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Abstract. We announce a new result (proved in collaboration

with T.A. Gillespie) on the boundedness of a class of Schur mul-

tiplier projections on the von Neumann-Schatten ideals Cp. We

also show that for 1 � p � 2 the average Cp norm of a 0{1 matrix

grows just as quickly as the largest norm of such a matrix.

1. Introduction

Calculating the norm of an operator which acts on one of the von Neu-
mann Schatten ideals Cp is often rather di�cult | even for rather sim-
ple operators | because of the scarcity of elements T 2 Cp for which
one can easily calculate (or even approximate) kTk

p
= kTk

Cp
. Even

for the algebraically simple Schur projections which act by replacing
certain �xed entries of the matrices of elements of Cp by 0, proving
boundedness results is typically quite hard.
To �x some notation, for 1 � p < 1, let Cp denote the von Neu-

mann Schatten ideal of compact operators on `2, with norm kTk
p
=

trace((T �T )p=2)1=p. We take C
1

to be the set of all compact operators
on `2 with the usual operator norm. We will let Cn

p
denote the n � n

matrices equipped with the corresponding norm. We will, as usual,

think of elements of Cp as being in�nite matrices.
Let Z denote the set of all zero-one arrays [ai;j]

1

i;j=1
. We are inter-

ested in the norms of projections de�ned by Schur multiplication of
such arrays. If A = [ai;j] 2 Z, de�ne the Schur projection corre-

sponding to A to be the map PA : T 7! A � T , where � denotes Schur
or elementwise multiplication of matrices. Let

Bp = fA 2 Z : PA 2 B(Cp)g :

The set of n� n matrices with zero-one entries will be denoted by Zn.
By requiring that each entry in an array is either zero or one with equal
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probability we may regard Z and Zn as being probability spaces with
the appropriate product measures.

If 1 � p <1 and 1

p
+ 1

q
= 1, then C�

p
= Cq, under the natural pairing

hS; T i = trace(ST ). If A 2 Bp then trace(PA(S)
�T ) = trace(S�PA(T ))

for all S 2 Cp, T 2 Cq and so it follows that kPAkp = kPAkq. In

particular note that B2 = Z with kPAkp = 1 for all A 2 Z and that

Bp = Bq.
It is a trivial consequence of the ideal inequalities for Cp that ifA 2 Z

is a nonzero array which is constant on each row (or on each column)
then kPAkp = 1 for all p. Proving boundedness for other types of arrays

has been signi�cantly more di�cult. The �rst major result was due to
Macaev (see [7]) who showed that the upper triangular truncation map
is bounded on Cp for 1 < p <1 (but not for p = 1 or p =1). In the
1980s Bourgain [3] showed boundedness results for a class of `Toeplitz'

arrays which are analogous to multiplier results from Fourier analysis.
In particular, for 1 < p <1 there is a constant Kp such that if A 2 Z
is any array which is constant on diadic blocks of (long) diagonals, then
kPAkp � Kp.

It is still an open question as to whether if 2 < r < p < 1 there is
always a Schur multiplier projection which is bounded on Cr, but not
on Cp. An important special case when r and p are even integers has
recently been solved (in the a�rmative) by A. Harcharras [8].

Recently, Alastair Gillespie and I have proved boundedness for a new
class of such projections.

De�nition 1.1. A zero-one array [aij] will be said to be obtainable
if for all indices i1; i2; j1; j2,�

ai1j1 ai1j2
ai2j1 ai2j2

�
6=

�
1 0

0 1

�
:

Theorem 1.2. For all p 2 (1;1) there exists a constant Kp such that

for every obtainable array A, kPAkp � Kp.

The proof, which depends on the fact that for 1 < p < 1, Cp is a

UMD space, uses a new result from spectral theory proved in [5]; the
sum of two commuting real scalar-type spectral operators on a UMD
space is a well-bounded operator. (Since completing this work we have
been made aware of some closely related work by Cl�ement, de Pagter,

Sukochev and Witvliet [4] [11] [12].)
As we show in [6], it is relatively easy to use this result to recover

Bourgain's theorem (at least as it applies to 0{1 arrays). One can also
prove Littlewood-Paley type decomposition results in Cp, of which we

shall just give two simple examples here.
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Split Z+�Z+ into rectangular subarrays as in either of the diagrams
below.

(i)

0
BBBBBBBB@

B0 B1

B4 B7B2 B3

B5 B6

B8 B9

: : :

...
. . .

1
CCCCCCCCA

(ii)

0
BBBBBBBB@

B0 B1

B2

B3 B4

B5

B6 B7

B8
B9

: : :

...
. . .

1
CCCCCCCCA

The actual sizes of the subarrays is not important.

Let Pk denote the projection given by Schur multiplication by the
characteristic function of Bk.

Theorem 1.3. Suppose that 1 < p <1 and that ; 6= J � N . ThenP
k2J

Pk converges in the strong operator topology and


X
k2J

Pk





p

� 2Kp + 1

where Kp is the constant from Theorem 1.2.

