
SOME REMARKS ON OSCILLATORY INTEGRALS

GERD MOCKENHAUPT

1. Introduction

The purpose of this note is to describe some results about oscillatory
integral operators. Speci�cally we are interested in bounds in Lebesgue
spaces of operators given by

T�f(x) =

Z
Rk

ei�'(x;�) f(�) d�;

with '(x; �) a real-valued smooth function on Rn �Rk; k � n. Obvi-
ously T� is bounded as maps from Lqcomp to L

p

loc. What is of interest
here is the dependence of the norm for increasing �. This will of course
depend on the conditions we put on the phase function '. To guarantee
that ' lives on an open subset of Rn �Rk it is natural to start with
the condition

rank d�dx' = k; x 2 Rn and � 2 Rk:(1)

We will assume this condition throughout this note. For work related
to weaker assumptions see, e.g. [21] and [18]. One of the questions we
will ask is: What is the optimal (q; p)-range for which the operator T�
has norm of order ��n=p? In particular we would like to understand
how this range will depend on k.
To put things in perspective let us begin by describing what is known

for the case k = n: A model phase function here is '(x; �) = x � �, for
x; � 2 Rn. Then T� is a localized version of the Fourier transform and
the (Lqcomp; L

p

loc
)-boundedness properties are covered by the Hausdor�-

Young inequality. For general phase functions satisfying (1) the L2-
theory of Fourier integral operators gives

kjT�kjLqcomp!L
p

loc

� C ��n=p;

with p = q0 � 2 the dual exponent of q, i.e. 1=q0 + 1=q = 1.
Next we consider the case k = n� 1: A basic result was obtained by

E. M. Stein in the sixties. He discovered, for n � 2, that the Fourier
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transform has the following restriction property: For the unit sphere
Sn�1 in Rn and d� a rotationally invariant measureZ

Sn�1

j bf(�)j2 d�(�) � C kfk2
Lp

0

(Rn)
;(2)

for some p0 > 1. By localizing to a ball of radius � inRn, the dual of this
inequality states that the operator T� with phase function '(x; �) =
x � (�), where  : U ! Sn�1 parameterizes a coordinate neighborhood

of the unit sphere in Rn, has norm of order ��n=p as a map from L2(U)
to Lp

loc
for some p <1. Improvements on the range of exponents p were

made by P. Tomas [26] and E.M. Stein. Moreover, it was shown by E.M.
Stein (see [24]) that for nonlinear phase functions ' the norm of T� has

order ��n=p as an operator from L2
comp to L

p

loc
for p � 2(n+1)=(n� 1),

provided ' satis�es the following curvature condition: for each x 2 Rn

the hypersurface parameterized by

� 7! rx'(x; �) has nonvanishing Gaussian curvature.(3)

This (L2; Lp)-result is sharp in the sense that p = 2(n + 1)=(n � 1)
is critical. Moreover, due to an example of J. Bourgain [2, 4]
under the conditions (3) and (1) Stein's result can not be im-
proved in case n is odd if we require q = 1 (see also [15]).
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Figure: (p; q)-range for k = n and k = n� 1.

However under some further
conditions, remarkable im-
provements have been made
by J. Bourgain [1]. His
method, which led to fur-
ther improvements in [27, 5]
and [25], showed in particu-
lar for the situation of the
unit sphere described above,
that for certain exponents
p less then the critical L2-
exponent 2(n+1)=(n�1) that

kT�kL1(U)!L
p

loc

� C ��
n

p : It is

expected that the (q; p)-range for which this inequality holds is deter-
mined by: p > 2n=k and p � (2n � k)=kq0 (see Figure). For n = 2
the norm of T� is essentially well understood due to work of L. Car-
leson and P. Sj�olin [6] provided the curvature condition (1) and (3) are
satis�ed. We note that for the expected bounds the crucial point is to
understand for the operators T� the (L1; Lp)-bounds.
Our main concern here are the cases k < n � 1. There have been

some results in the past addressing the problem of (Lqcomp; L
p

loc
)-bounds
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for oscillatory integral operators in these cases. However, these results
mainly discussed the cases k = 1; n� 2 or n=2 for n even (see e.g. [7],
[8], [12], [11], [19], [20]). For di�erent k some results are obtained in
[10] and [17]. A natural question which we ask here is the following:
Suppose (1) holds. Under which conditions on the phase function '

does T� map Lqcomp(R
k) to Lp

loc
(Rn) with norm of order ��

n

p in the full

range

p �
2n� k

k
q0 and p >

2n

k
for k < n?(4)

