2. THE CENTER OF AN ALGEBRA

The study of groups has clearlv shown that the properties
of their direct decompositions depend to a large extent on those
of their center or, in the case of groups with a set Q of opera-
tors, on those of what is called the Q-center.’ This applies
also to arbitrary algebras in the sense of 1.1; however, the de-
finition of a center is in this case more involved. The center
of an algebra will be defined (in 2.10) as the set-theoretical
union of certain subalgebras which are referred to as central

subalgebras.

Definition 2.1. A subalgebra C of an algebra

A=< A, 4+, 0gy, Ogy000, QE,...>

is called a central subalgebra if it satisfies the following con-
ditions:
(i) If ceC, then there exists an element TeC such that

c+ C= 0;
(ii) If a,, a,eA and c,, c,eC, then

(a, + c,) + (a, + c,) = (a, + a;) + (cg + cp);

(iii) If Oy is a p-ary operation, and if 8o, 84,000y By,e0.cA
and Co, Cyyeeey Cpyes.eC for x < p, then

Ogl80+Cos 8% Cyyecey By +Cyyece) = Og(80, 8390e0y 8ygeee) +0g(Coy Cypeeey Cypocsle

Conditions (ii) and (iii) of this definition are closely
related to conditions (iii) and (iv) of Definitior 1.4; this
circumstance will play an essential part in further developments.
2.1 (ii) can clearly be replaced by condition (ii) of Theorem 2.2
below. In case the rank | of an operation Og is finite,

2.1 (iii) is easily seen to be equivalent to each of the follow-
ing conditions:
(1ii') _If a0, Bsyeeey Byyees2h and co, Cyrees, Cysee.eC for

% < 1, then

Og(8g *+Coy 84+ Capoces Byt Cypoce)® UplBoy Bgp0eey Bypecs) + % 0510, Oyoees 0y Cyy Opeee)e

9. See, e.g., Speiser [1), p. 80, for groups without operators, and
Ko¥inek [1] , p. 273, for groups with operators.
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(iii"), _If ag, 845600y By,ees€A for-x < p, ceC, and N\ ¢ u,
X Jor ang
then

0.(..' Bggeeey “... “’0, M egrece) 'o.(l.' Bgpeeey ﬂ'o-l, * 0.(0. Opecey 0y 6 Opece)e
M 2.2, Let C be a central subalgetra of an 'algebra.
A = <A, *+, 0oy 01,000, Ogyeue>.
We then have:
(i) If aeA and ceC, then a +c = c + a.
(ii) _If as, aceA and ceC, then
(as +82) +c =a, *# (ag +c) =(ay +c) + ag.

(iii) _If a,, ageA, ceC, and a, +c =8, +c, then a, = a,.

Proof: By 2.1 (ii) we have for a,, a.eA and ceC
(ag+c)+(a,+0)=(a,+ay)+(c+0) and (a, +0) +(ag+c) =(a, +a,) +(0+c).

Hence (ii) follows by 1.1 (ii') and 1.2 (i). To prove (i) apply
(ii) with as =0 and as =a. (iii) follows from (ii) and 2.1 (i).

Theorem 2.8. If C is a central subalgebra of an algebra

Ae<Ah % 0oy Osyeeey Ogyenns,

then

(i) C_is a subtractive subalgebra of A;
(ii) C_is an Abelian group under the operation +.

Proof: by 1.15, 2.1 and 2.2 (i), (ii).

Theorem 2.4. For every algebra

A= <A+ 05 0,uee, Opyenns

we have:

(1) {0} is a central subalgebra of A.

(ii) _If F is a non-emptvy family of central subalgebras of A,
then the intersection of all subalgebras CeF is a central

subalgebra of A.
(iii) If Co, Ciyees, Cyyeos with x < v < 0 are central subalge-

bras of A, then there exists a
such that Cy € C for % < v.
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(iv) If C,, Csyeee, Cyyee. with % <v < © are central subalge-

bras of A, and if 1:1 C, exists, then r1

X<y Cy is a central

subalgebra of A.

Proof: (i) is an immediate consequence of 2.1. (ii) follows
from 2.1 and 2.8 (ii). (iii) follows from (i), 2.1, and 2.2 (i);
we define C to be the set of all elements ¢ of the form

C-ZC
KVK

c,eC for x < v.

where

If the hypothesis of (iv) is satisfied and if C is defined in the
way just indicated, then

Theorem 2.5. If B and C are central subalgebras of an alge-

Hence (iv) holds.

bra
A = <A, + 0g, Ogyeen, OE"">

or, more generally, if B is a subtractive subalgebra of A and C
is a central subalgebra of A, then

(i) BNC is a central subalgebra of A:

(ii) B xC exists if, and only if, B/NC = {0k

Proof: (i) Let us replace C and B NC in 2.1. Condition

.2.1 (i) is then satisfied by 1.14; conditions 2.1 (ii), (iii)
obviously hold; and hence B A\ C is a central subalgebra of A.
(ii) Assume that

(1) BNc ={0}.

Let D be the set of all elements d of the form
d = b + ¢c where beB and ceC.

By 2.1 (ii), (iii), D is a subalgebra of A and conditions
1.4 (i), (iii), (iv) are satisfied. It remains to show that
1.4 (ii) holds. Suppose that

]

(2) bs + ¢, * b, + c, with by, byeB and c4, c,eC.

By 2.1 (1),
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(8) ¢y + T = 0 where &,eC.
Hence, by (2) and 2.2 (ii),
bl = b! + (C’ + E,,).