Actually, if all the `diagonal' subarrays B3k are just 1� 1 subarrays,
then this result is an easy consequence of Macaev's result. Even for the
more general splittings of this form described above, it is probably not
too hard to deduce this bound from known estimates (see, for example,

Section 4 of [1]). Our techniques however cover a rather wider range of
decompositions including some which are not at all related to triangular
trunctions. Details will appear in [6].

2. Norms of 0{1 matrices

In proving the above results we were lead to considering what one

can say about the bounds of Schur multiplier projections on Cn

p
. The

following example is the standard way of showing that these projections
can have bad norms.

Example 2.1. Let B1 =

�
1 1
1 �1

�
. For m � 2, de�ne Bm = Bm�1 


B1. For example

B2 =

0
BB@

1 1 1 1
1 �1 1 �1
1 1 �1 �1
1 �1 �1 1

1
CCA :
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Thus Bm is a 2m � 2m orthogonal matrix. Let n = 2m. Then B�
m
B

is just nI. Clearly then kBmkp = (nnp=2)1=p = n
1

2
+

1

p . Let Om be the

n�n matrix all of whose entries are 1. This is just n times a projection,

so kOmkp = n for all p. Let Am be the n�n array formed by replacing

the �1's in the matrix Bm by zeros. Thus Am = 1

2
(Bm + Om). Note

that Am = PAmOm. If 1 � p < 2 then

kPAmkp �
kAmkp
kOmkp

�

1

2

�
n(

1

2
+

1

p
) � n

�
n

=
1

2
n(

1

p
�

1

2
) �

1

2
:

Using the earlier remarks about duality we see that there exists c > 0

such that for 1 � p � 1 and large n,

kPAmkp � cnj
1

2
�

1

p
j:

2

This order of growth is the worst that one can get from n�nmatrices.

Theorem 6.2 of [2] shows that for any A 2 Zn, kPAk
1

� n1=2. Using

interpolation and duality gives that kPAkp � nj
1

2
�

1

p
j.This upper bound

also follows from the following upper bound due to Ong [10]:

kPAk
1

� min
�
max `2 norm of a column; max `2 norm of a row

	
:

We shall say that A1 2 Zn is a subarray of A 2 Z if A1 is formed
by deleting all but n of the rows and all but n of the columns of A.
If A1 is a subarray of A then kPA1

k
p
� kPAkp. With probability one,

a randomly chosen in�nite string of binary digits contains all �nite
strings as substrings. In other words, with probability one, an element
of Z contains every array Am (from Example 2.1 above) as a subarray.
It follows immediately that if p 6= 2 then Prob(kPAk <1) = 0.

A more delicate question concerns whether this `bad' array is typical
of n � n arrays. The answer is Yes. This is undoubtedly known to
the experts, although as far as we are aware, this does not appear in
the literature. (Indeed, throughout this area, much more seems to be

known than is written down!)
To simplify notation we shall write g(n) � f(n) if there exist con-

stants 0 < c1 < c2 < 1 such that c1f(n) < g(n) < c2f(n) for all
(su�ciently large) n. Throughout we shall use c as a generic absolute
constant whose value may change from one line to the next.

Theorem 2.2. E (kPAkp : A 2 Zn) � nj
1

2
�

1

p
j.

Proof. For each n let Xn denote the matrix-valued random vari-

able where each entry is an independent Gaussian variable with mean
0 and variance 1. That is, Xn =

P
n

i;j=1
gijEij where each gij is an
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independent N(0; 1) random variable and fEijg
n

i;j=1
are the standard

matrix units. Let frijg
n

i;j=1
be a family of independent identically dis-

tributed random variables which take the values �1 and 1 with equal
probability.
Suppose �rst that 1 � p � 2. Some rather deep estimates of Szarek

[14] give that

E (kXnkp) � n
1

2
+

1

p :

Then, since Cp has cotype 2 for p in this range, [13, Theorem 3.9]
implies that

cn
1

2
+

1

p � E

�



nX

i;j=1

gijEij




�

�
�
E

�



nX

i;j=1

gijEij




2��1=2

� c

�
E

�



nX

i;j=1

rijEij




2��1=2

But by Kahane's inequality [9, Theorem 1.e.13]

�
E

�



nX

i;j=1

rijEij




2��1=2 � c E

�



nX

i;j=1

rijEij




�:
Following the same argument as in Example 2.1,

E (kAk
p
: A 2 Zn) �

1

2

�
E

�



nX

i;j=1

rijEij




�� n

�
� c n

1

2
+

1

p ;

(for large n) and so

E (kPAkp : A 2 Zn) � cn
1

p
�

1

2 :

Since for any A 2 Zn, kPAkp � n
1

p
�

1

2 the result is proved. The case

when p > 2 follows from duality. 2

I would like to thank Alastair Gillespie and Quanhua Xu for several

interesting discussions on these matters, and the referee for bringing

my attention to some additional references.
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