One of our results will be that we can expect these optimal bounds
only when k � n=2. We will also see that in some situations where
the phase function is linear in the x-variables an analogue of the Stein-
Tomas result holds, i.e. optimal (L2; Lp)-bounds hold, but the (L1; Lp)-
bounds fail to hold in the range given in (4). This apparently appears
only if k < n� 2.
We should mention that one of the main di�culties which distin-

guishes the case k < n�1 from k = n�1 lies in the fact that, although
a stationary phase argument shows that for  2 C1(Rk) and most

x 2 Rn the decay of T� (x) is of order ��k=2, in general isotropic
bounds for T�f(x) decay slower (see e.g. [9]).

2. A necessary curvature condition

Here we derive a necessary condition on the phase function ' such
that T� is bounded in the full range described in the above �gure (for

k � n). First we observe that if T� has norm of order ��n=p, then for
each x0 the operator with phase function 'R(x; �) = R ('(x0+x=R; �)�
'(x0; �)) satis�es the same bounds uniformly in R > 0. Hence, the op-
erator with the linearized phase function (x; �) 7! x � rx'(x0; �) has
the same bounds. By reparameterizing the k-dimensional submani-
fold � 7! rx'(x0; �) over the tangent plane at a given point using
translation invariance we may assume that x � rx'(x0; �) has the form
(x1 ��; x2 � (�)), with  (0) and d� (0) both vanishing. A further scaling
argument {replacing x1 ! Rx1; x2 ! R2x2 and � ! �=R and letting

R ! 1{ shows that the phase function x1 � � + x2 � ~ (�), here ~ is
the second order part of the Taylor expansion of  , gives rise to an
operator

~Tf(x) =

Z
Rk

ei(x1��+x2�
~ (�) ) f(�) e�j�j

2=2 d�;

which is bounded from Lq(Rk) to Lp(Rn) for (q; p) on the line p =

(2n� k)=kq0 provided that T� has norm of order ��n=p on this line.
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Write

x2 � ~ (�) =
1

2
� �Q(x2)�;

with Q(x2) =
Pn�k

j=1 x2;j Bj and Bj 2 Sym(k), where Sym(k) denotes

the space of symmetric matrices on Rk. To emphasize the dependence

on Q the operator ~T will be denoted by TQ in the following and we
refer to the submanifolds parameterized by

H : Rk 3 � 7! (�; � �B1�; : : : ; � �Bn�k�) 2 R
n

as the associated quadratic submanifold MQ.

If TQ maps L1(Rk) to Lp(Rn), then in particular for the constant

function 1 we have G = ~TQ1 2 L
p. A computation gives

kGkpp = C

Z
Rn�k

j det(E + iQ(x2))j
�p=2+1 dx2;(5)

here E denotes the unit matrix in Sym(k). To ensure that the above
integral is �nite for some p <1 we need that the symmetric matrices
Bj; 1 � j � n � k, are linearly independent which requires that n �
k(k + 3)=2. To �nd a further restriction we show

Proposition 2.1. If the function G above is in Lp(Rn), for all p >
2n=k, thenZ

Sn�k�1

j detQ(x)j�
 d�(x) <1 for all 
 <
n� k

k
;(6)

with � the uniform measure on the unit sphere Sn�k�1.

Proof. To see this we use polar coordinates in (5) and write x2 = ry,
and r = jxj. Then

j det(E + iQ(x))j2 = det(E +Q(x)2

= 1 + r2c21 + : : : c2k�1r
2k�2 + detQ(y)2r2k:

Suppose that supj;y jcj(y)j � c and let L(y) = maxf1; c=j detQ(y)jg.
Then we get the following lower bound on kGkpp for p = 2n=k + 2�,
� > 0: Z

Sn�k�1

Z 1

L(y)

rn�k�1

jrk detQ(y)j(n�k)=k+�
drd�(y);

which evaluates to (6) by integrating the inner integral.

As a consequence we show:

Corollary 2.2. Suppose the function G de�ned above is in Lp(Rn) for
all p > 2n=k. Then the following hold:

� If k is odd, then k � n

2
.
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� If k is even and the subspace fQ(x)jx 2 Rn�kg intersects the cone

of positive de�nite matrices in Sym(k), then k � n=2.

