
PRINCIPAL SERIES AND WAVELETS

CHRISTOPHER MEANEY

Abstract. Recently Antoine and Vandergheynst [1, 2] have pro-

duced continuous wavelet transforms on the n-sphere based on a

principal series representation of SO(n; 1). We present some of

their calculations in a more general setting, from the point of view

of Fourier analysis on compact groups and spherical function ex-

pansions.

1. Coherent States

We begin with Antoine and Vandergheynst's de�nition of a coherent

state, as presented in [1, 2]. Here G is a locally compact group.

� Suppose thatX is a homogeneous space ofG,X = G=H, equipped

with a G-invariant measure.

� Let (U; L2(Y )) be a unitary representation of G on some Lebesgue

space L2(Y ).
� Assume there is a Borel cross section

� : X �! G; � (x)H = x; 8x 2 X:

� Say that � 2 L2 (Y ) is admissible mod(H; �) whenZ
X

jhU (� (x)) �j'ij
2
dx <1; 8' 2 L2 (Y ) :

� The orbit of an admissible vector � under � (X),

fU (� (x)) � : x 2 Xg

is called a coherent state.

Note that there are other variations on the theme of \restricted

square integrability", such as the case described in [3].
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2. Frames

Suppose now that � is an admissible vector in L2(Y ). De�ne a linear
operator

A�;� : L
2 (Y ) �! L2 (Y )

by

hA�;�'1j'2i =

Z
X

h'1jU (� (x)) �i hU (� (x)) �j'2i dx; 8'1; '2 2 L
2(Y ):

When this has a bounded inverse, say that the coherent state is a frame.

When the orbit of � under � (X) is a frame of L2 (Y ) there is the

continuous wavelet transform,

W� : L
2 (Y ) �! L2 (X)

de�ned by

W�' (x) = h'jU (� (x)) �i ; 8' 2 L2(Y ):

This operator is one-to-one and its range H� is complete with respect

to the inner-product:

hW�'jW� iH� =


W�'jW�A

�1
�;� 

�
L2(X)

;  ; ' 2 L2(Y ):

Hence there is a unitary isomorphism W� : L
2 (Y ) �! H�.

3. The setting

For the calculations which we will describe here, the ingredients are:

� G is a noncompact connected semisimple Lie group with �nite

centre and Cartan involution �.
� K is the corresponding maximal compact subgroup.

� G = KAN is an Iwasawa decomposition.

� M is the centralizer of A in K.

� X = G=N .

� Y = K=M .

� U is a certain principal series action of G on L2(K=M), to be

de�ned below.

� Assume that (K;M) is a Gel'fand pair.

See Knapp's book for details [5, page 119].
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4. Decompositions

There are Iwasawa projections K : G! K, A : G! A, N : G! N ,

for which

g = K(g)A(g)N(g); 8g 2 G:

The Haar measure on G is given in terms of that of K and right Haar

measure of AN , [5, page 139] with

dg = dk dr(an):

The measure on K is normalized so thatZ
K

dk = 1:

There is a mapping log : A! a with

exp(log(a)) = a; 8a 2 A:

For each � 2 a
� let

a� = e�(log(a)); 8a 2 A:

5. Invariant Integration

There is the special functional � 2 a
� determined by the structure of

the group G. For f 2 Cc(G) the integral formula for Haar measure on

G is Z
G

f(x) dx =

Z
K

Z
A

Z
N

f(kan) a2� dndadk:

See [6, Prop. 7.6.4] for details.

We can use KA to parametrize G=N and the G-invariant integral on
G=N is given byZ

G=N

F (y)dy =

Z
K

Z
A

F (kaN)a2� dadk

for F 2 Cc(G=N). Hence, we take the Borel section � : G=N ! G to

be

�(kaN) = ka; 8a 2 A; k 2 K:
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6. Induced Representations

Consider the space of continuous covariant functions:

I(G) =

8<
:f :

f : G! C continuous

f(gman) = a��f(g);
8g 2 G;m 2M; a 2 A; n 2 N

9=
; :

Left translation by elements of G preserves the property of covariance:

(U(g)f) (x) = f
�
g�1x

�
; 8g; x 2 G; f 2 I(G):

U(g) : I(G) �! I(G); 8g 2 G:

For a covariant function f 2 I(G),

f(x) = f(K(x)A(x)N(x)) = A(x)��f(K(x)); 8x 2 G:

Equip I(G) with the inner product

hf1jf2i =

Z
K

f1(k)f2(k) dk

and norm

kfk =

�Z
K

jf(k)j
2
dk

�1=2

:

The completion of I(G) is

HU
�= L2(K=M):

The action of G on HU is an example of a principal series represen-

tation, see section 8.3 of Wallach's book [6]. For our purposes, the

essential fact is that U jK is the regular representation of K on a sub-

space of L2(K). If f 2 L2(K=M), extend it to be an element of HU by

assigning

f(kan) = a��f(k):

