to the family F . That is, set L2 = L in RQ0 \
ΩF = ∪Qk∈FRQk and L2 = L1 otherwise (see Figure 3). We write ω1 = ωX0

L1

and ω2 = ωX0
L2

for the corresponding harmonic measures for L1 and L2 in Rn+1
+

with fixed pole at X0 = (x0, 4 `(Q0)). We also let ν1 = νX0
1 and ν2 = νX0

2 denote
the harmonic measures of L1 and L2 with pole at X0, with respect to the domain
ΩF = Rn+1

+ \ ∪Qk∈FRQk . We notice that L1 = L2 in ΩF and therefore ν1 = ν2.
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We apply the sawtooth lemma for projections (see Lemma 4.3 below) to both
L1 and L2 and then we obtain that for all Q ⊂ D(Q0) and F ⊂ Q(

PF ωi(F )
PF ωi(Q)

)θi
.
PF ν̄i(F )
PF ν̄i(Q)

.
PF ωi(F )
PF ωi(Q)

, i = 1, 2 ;

that is, PF ωi ∈ Adyadic
∞ (PF ν̄i, Q0), for i = 1, 2 —here we use that PF ωi and

PF ν̄i are dyadically doubling, see [HM]. As observed above, ν1 = ν2 and therefore
(4.13) implies that PF ν̄1 = PF ν̄2. Since Adyadic

∞ (Q0, · ) defines an equivalence
relationship, and since we showed in Step 1 that PF ω1 ∈ Adyadic

∞ (Q0) (with respect
to Lebesgue measure), therefore we conclude also that PF ω2 ∈ Adyadic

∞ (Q0):

Conclusion (Step 2). There exist θ, θ′ > 0 such that(
|F |
|Q|

)θ
.
PFωX0

2 (F )
PFωX0

2 (Q)
.

(
|F |
|Q|

)θ′
, Q ∈ D(Q0), F ⊂ Q.

Step 3. It remains to change the operator outside RQ0 . Thus, we define L3 = L2

in RQ0 and L3 = L otherwise (see Figure 4). Let us observe that L3 = L in Rn+1
+ .

L2

L2

L2

L L

L

RQ0

Q0

Figure 4. Definition of L3

We want to show that (2.4) holds with PF in place of P ′F , that is, we want to
obtain

|Eβ | :=
∣∣{x ∈ Q0 : PFkX0

3 (x) ≤ β (PFωX0
3 )Q0}

∣∣ ≤ α |Q0|. (4.5)
We fix 0 < α < 1 and let β > 0 to be chosen. Let us observe that we can

disregard the trivial case F = {Q0} since we have PFkX0
3 (x)/(PFωX0

3 )Q0 = χQ0
(x).

Therefore the lefthand side of (4.5) vanishes for 0 < β < 1 and the desired estimate
follows at once.

Once we have disregarded this trivial change we take j ≥ 2 large enough such
that 2−j+1 < 1 − (1 − α/2)1/n. We set Q̃0 = (1 − 2−j+1)Q0 and observe that
Q0 \ Q̃0 = ∪ΛQ where Λ ⊂ D(Q0) and `(Q) = 2−j `(Q0) for every Q ∈ Λ. Notice
that Λ consists of all dyadic cubes in D(Q0) with sidelength 2−j `(Q0) which are
adjacent to the boundary of Q0. The choice of j yields that |Q0 \ Q̃0| < α/2 |Q0|.
On the other hand, we claim that by the comparison principle

PFkX0
2 (x) ≤ CαPFkX0

3 (x), a.e. x ∈ Q̃0. (4.6)
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That the harmonic measure is a probability implies (PFωX0
3 )Q0 = ωX0

3 (Q0)/|Q0| ≤
1/|Q0|. Then we obtain

|Eβ | ≤ |Q0 \ Q̃0|+ |Eβ ∩ Q̃0| <
α

2
|Q0|+

∣∣{x ∈ Q0 : PFkX0
2 (x) ≤ β Cα/|Q0|}

∣∣
=:

α

2
|Q0|+ |F |

Next, we use the conclusion of Step 2 and also that PFωX0
2 (Q0) = ωX0

2 (Q0) & 1 to
obtain(
|F |
|Q0|

)θ
≤ C PFω

X0
2 (F )

PFωX0
2 (Q0)

≤ C
∫
F

PFkX0
2 (x) dx ≤ C β Cα

|F |
|Q0|

≤ C0 β Cα <
(α

2

)θ
provided we pick β so that 0 < β < (α/2)θ (C0 Cα)−1. This allows to obtain the
desired estimate (4.5).

Let us summarize what we have obtained so far (we recall that L3 ≡ L):

Conclusion (Step 3). There exists δ > 0 for which the following statement holds:
given 0 < α < 1, there is β > 0 such that for every Q0 ⊂ Rn, if F = {Qk}k ⊂ D(Q0)
is a pairwise disjoint collection of dyadic subcubes of Q0 satisfying |||µF |||C(Q0) ≤ δ,
then ∣∣{x ∈ Q0 : PFkX0

L (x) ≤ β (PFωX0
L )Q0}

∣∣ ≤ α |Q0|.

Step 4. In order to use the extrapolation result we need to be able to fix the pole
relative to a given cube Q0, and obtain the last estimate for any dyadic subcube
of Q0. Fixed Q ∈ D(Q0) and F ⊂ Q as before, we use the conclusion of Step 3
and then pass from the pole XQ to X0 by means of Lemma 3.8. Thus, we may
apply the extrapolation result Theorem 2.6 and conclude that ωXQ0 ∈ Adyadic

∞ (Q0)
uniformly in Q0:

Proposition 4.2. There exists δ > 0 for which the following statement holds: given
0 < α < 1, there is β > 0 such that for every Q0 ⊂ Rn and for all Q ∈ D(Q0),
if F = {Qk}k ⊂ D(Q) is a pairwise disjoint collection of dyadic subcubes of Q
satisfying |||µF |||C(Q) ≤ δ, then∣∣{x ∈ Q : PFkX0

L (x) ≤ β (PFωX0
L )Q}

∣∣ ≤ α |Q|.
Consequently, ωXQ0 ∈ Adyadic

∞ (Q0) uniformly in Q0. In particular, there exist 1 <
q < ∞ and a uniform constant C0 such that we have the following reverse Hölder
inequalities for all Q0 ⊂ Rn,(

−
∫
Q0

k
XQ0
L (y)q dy

) 1
q ≤ C0−

∫
Q0

k
XQ0
L (y) dy ≈ 1

|Q0|
(4.7)

From this result, we see that (4.7) and Theorem 3.1 yield as desired that L is
solvable in Lq

′
and then the proof of Theorem 3.2 is completed.

4.2. Some details of the proof. In this section we present some of the details
needed to carry out the previous scheme of the proof. As mentioned above, Steps
0, 1, 2 are taken from [HM], therefore we only sketch the argument. Steps 3 and 4
need to be adapted from [HM] since the Adyadic

∞ condition used there is not the one
in the present extrapolation result.
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RQ0

Q0

Figure 5. Whitney decomposition of RQ0

Step 0. We define Aγ(x, t) = A(x, t) for t > γ and Aγ(x, t) = A0(x, t) for 0 ≤
t ≤ γ. In the following steps we work with Lγ in place of L. We note that the
ellipticity constants of Aγ are controlled by those of A and A0, uniformly in γ. Also,
|A0(X)−Aγ(X)| ≤ |A0(X)−A(X)| and thus the Carleson condition is controlled
independently of γ. Notice that Lγ = L0 in the strip {(x, t) : 0 ≤ t < γ} and
then in every step, by the comparison principle, we can use that all the harmonic
measures are in RHp (that is, they are absolutely continuous with respect to dx
and the Poisson kernels are in RHp: the constants will depend on γ but in our
arguments we will only use this qualitatively and not quantitatively). In particular
in Step 1 we have a priori that ωX0