Proof. The idea here is to �nd a hypersurface on the unit sphere in
Rn�k where the function detQ vanishes at least of order 1. Assuming
k < n=2, i.e. (n � k)=k > 1, Proposition (2.1) implies that the inte-
gral

R
Sn�k�1

j detQj�1 d� is �nite. Since the polynomial detQ(x) =
det(x1B1 + � � �+ xn�kBn�k), with Bi 2 Sym(k), is homogenous of de-
gree k for some power � > 0 the function jxj�j detQ(x)j�1 must be in-
tegrable over the unit ball in Rn�k. We can assume that detQ(x) does
not vanish identically and that B1 is a diagonal matrix with entries �1.
If k is odd we can write locally detQ(x) = (x1 � '(x2; : : : ; xn�k)) (x)
where ';  are real continuous functions and '(0) = 0. Hence , for
all � > 0, j detQj�1 is not locally integrable on the unit ball in Rn�k

and therefore k � n=2. To show the second part we may assume that
B1 = E. Then x1 ! Q(x1; x2; : : : ; xn�k) is the characteristic polyno-
mial of the symmetric matrix Q(0; x2; : : : ; xn�k) and therefore has only
real zeros. So again detQ(x) = (x1 � '(x2; : : : ; xn�k)) (x). As before
we �nd that k has to be � n=2.

The condition in the proposition above may be phrased in an in-
variant way. Consider the submanifold M parameterized by � 7!
rx'(x0; �) and �x a point P = rx'(x0; �0). We assume that M car-
ries the induced Euclidean metric. Let NP (M) be the normal plane
at P 2 M , TP (M) be the tangent plane at P , v 2 NP (M) and let
GP (v) be the Gaussian curvature at P of the orthogonal projection of
M (along v) into Rv � TP (M). Then (6) states thatZ

Sn�k�1�Np(M)

jGP (v)j
�
 d�(v) < 1 for all 
 <

n� k

k
;(7)

where � denotes a nontrivial rotationally invariant measure on the unit
sphere in NP (M).

3. Restriction to quadratic submanifolds

In the following we show some positive results for the operators TQ.

We write TQf =\f d�Q, where d�Q is the measure on Rn with support
on MQ de�ned by

�Q(f) =

Z
Rk

f(�;H(�)) e�j�j
2=2 d�:

Theorem 3.3. If
R
Sn�k�1

j detQ(x)j�
 d�(x) <1 for 
 = n�k
k
. Then

TQ is bounded from L2(Rk) to Lp(Rn) for p � 22n�k
k

.
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Proof. It is enough to show (and in fact equivalent) that the compo-

sition TQT
�
Qf = cd� � f maps the dual space Lp

0

(Rn) into Lp(Rn) for

p � 22n�k
k

. Our strategy is now to de�ne an analytic family Tz which

evaluates at z = 0 to TQ and is bounded from L1 to L1 on the line

<z = 1=2 and from L2 to L2 for <z = �n�k
k
. A complex interpolation

argument will then give the theorem. This is analogous to Stein's proof
of the Tomas-Stein theorem. The main point here is to �nd a suitable
analytic family. To de�ne this analytic family we split variables and
write as in the previous section x = (x1; x2) 2 Rk �Rn�k. For z 2 C

we put

Kz(x) =
(1 + j detQ(x2)j)

z

�(n� k + kz)
dd�Q(x1; x2):

A computation shows that the latter expression is a constant multiple
of

(1 + j detQ(x2)j)
z

�(n� k + kz)
det(E + iQ(x2))

�1=2 e�x1�(E+iQ(x2))
�1x1=2(8)

We de�ne Tzf = Kz�f . Note that T0f = ccd��f; c 6= 0; and the family
Tz is analytic in the whole complex plane. For (L1; L1)-bounds for Tz
we have to get uniform bounds for Kz on <z = 1=2. This follows easily
from (1+ j detQ(x2)j)

2 � det(E+Q(x2)
2). For the L2-boundedness we

have to bound the Fourier transform of Kz. To compute the Fourier
transform of Kz we �rst evaluate the Fourier transform with respect to
the x1-variable. This gives

cKz(�1; �2) = C

Z
Rn�k

e�ix2��2
(1 + j detQ(x2)j)

z

�(n� k + kz)
e��1�(E+iQ(x2))�1=2 dx2

Hence, to bound cKz it is enough to get bounds on the Fourier transform
of (1 + j detQj)z. Now, for <z = �n�k

k
+ "; " > 0; we �nd, using polar

coordinates x2 = ry; r = jx2j the following bound for kcKzk1:

C sup
�2Rn�k

����
Z
Sn�k�1

Z 1

0

(1 + rkj detQ(y)j)z

�(n� k + kz)
eiry�� rn�k�1 dr dy

����
Since we are assuming

R
Sn�k�1

j detQ(y)j�
n�k

k d�(y) <1; we see that
the above integral is bounded by a constant times

sup
x2R

j
1

�(n� k + kz)

Z 1

0

rn�k�1(1 + rk)z eixr dr j:

On the line <z = �n�k
k
, the function rn�k�1(1 + rk)z is essentially

r�1+kz+n�k, i.e., homogeneous of degree �1 + is. Its Fourier transform
is homogeneous of degree �is and produces a pole at z = �n�k

k
which
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cancels with the Gamma function in front of the last integral. Hence

jcKzj is bounded.