Notice that if f 2 L2(K=M),

U(g)f(k) = A(g�1k)��f(K(g�1)k); k 2 K; g 2 G:

For each g 2 G the action of U(g) extends to a continuous linear

operator on HU . It is a unitary representation:

hU(g)f1jU(g)f2i =

Z
K

(U(g)f1)(k)(U(g)f2)(k) dk

=

Z
K

A(g�1k)�2�f1(K(g
�1k))f2(K(g�1k)) dk: = hf1jf2i

Lemma 1. The representation (U;HU) is unitary. When restricted to

K, it is the action of K by left translation on L2(K=M).
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7. Fourier analysis on the compact group K

We review some basic facts about analysis on compact groups. LetbK be the dual object of K, consisting of a maximal set of inequivalent

irreducible unitary representations (
; V
) of K.

For each integrable function f on K there is the Fourier series:

f(x) =
X

2 bK

d
f � �
(x):

Convolution with a character is

f � �
(x) =

Z
K

f(y) tr(
(y�1)
(x)) dy = tr( bf(
)
(x))
where the Fourier coe�cient is

bf(
) = Z
K

f(x)
(x�1) dx =

Z
K

f(x)
(x)� dx:

The Fourier coe�cients are linear transformationsbf(
) 2 HomC (V
; V
):

Fourier coe�cients of convolutions are products of Fourier coe�cients:

(f � g)^(
) =

Z
K

Z
K

f(x)g(x�1y)
(y�1) dxdy

=

Z
K

Z
K

f(x)g(x�1y)
(y�1xx�1) dxdy

= bg(
) bf(
):
De�ne left translation on K by

xf(y) = f(x�1y); 8x; y 2 K;

and the composition with inversion

f_(x) = f(x�1); 8x 2 K:

Fourier coe�cients of left translates satisfy

(xf)
^
(
) =

Z
K

f(x�1y)
(y�1xx�1) dy = bf(
)
(x�1)

Fourier coe�cients of adjoints satisfy

(g_)^(
) = bg(
)�:
The L2(K) inner product can be viewed as a convolution:Z

K

f(x)g(x) dx =

Z
K

f(x)g_(x�1) dx = f � g_(1):
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For f; g 2 L2(K), the Fourier series of their convolution is absolutely

convergent, see [4],

f � g(x) =
X

2 bK

d
f � g � �
(x)

f and g in L2(K):

f � g(x) =
X

2 bK

d
 tr
�bg(
) bf(
)
(x)� ;

Z
K

f(x)g(x) dx =
X

2 bK

d
 tr( bf(
)bg(
)�);
kfk

2

2 =
X

2 bK

d





 bf(
)


2
�2

:

In particular, for each 
 2 bK,

k bf(
)k2�2 = d
kf � �
k
2
2:

See Appendix D of Hewitt and Ross [4] for details about the norms

k � k�p; 1 � p � 1:

If h 2 L1(K) then

f 7! f � h; L2(K) �! L2(K);

is a bounded linear operator which commutes with left translation.

Similarly,

f 7! h � f; L2
(K) �! L2

(K);

is a bounded linear operator which commutes with right translation.

The norm of both of these operators is

sup

2 bK




bh(
)



�1

:

8. Homogeneous Spaces

Now we return to dealing with functions on K=M , which we identify

with right-M -invariant functions on K.

For each 
 2 bK, let

V M

 = fv 2 V
 : 
(m)v = v; 8m 2M g

and P
 : V
 �! V M

 , the orthogonal projection on to this subspace.

Let � be the normalized Haar measure onM . Its Fourier coe�cients

are b�(
) = P
 ; 8
 2 bK:
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If f 2 L1(K=M) then

f = f � �; =) bf(
) = P
 bf(
); 8
 2 bK:
We are restricting our attention to the case where (K;M) is aGel'fand

pair, which means that

dim
�
V M



�
� 1; 8
 2 bK:

Lemma 2. If (K;M) is a Gel'fand pair and f 2 L1(K=M), then for

all 
 2 bK,

rank( bf(
)) � 1 and (V M

 )? � ker( bf(
)�):

Lemma 3. If (K;M) is a Gel'fand pair and f 2 L1(K=M), then for

all 
 2 bK, bf(
) bf(
)� = k bf(
)k2�2P
 :
Lemma 4. If (K;M) is a Gel'fand pair and f 2 L1(K=M), then for

all 
 2 bK,

k bf(
)k�p = k bf(
)k�2 ; 1 � p � 1:

Lemma 5. If (K;M) is a Gel'fand pair and h 2 L1(K=M), then the

norm of the operator

f 7! f � h; L2(K) �! L2(K=M);

is

sup

n
kbh(
)k�2 : 
 2 bK o

= sup

np
d
 kh � �
k2 : 
 2 bK o

:

In this lemma, if dim
�
V M



�
= 0 then bh(
) = 0 and so we need only

take the supremum over those 
 for which dim
�
V M



�
= 1.