1 � dx and that kX0
1 ∈ Lp(Q0) (this depends

on γ, but we only use this in a qualitatively way). Therefore, we can carry out the
whole argument and in the end we shall establish the reverse Hölder inequality (4.7)
above for kLγ with q and C0 independent of γ. One may then pass to the limit as
follows: by [Ken, p. 41] for any smooth function ϕ we have 〈ϕ, ωX0

Lγ
〉 −→ 〈ϕ, ωX0

L 〉
as γ → 0+. For any cube Q0, and for every smooth function ϕ in Lq

′
(Q0) with

‖ϕ‖Lq′ (Q0) = 1 we have

|〈ϕ, ωX0
L 〉| = lim

γ→0+
|〈ϕ, ωX0

Lγ
〉| ≤ sup

γ>0
‖kX0
Lγ
‖Lq(Q0) ‖ϕ‖Lq′ (Q0) ≤ C0 |Q0|−1/q′ .

Thus, Λ
ω
X0
L

(ϕ) := 〈ϕ, ωX0
L 〉 is a functional in (Lq

′
(Q))∗. Therefore ωX0

L � dx in Q0

and kX0
L verifies (4.7). This in turn implies as desired that L is solvable in Lq

′
by

Theorem 3.1.

Step 1. We recall that L1 is defined as L1 = L in Ω0 and L1 = L0 otherwise
(see Figure 2). That is, L1 is the divergence form elliptic operator with associated
matrix A1 = A in Ω0 and A1 = A0 otherwise. We set E1(Y ) = A1(Y ) − A0(Y ) =
E(Y ) χΩ0

(Y ). In what follows we write ω0 = ωL0 , ω1 = ωL1 , G1 = GL1 .
We perform a Whitney decomposition of RQ0 with respect to the distance to

the boundary Rn: RQ0 = ∪Q∈D(Q0)∗UQ where D(Q0)∗ = D(Q0) \ {Q0}, for every
cube Q we write UQ = Q× [`(Q), 2 `(Q)) (see Figure 5) and it follows that the sets
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RQ0

Q0

Ω0

Figure 6. Whitney decomposition of Ω0

UQ are pairwise disjoint. Let us observe that Ω0 = RQ0 \ (∪Qk∈FRQk) = ∪Q∈F1UQ
where F1 = D(Q0)∗ \

⋃
Qk∈F D(Qk)∗, see Figure 6.

We show (4.3), the argument is taken from [HM] and some details are skipped.
As in [FKP], we have

F1(X0) := |u1(X0)− u0(X0)| =
∣∣∣ ∫

Rn+1
+

∇YG1(X0, Y ) E1(Y )∇u0(Y ) dY
∣∣∣

≤
∫

Ω0

|∇YG1(X0, Y )| |E(Y )| |∇u0(Y )| dY

≤
∑
Q∈F1

sup
UQ

|E|
(∫

UQ

|∇YG1(X0, Y )|2 dY
) 1

2
(∫

UQ

|∇u0(Y )|2 dY
) 1

2
.

As X0 is away from RQ0 we have that G1(X0, ·) is a non-negative solution of L1

in R2Q0 we can apply Caccioppoli’s inequality (Lemma 3.4) to this function. Also,
we use (3.8) and we conclude that∫

UQ

|∇YG1(X0, Y )|2 dY . `(Q)−2

∫
2UQ

G1(X0, Y )2 dY

.
(ωX0

1 (Q)
|Q|

)2

|2UQ| ≈
(ωX0

1 (Q)
|Q|

)2−p ∫
1
4 UQ

(
PQ0
s kX0

1 (y)
)p

dy ds,

where PQ0
s is the dyadic averaging operator defined as follows:

PQ0
s f(y) :=

∑
Q∈D(Q0)∗

(
−
∫
Q

f(z) dz
)

χUQ(y, s).