We note that if we would have been working with the analytic family

~Kz(x1; x2) =
1

�(n� k + kz)
det(E +Q(x2)

2)z=2 cd�(x1; x2)
then the above method gives the following

Corollary 3.4. If
R
Sn�k�1

j detQ(x)j�
 d�(x) < 1 for all 
 < n�k
k

.

Then TQ is bounded from L2(Rk) to Lp(Rn) for p > 22n�k
k

.

Arguing similarly one can show that if for a suitable polynomial p(z)
the �-distributions

�z(f) = p(z)

Z
Rn�k

j detQ(y)jz f(y) dy;

has a bounded Fourier transform on the line <(z) = �n�k
k

then TQ
is bounded from L2(Rk) to Lp(Rn) (p has only to annihilate �nitely

many poles of b�z). Using this observation one can show that in certain
cases one has optimal (L2; Lp)-bounds for TQ, although the (L1; Lp)-
bounds fail to hold for some p > 2n=k. We provide a few examples in
the following.

First we de�ne for (x;X) 2 Rk � Sym(k) �= Rn with n =
k(k+3)

2

Tf(x;X) =

Z
Rk

ei(x��+��X�) f(�) e�j�j
2=2 d�:(9)

Then we have the following theorem, whose �rst part was indepen-
dently shown in [10] and for the special case k = 2 in [7].

Theorem 3.5. The operator T has the following properties:

(1) T is bounded from L2(Rk) to Lp(Rn) i� p � 22n�k
k

.

(2) T is unbounded as an operator from L1(Rk) to Lp(Rn) for p �
2(k + 1) (= 2n

k
+ k � 1).

For the proof we will need the Fourier transform of j detXjz; X 2
Sym(k); z 2 C. This has been computed �rst by T. Shitani and more
recently by Faraut and Satake [13] using the theory of Jordan algebras.
To state the result, we note �rst that Sym(k) \GL(k;R) decomposes
under the operation (g;X)! gXgt into k+1 GL(k;R)-orbits, 
j; j =
0; : : : ; k, where 
j is the cone of symmetric matrices of signature (k �
j; j). Let 
0 be the orbit of the unit matrix E 2 Sym(k). Associated
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to 
0 is the Gamma function

�
0
(s) =

Z

0

e�trace(X) (detX)s�
k+1
2 dX

= (2�)
k(k�1)

4

Y
0�j�k

�(s�
j � 1

2
):

For 0 � i � k we de�ne Zeta distributions

�i(f; s) =

Z

i

f(X) j detXjs dX:

The poles here lie on the arithmetic progression 1
2
Z \ (�1;�1]. We

have

�i( bf; s� k + 1

2
) = (2�)�k(k+1)=2 ei�ks=2 �
0

(s)
X
0�i�k

ui;j(s) �j(f;�s);

where ui;j is a polynomial of degree k in e�i�s. Putting s = k+1
2
(1� z),

then it easily follows that the Fourier transform of

1

�
0
(k+1

2
(1� z))

1

j detXjz
k+1
2

is a bounded function inX 2 Sym(k) on the imaginary line<z = 1 with
bounds growing at most exponentially along this line. Hence part (i)
follows. For the second part we will show that kT1kp <1 if and only if

p > 2(k+1). In fact, since kT1kpp = C
R
Sym(k)

j det(E+iX)j�p=2+1 dX,

we �nd using generalized polar coordinates

Z
Rk

Y
1�j�k

j1 + i�jj
�p=2+1

Y
1�i<j�k

j�i � �jj d�1 : : : d�k <1

Now, the worst decay of the integrant is along the coordinate axes.
Checking exponents it follows that the last integral is �nite if and only
if p > 2(k + 1).