9. Admissible Vectors

In [2] the unitary representation (U;HU) of G is said to be square-

integrable modulo N if there is a non-zero vector � for whichZ
K

Z
A

jhU(ka)�j�ij
2
a2� dadk <1

for all � 2 HU . Such an � is called admissible.

Notice that this can be rearranged to sayZ
K

Z
A

��
U(a)�jU(k�1)�
���2 a2� dadk <1

for all � 2 HU . Recall that U jK is left translation.
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We then �nd thatZ
K

jhU(ka)� j �i j
2
dk =

Z
K

����
Z
K

(U(a)�) (x)� (kx) dx

����
2

dk

=

Z
K

��(U(a)�) � ��_(k)
��2 dk

=


(U(a)�) � ��_



2
2

Using the Plancherel formula for this,

(U(a)�) � ��_


2
2
=
X



d
 tr
�
(U(a)�)^(
)�b�(
)b�(
)�(U(a)�)^(
)�

=
X



d
k(U(a)�)
^(
)k2�2k

b�(
)k2�2
We arrive at the general version of Antoine and Vandergheynst's crite-

rion for admissibility.

Theorem 1. If � 2 HU = L2(K=M) has the property that

sup

2 bK

Z
A

k(U(a)�)^(
)k2�2 a
2� da <1

then � is admissible.

Since the functions here are right-M -invariant, the only non-zero

parts of the Fourier series correspond to those 
 for which P
 6= 0.

Theorem 2. If � 2 HU = L2(K=M) is admissible and there are con-

stants 0 < c1 � c2 for which

c1 �

Z
A

k(U(a)�)^(
)k2�2 a
2� da � c2

for all 
 2 bK with P
 6= 0, then the corresponding coherent state is a

frame.

We can reword this to see that the criterion for � to give rise to a

frame for L2(K=M) is that there are constants 0 < c1 � c2 for which

c1 � d


Z
A

k(U(a)�) � �
k
2

2
a2� da � c2;

for all 
 2 bK with P
 6= 0.
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10. Spherical Functions

Let bKM denote the set of those 
 2 bK with P
 6= 0. For each 
 2 bKM

de�ne the spherical function

'
 = �
 � � = � � �
:

If f 2 L1(K=M) its Fourier series isX

2 bKM

d
f � '
:

When K=M = Sn, this is the usual spherical harmonic expansion.

To use the criterion for a frame, we need estimates on

d


Z
A

k(U(a)�) � '
k
2

2
a2� da;

uniformly in 
 2 bKM .

11. Zonal Functions

A special case occurs when � is bi-M -invariant, since it is then ex-

panded in a series

� =
X

2 bKM

d
c
'
 with c
 = h�j'
i :

But U(a)� is also bi-M -invariant and its expansion is

U(a)� =
X

2 bKM

d
c
(a)'


with

c
(a) = hU(a)�j'
i =


�jU(a�1

)'

�
:

Since the spherical functions '
 are matrix entries of irreducible rep-

resentations,

'
 � '
0 =

(
'
=d
 if 
 = 
0

0 if 
 6= 
0;

and k'
k
2
2 = 1=d
. Hence, Theorem 2 says that a bi-M -invariant func-

tion � produces a frame for L2(K=M) when there are positive constants

c1 � c2 for which

0 < c1 �

Z
A

jc
(a)j
2
a2� da � c2

for all 
 2 bKM .
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12. Antoine and Vandergheynst

The results in [2] are concerned with the case where:

� G = SOe(1; 3), K �= SO(3), M �= SO(2), and K=M �= S2.

� A �= (0;1) with multiplication, X �= SO(3)� A, � = 1.

� bKM = f0; 1; 2; 3; : : :g, dn = 2n+1, and the spherical functions 'n
are normalized ultraspherical polynomials.

Suppose we use spherical coordinates (�; �) to parametrize S2. Propo-

sition 3.4 of [2] states that if � 2 L2(S2) is admissible andZ 2�

0

�(�; �) d� 6= 0

then � gives rise to a frame. This is achieved using the spherical har-

monic expansion of U(a)� and the asymptotics of the zonal spherical

functions, to get the inequality in Theorem 2 above.

In [2] there is presented a su�cient condition on a function � 2 L2(S2)

so that it satis�es the hypotheses of Theorem 1. These are similar to

the moment conditions in the Euclidean space setting, see Proposition 7

in [3]. Proposition 3.6 [2] states that if � 2 L2(S2) satis�esZ �

0

Z 2�

0

�(�; �)

1 + cos(�)
sin(�) d�d� = 0

then it is admissible.
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