Note that in the sum there is at most one non-zero term since the sets UQ are a
disjoint partition of RQ0 . Next we use that supUQ |E| ≤ a(Y ) for every Y ∈ 1

4 UQ,
by a routine geometric argument that we leave to the reader, and we obtain

F1(X0) .
( ∑
Q∈F1

∫
1
4 UQ

(
PQ0
s kX0

1 (y)
)p a(y, s)2

s
dy ds

) 1
2
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×
( ∑
Q∈F1

(
ωX0

1 (Q)
|Q|

)2−p ∫
UQ

|∇u0(y, s)|2 s dy ds
) 1

2
=: I · II.

We estimate each factor in turn. For I, we define

dµ̃(y, s) = χΩ0
(y, s) dµ(y, s) = χΩ0

(y, s) a(y, s)2 dy ds

s

so by the dyadic Carleson Embedding [HM, Lemma 3.12] and (4.1) we have

I2 ≤
∫
RQ0

(
PQ0
s kX0

1 (y)
)p

dµ̃(y, s) . |||µ̃|||C(Q0)

∫
Q0

kX0
1 (y)p dy . δ

1
2 ‖kX0

1 ‖
p
2
Lp(Q0).

We now estimate II. For a sufficiently large η > 0 we have

II2 =
∑
Q∈F1

1
|Q|

∫
Q

(ωX0
1 (Q)
|Q|

)2−p ∫
UQ

|∇u0(y, s)|2 s dy ds

 dx
.
∑
Q∈F1

∫∫
UQ

(
M(kX0

1 χQ0
)(x)

)2−p ∫
|x−y|<ηs

|∇u0(y, s)|2 s1−n dy ds dx

≤ ‖Sηu0‖2Lp′ ‖M(kX0
1 χQ0

)‖2−pLp

. ‖kX0
1 ‖

2−p
Lp(Q0),

where we have used that 1 < p < 2 and Theorem 3.9 (and the fact that (D)p′ is
solvable for L0). Collecting our estimates for I and II we conclude as desired (4.3):

F1(X0) = |u1(X0)− u0(X0)| . δ 1
2 ‖kX0

1 ‖Lp(Q0).

Since kX0
0 satisfies (4.2), we may therefore obtain (4.2) for kX0

1 by taking a supre-
mum over all g as above, and then hiding the error in (4.3) for δ small enough (here
we use the qualitative estimate ‖kX0

1 ‖Lp(Q0) <∞, see Step 0.)

Self-improvement of Step 1. We fix Q ∈ D(Q0) and set XQ = (xQ, 4 `(Q)) where
xQ is the center of Q. Let us define a new operator LQ1 = L in ΩQ = RQ ∩ ΩF =
RQ \ (∪Qk∈FRQk) and LQ1 = L0 otherwise in Rn+1

+ , and let kXQ
LQ1

denote the Poisson

kernel for LQ1 with pole at XQ. We claim that∫
Q

k
XQ

LQ1
(x)pdx . |Q|1−p, (4.8)

where the constant is independent of Q. Indeed, if Q ⊂ Qk for some Qk ∈ F
then we obtain that ΩQ = Ø and LQ1 ≡ L0 in Rn+1

+ . In that case, (4.8) holds by
hypothesis. Otherwise, since trivially |||µ|||C(Q) ≤ |||µ|||C(Q0) for every Q ∈ D(Q0), we
have that the analogue of (4.1) obviously holds on Q, for the same family F (or to
be more precise, for the family FQ defined as the family of cubes in F that meet
Q). Consequently, if Q is not contained in any Qk ∈ F , then we may simply repeat
the previous argument with respect to Q, and we obtain (4.8) exactly as before.
This proves the claim.