We remark that one can show that the operator (9) is a bounded

operator from L1(Rk) to L2k+2(BR) with norm of order (logR)
1

2k+2 ,
where BR is a ball of radius R in Rn (note that 2k + 2 is an even
integer).
As a second example we consider for m > 1 the set M(m;C) of

complex m � m-matrices which we might consider as a real subspace



SOME REMARKS ON OSCILLATORY INTEGRALS 191

of Sym(4m) via the following real linear map

Q :M(m;C) 3 Z = X + iY !

0
BB@

0 0 X Y
0 0 �Y X
tX �tY 0 0
tY tX 0 0

1
CCA 2 Sym(4m);

where X; Y denote the real resp. imaginary part of Z. Note that for
� 2 C we have det(�E+iQ(Z)) = det(�2E+Z�Z)2. It has been shown
by E.M. Stein [23] that the Fourier transform of the Zeta distribution

�(f; s) =

Z
M(m;C)

j detZjs f(Z)dZ

is given by the 1

�(s)

j detZj�s�2m, where 
�(s) = 
(s)
(s� 2) : : : 
(s�

2m + 2), 
(s) = �(� s

2
)=�(2+s

2
). Let k = 4m and de�ne for (x; Z) 2

Rk � M(m;C) �= Rn, with n = 2m(m + 2), the oscillatory integral
operator

Tf(x; Z) =

Z
Rk

ei(x��+��Q(Z)�)) f(�) e�j�j
2=2 d�:

Then we have

Theorem 3.6. The operator T has the following properties:

(1) T is bounded from L2(Rk) to Lp(Rn) i� p � 22n�k
k

.

(2) T is unbounded as an operator from L1(Rk) to Lp(Rn) for p �
2m+ 1 (= 2n

k
+ k

4
� 1).

Using polar coordinates associated to the Cartan decomposition cor-
responding to the symmetric space SU(n; n)=S(U(n)� U(n)) it is not
hard to check that we have T1 2 Lp i�Z

Rm

h1 : : : hm
Q

1�i<j�m(h
2
i � h2j)

2Q
1�i�m(1 + h2i )

p�2
dh1 : : : dhm

is �nite, i.e. p > 2m+1. This con�rms the second part of the theorem.
These examples suggest that sharp L2-restriction estimates should

hold for most quadratic submanifolds. It would be interesting to �nd
out for which sets inside Sym(k)n�k for which sharp L2-restriction fails
(so far we have only some insight in the case n� k = 2; 3).
In the above examples k was always < n=2. However, there even in

case k = n�3 examples for which we have optimal (L2; Lp)-bounds but
the (L1; Lp)-bounds fail for some p > 2n=k: An example is provided
by

� �Q(x)� = (x1 + x3)�
2
n�3 + x1(�

2
1 + �23 + � � �+ �2n�5)x3(�

2
2 + �24 + : : : �2n�4)

+ 2x2(�1�2 + �3�4 + � � �+ �n�5�n�4)
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It can be shown that the Fourier transform of the corresponding �-
distribution is essentially a cone multiplier of order 3=(2n � 6) hence
bounded function. But we do not have (L1; Lp)-boundedness for
all p > 2n=(n � 3). To see this one has to check when j det(E +

iQ(x))j�p=2+1 is integrable, where Q is the Hessian of the quadratic
form � ! q(x; �). Now, E + iQ(x1 � x3; x2; x1 + x3) has eigenvalues

1+2ix1; 1+i(x1�
p
x22 + x23) and we �nd using polar coordinates in the

x2; x3-variables that the L
1-norm of j det(E+ iQ(x))j�p=2+1 is bounded

from below by a multiple ofZ
x1>0

1

(1 + jx1j)
p

2
�1

Z
jx1�rj�1

r dr�
(1 + jx1 + rj)

n�4
2 (1 + jx1 � rj)

n�4
2

� p

2
�1
dx1:

The last integral is �nite i� p

2
� 1 + n�4

2
(p
2
� 1) > 2, i.e. p > 2n+2

n�2
.

For more details and a description of how this examples arises in the
context of nonregular orbits under certain Lie group actions we refer to
[16]. Finally we mention the following theorem for the case k = n� 2
(see [16] and [7]).

Theorem 3.7. If B1; B2 2 Sym(n�2) are linear independent then for

the operator TQ corresponding to Q(x1; x2) = x1B1+x2B2 the following

statements imply each other

(1) TQ is bounded from L2(Rk) to Lp(Rn) for p � 2n+2
n�2

.

(2) TQ1 2 L
p(Rn) for p > 2n

n�2
.

(3)
R
S1

j detQ(x)j�
 <1 for 
 < 2
n�2

.
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