Now by (3.7) and (4.8) we obtain(
−
∫
Q

k
XQ

LQ1
(x)p dx

) 1
p

. −
∫
Q

k
XQ

LQ1
(x) dx. (4.9)

Next, we want to pass from k
XQ

LQ1
to k

XQ
L1

. Notice that L1 ≡ LQ1 in RQ, therefore

Lemma 3.7 yields that kXQ1 (y) = k
XQ
L1

(y) ≈ k
XQ

LQ1
(y), for a.e. y ∈ 1

2 Q. The latter
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fact, (4.9) and the doubling property imply that(
−
∫

1
2 Q

k
XQ
1 (x)p dx

) 1
p

.
(
−
∫
Q

k
XQ

LQ1
(x)p dx

) 1
p

. −
∫
Q

k
XQ

LQ1
(x) dx . −

∫
1
2Q

k
XQ
1 (x) dx.

(4.10)
Consequently, by Lemma 3.8 we have(

−
∫

1
2 Q

kX0
1 (x)p dx

) 1
p

. −
∫

1
2Q

kX0
1 (x) dx, ∀Q ∈ D(Q0). (4.11)

Then [HM, Lemma B.7] yields as desired (4.4) and therefore we have obtained the
conclusion of Step 1 stated above.

Proof of Lemma 4.1. That PFω is dyadically doubling follows from [HM] and the
fact that so is ω. As ω ∈ Adyadic

∞ (Q0), we have k = dω/dx ∈ RHdyadic
q (Q0) for some

1 < q < ∞. It is trivial to see that PFω � dx and that d(PFω)/dx = PFk. We
show that PFk ∈ RHdyadic

q (Q0). Let Q ∈ D(Q0). If Q ⊂ Qk for some Qk ∈ F then
PFk(x) ≡ wQk for every x ∈ Qk, thus we trivially obtain the desired estimate(

−
∫
Q

PFk(x)q dx
) 1
q

= wQk = −
∫
Q

PFk(x) dx.

Otherwise, Q is not contained in any Qk and it follows that if Q ∩ Qk 6= Ø then
Qk ( Q. It is straightforward to show that PFk(x) = PF (k χQ)(x) for every
x ∈ Q. Then, we obtain as desired

−
∫
Q

PFk(x)q dx = −
∫
Q

PF (k χQ)(x)q dx ≤ 1
|Q|

∫
Rn
PF (k χQ)(x)q dx ≤ −

∫
Q

k(x)q dx

.
(
−
∫
Q

k(x) dx
)q

=
(
−
∫
Q

PFk(x) dx
)q
.

Gathering the two cases we conclude that PFk ∈ RHdyadic
q (Q0) and this leads to

PFk ∈ Adyadic
∞ (Q0) by Proposition 2.2. �

Step 2. To complete this step we just need to state the following sawtooth lemma
for projections:

Lemma 4.3 (Discrete sawtooth lemma for projections, [HM]). Let Q0 be a fixed
cube in Rn, let F = {Qk}k ⊂ D(Q0) be a family of pairwise disjoint dyadic cubes
and let PF be the corresponding projection operator. Set ΩF = Rn+1

+ \(∪Qk∈FRQk).
We write ω = ωX0 and ν = νX0 for the harmonic measures of L with fixed pole at
X0 = (xQ0 , 4 `(Q0)) with respect to the domains Rn+1

+ and ΩF . Let ν̄ = ν̄X0 be the
measure defined by

ν̄(F ) = ν(F \(∪Qk∈FRQk))+
∑
Qk∈F

ω(F ∩Qk)
ω(Qk)

ν(RQk∩∂ΩF ), F ⊂ Q0. (4.12)

We observe that PF ν̄ depends only on ν and not on ω since

PF ν̄(F ) = ν(F\(∪Qk∈FRQk))+
∑
Qk∈F

|F ∩Qk|
|Qk|

ν(RQk∩∂ΩF ), F ⊂ Q0. (4.13)

Then, there exists θ > 0 such that for all Q ∈ D(Q0) and F ⊂ Q, we have(
PFω(F )
PFω(Q)

)θ
.
PF ν̄(F )
PF ν̄(Q)

.
PFω(F )
PFω(Q)

. (4.14)
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Step 3. We show (4.6). Notice that L2 ≡ L3 in RQ0 , then, as in Lemma 3.7, by
the comparison principle we have that kX0

2 (y) ≈ kX0
3 (y) for a.e. y ∈ Q̃0 where the

constants depend on j and hence on α. This implies that for a.e. x ∈ Q̃0 we obtain

PFkX0
2 (x) ≤ Cα kX0

3 (x) χRn\(∪Qk∈FQk)(x) +
∑
Qk∈F

ωX0
2 (Qk)
|Qk|

χQk(x).

Note that the sum can be restricted to those cubes in F that meet Q̃0. Therefore we
pick such a cube Qk and show that ωX0

2 (Qk) ≤ Cαω
X0
3 (Qk) which in turn implies

(4.6).
Case 1: Qk ⊂ Q̃0. As before ωX0

2 (Qk) ≤ Cα ωX0
3 (Qk).

Case 2: Qk 6⊂ Q̃0. As Qk ∩ Q̃0 6= Ø, it is not difficult to show that there exists Q̄k
a dyadic “child” of Qk such that Q̄k ⊂ Q̃0. Given this, since ωX0

2 is doubling we
have

ωX0
2 (Qk) ≤ C ωX0

2 (Q̄k) ≤ Cα ωX0
3 (Q̄k) ≤ Cα ωX0

3 (Qk).

Step 4. We only need to give the proof of Proposition 4.2.

Proof of Proposition 4.2. Take an arbitrary α ∈ (0, 1) and let β, δ > 0 be given by
the conclusion of Step 3. We fix Q0 ⊂ Rn and Q ∈ D(Q0). Let F = {Qk}k ⊂ D(Q)
be such that |||µF |||C(Q) ≤ δ. Then, we use Lemma 3.8 and for a.e. x ∈ Q we obtain

PFk
XQ
L (x) ≈

k
XQ0
L (x)

ω
XQ0
L (Q)

χRn\(∪Qk∈FQk)(x) +
∑
Qk∈F

ω
XQ0
L (Qk)

|Qk|ω
XQ0
L (Q)

χQk(x)

=
PFk

XQ0
L (x)

PFω
XQ0
L (Q)

,

where we have used that PFω
XQ0
L (Q) = ω

XQ0
L (Q). This and (3.7) imply

PFk
XQ0
L (x)

(PFω
XQ0
L )Q

≥ C PFk
XQ
L (x) |Q| ≥ C

PFk
XQ
L (x)

ω
XQ
L (Q)/|Q|

= C0
PFk

XQ
L (x)

(PFω
XQ
L )Q

.

We apply this estimate and the conclusion of Step 3 with Q in place of Q0 to
conclude that∣∣{x ∈ Q : PFk

XQ0
L (x) ≤ C0 β (PFω

XQ0
L )Q}

∣∣
≤
∣∣{x ∈ Q : PFk

XQ
L (x) ≤ β (PFω

XQ
L )Q}

∣∣ ≤ α |Q|.
Next, by the extrapolation of Carleson measures Theorem 2.6, there exist 0 < α0 <
1 and β0 > 0 such that for every Q ∈ D(Q0),∣∣{x ∈ Q : kXQ0

L (x) ≤ β0 (PFω
XQ0
L )Q}

∣∣ ≤ α0 |Q|.
This fact plus Proposition 2.2 imply the existence of q = qL and a uniform constant
C1 such that for all Q ∈ D(Q0),(

−
∫
Q

k
XQ0
L (y)q dy

) 1
q ≤ C1−

∫
Q

k
XQ0
L (y) dy.

If we specify this estimate to Q = Q0 we obtain as desired (4.7). We notice that the
previous estimate and the fact that ωXQ0

L is doubling imply kXQ0
L ∈ RHq(Q0). �

5. Proof of Propositions 2.2 and 2.4

The proofs that we present here follow the classical ideas in [CF] (see also [GR],
[Gra], [Per]).
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5.1. Proof of Proposition 2.2. We show that (b) =⇒ (a) =⇒ (c) =⇒ (d) =⇒
(e) =⇒ (b).

(b) =⇒ (a) We pick 0 < α < 1 such that C0 α
θ < 1, and C0 α

θ < β < 1. Then (b)
easily implies ω � ν.

(a) =⇒ (c) We first show that ω � ν. We remind the reader at this point that our
dyadic cubes are “1/2-open”, i.e., they are Cartesian products of intervals closed at
the left-hand endpoint, and open on the right. We note that any open set G ⊂ Rn
may be realized as the disjoint union of a countable collection of such cubes.

Let α, β be the constants in the condition ω � ν. Suppose that ω is not absolutely
continuous with respect to ν, that is, there exists E ⊂ Q0 such that ν(E) = 0 and
ω(E) > 0. If Q0 ( Rn we extend the measure ω to Rn so that is identically zero
outside Q0 (abusing notation, we call the new measure ω). Since ω is a regular
measure there exists an open set G ⊃ E such that ω(G) < β−1 ω(E). As noted
above, we can cover G by a pairwise disjoint collection of cubes {Qj}j , belonging to
the dyadic grid induced by Q0. If Q0 ⊂ Qj0 for some j0 then 0 = ν(E) < αν(Q0)
implies, by ω � ν,

ω(E) < β ω(Q0) ≤ β ω(Qj0) ≤ β ω(G) ,

and we obtain a contradiction. Thus, Q0 is not contained in any of the cubes Qj .
Therefore, if E ∩ Qj 6= Ø then Qj ( Q0 and thus Qj ∈ D(Q0). Using ω � ν, we
have that 0 = ν(E ∩Qj) < αν(Qj) yields ω(E ∩Qj) < β ω(Qj). We sum on j and
conclude that

ω(E) =
∑

j:Qj∩E 6=Ø
ω(E ∩Qj) ≤ β

∑
j

ω(Qj) = β ω(G),

which leads us again to a contradiction. Therefore, we have shown that ω � ν.
Next, we take F = {x ∈ Q : kω(x) ≤ (1− β)−

∫
Q
kω dν}. Then,

ω(F ) =
∫
F

kω(x) dν(x) ≤ (1− β)
(
−
∫
Q

kω dν
)
ν(F ) ≤ (1− β)ω(Q).

which implies that ω(Q \ F )/ω(Q) ≥ β. We apply (a) to E = Q \ F and then
ν(E)/ν(Q) ≥ α. Passing to the complement we readily obtain ν(F ) ≤ (1−α) ν(Q).

(c) =⇒ (d) Given Q ∈ D(Q0) and λ > −
∫
Q
kω dν we use the Calderón-Zygmund

decomposition with respect to the dyadic doubling measure ν to obtain that there
exists a family of maximal, therefore disjoint, cubes {Qj}j ⊂ D(Q) such that

{x ∈ Q : Md
ν,Qkω(x) > λ} =

⋃
j

Qj , λ < −
∫
Qj

kω(x) dν(x) ≤ Cν λ,

here Md
ν,Q is the dyadic maximal operator with respect to the measure ν and in

the sup the cubes are in D(Q). We apply (c) to each Qj to conclude that

ν{x ∈ Qj : kω(x) > β λ} ≥ ν{x ∈ Qj : kω(x) > β −
∫
Qj
kω dν} ≥ (1− α) ν(Qj).

Then the desired estimate follows easily:

ω{x ∈ Q : kω(x) > λ} ≤ ω{x ∈ Q : Md
ν,Qkω(x) > λ} =

∑
j

ω(Qj) ≤ Cν λ
∑
j

ν(Qj)

≤ Cν
1− α

λ
∑
j

ν{x ∈ Qj : kω(x) > β λ} ≤ Cν
1− α

λ ν{x ∈ Q : kω(x) > β λ}.
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(d) =⇒ (e) We take N > cQ := −
∫
Q
kω dν and write kω,N = min{kw, N}. We

observe that

−
∫
Q

kω,N (x)1+δ dν(x) ≤ 1
ν(Q)

∫
Q

kω,N (x)δ dω(x)

=
δ

ν(Q)

∫ N

0

λδ ω{x ∈ Q : kω(x) > λ} dλ
λ

=
δ

ν(Q)

∫ cQ

0

· · ·+ δ

|Q|

∫ N

cQ

· · · = I + II.

The estimate for I is trivial:

I ≤ δ

ν(Q)
ω(Q)

∫ cQ

0

λδ
dλ

λ
= c1+δ

Q .

For II we first observe that in (d) we can assume that 0 < β ≤ 1 (otherwise we
make the right hand side bigger replacing β by 1). Then, using (d) we obtain

II ≤ δ C0

ν(Q)

∫ N

cQ

λδ+1 ν{x ∈ Q : kω(x) > β λ} dλ
λ

≤ δ C0

ν(Q)β1+δ

∫ N

0

λδ+1 ν{x ∈ Q : kω(x) > λ} dλ
λ

=
δ C0

(δ + 1)βδ+1
−
∫
Q

kω,N (x)1+δ dν(x).

We next pick δ > 1 small enough so that the constant in front of the integral is
smaller than 1/2. Then, we have

−
∫
Q

kω,N (x)1+δ dν(x) ≤ c1+δ
Q +

1
2
−
∫
Q

kω,N (x)1+δ dν(x)

and we can hide the last term into the left hand side (this term is finite since kω,N ≤
N). Thus the desired estimate follows at once by the monotonous convergence
theorem.

(e) =⇒ (b) Using Hölder’s inequality we obtain

ω(E)
ν(Q)

= −
∫
Q

χE kω dν ≤
(
ν(E)
ν(Q)

) 1
(1+δ)′

(
−
∫
Q

k1+δ
ω dν

) 1
1+δ

≤ C2

(
ν(E)
ν(Q)

) 1
(1+δ)′ ω(Q)

ν(Q)
,

and the desired estimate follows at once.

5.2. Proof of Proposition 2.4. For (i) it suffices to show that ω � ν implies
ν � ω. Let α, β ∈ (0, 1) be the constants in the condition ω � ν. Let α′ = 1 − β
and 1−α < β′ < 1. If E ⊂ Q ∈ D(Q0) with ω(E)/ω(Q) < α′ then ω(Q\E)/ω(Q) >
1 − α′ = β. By ω � ν it follows that ν(Q \ E)/ν(Q) ≥ α which in turn implies
ν(E)/ν(Q) ≤ 1− α < β′, and this shows ν � ω.

To prove (ii) we first observe that � is clearly reflexive (i.e., ν � ν) and we have
just proved that it is also symmetric (i.e., ω � ν implies ν � ω). To show the
transitivity we use (b) in Proposition 2.2. If ω, ν, µ are non-negative regular Borel
measures dyadically doubling such that ω � ν and ν � µ, we have

ω(E)
ω(Q)

≤ C0

(
ν(E)
ν(Q)

)θ
≤ C0 C

′
0

(
µ(E)
µ(Q)

)θ·θ′
,

where in the first (resp. second) inequality we have used (b) in Proposition 2.2
applied to ω � ν (resp. ν � µ) —notice that ν and µ are dyadically doubling.
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Then, using again Proposition 2.2 it follows as desired that ω � µ (here we use that
µ is dyadically doubling).
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