Therefore, by (1), (2), and 1.15,

cp + Cy = 0.
Consequently, by 2.2 (iii), (8), and (2),
¢y = co and by = bg.
Thus 1.4 (ii) holds, and we have
(4) D=B xC.

Conversely, (4) implies (1) by 1.8 (i); and the proof of (ii) is
complete.

Theorem 2.68. Let P and C be subalgebras of an algebra
A' < Av +, 009 0;'---, 05,-..’.

We then have:

(i) If CcBand C is a central subalgebra of A, then C is a
tral subalgebra of B.

(ii) If A = B x B' for some subalgebra B', and C is a central
subalgebra of B, then C is a central subalgebra of A.

Proof: by 1.4, 1.6 (i), (ii), and 2.1.

Theorem 2.7. Let B and C be subalgebras of an algebra

A= <A + 0o Ogpeney Ogyaes

and let f be a B, C-homomorphism. If B' is & central subalgebra
of B, then f%B') is a central subalgebra of f*(B).

Proof: by 2.1.

Theorem 2.8. Let B, Bo, By,eee, Byseee with x < v <0 be
gsubalgebras of an algebra

A= <K + 0o, Ospeeey Ogyane
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and let
B = ‘ l By
K<y

If Cis a central subalgebra of B, then there exist central sub-
algebras C, of B, for x < v such that

c-‘iu Cye

Proof: by 1.20, 2.8 (ii), and 2.7. (We put C, = f£(C) for
% < v where fo, f4,e00e, fy,+.. are homomorphisms with the prop-
erties stated in 1.20.) .

Theorem 2.9. If B, C, and Do, Dyyees, Dyyeee with x<v<ecw
are subalgebras of an algebra

A- . Al *’ ooy o’,,.--, 05,-..>
such that B x C exists and
Bx(C-= r1 Dy»
X<y

then there exists a central subalgebra B' of B such that

cell i xan Dyl.
x<v

Proof: Consider first the case v = 2. By 1.20 there ex-
ists a B x C, D, - homomorphism f and a B x C, Dy - homomorphism
¢ such that

(1) a = f(a) + g(a) for a eB xC, f*(BxC) = Do, and #*(BxC) = D’.
Hence, by 1.4 (i),
(2) CE £*(C) x g*(C).

By 1.20 there exists a B x C, E - homomorphism h with the follow-
ing property:

(8) For every element a ¢ xC there is an element ceC such that
a =h (a) + c.
Let

(4) B'= h*{(f*(C) x g*(C)].

We are going to show that all the conditioms of 2.1 are satis-
fied if A and C are replaced by B and B'. Ve begin with
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condition 21 (ii). Let b, and b, be any elements of B, and b}
and b} anvy elements of B'. By 1.4 (ii), (8), and (4) we have

(8) Dy = h(bs), by = hibs), as well as b} = h(d,) and b= hid,) for sone elements d,, d.of-(c)-ﬂc').
Hence ’ )
f(dy), f(de) ef*(C).
Consequently,
(6) f(dy) = f(cy) and f(dg) =« fl(cy) for some ¢y, cg€C.
By 1.4 (iii) and the hypothesis,
(by + c4) + (bg + c5) = (by + by) + (cy + cy);

therefore, by (8),

[f(by) + £(dy)] + [Flbg) + £(da)] = [f(by) + by +[f(da) + flda)];
and'hence
(7)) f(by # dg) + (by + dp)] = f[(by + by) + (dy + dg)].
Similarly,
(8) gl(by + dy) + (by + dg)] = gl(by + bg) *+ (dy + dp)l.
Formulas (1), (7), and (8) give

(by + dg) + (bg + dg) = (by + bg) + (dy + dg;

together with (5), this implies 1.4 (ii), i.e.,

(9) (by + bj) + (b, + by) = (by + by) +(b] + bz) for any
by, bgeB and b3, bgeB'.

To derive 2.1 (ili), we proceed analogously applying
1.4 (iv) instead of 1.4 (iii). If finally b is any element in
B', we have by (4)
b = h(a) where a ¢ £f*(C) x g*(C).

Therefore, for some elements ¢, c'eC,

(10) b = hf(c) + hgle'l.
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By (1), (8), and 1.8 (ii),

’

(11) hff{c) + he(e) = 0 and hgl(e') + hf(e') = 0.

Since, by (4), the elements hf(c), hglc), hgle'), and hf(e')
are in B' and hence also in B, we conclude from (9) and (11) that

[hf(c) + hgle")] + [hglc) + hf(e")] = O.

Consequently, in view of (10),

b +b =0 where b = hgle) + hf(c');
and condition 2.1(i) is shown to hold. Thus, B' proves to be
a central subalgebra of B.

By (8), (4), and the hvpothesis,

f*(C) S B' x C and g*(C) S B' x C.

Hence, by means of (1), ‘
f*(C) € (B' x C) N Do and g*(C) & (B' x C) N D,.

Therefore, by (2),

€S [(B' x C) N Do) x [(B' x C) N D,].

This completes the proof for v = 2.

If now v is an arbitrary finite ordinal, we put
(12) Df_, = A[:l‘ Dy x A[:lx Dy4p for O<x<v.
We then have be hypothesis

(18) BxC=D, x D} for x < v.

By 1.20 and the hvpothesis, there exist B x C, Dy - homomor-
phisms fy with x < v such that

(14) a = ;Z; fyxla) for a ¢ B x C.

By (18) and the first part of the proof, there are central sub-
algebras By of B with
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cC [(By x C) NDy] x D} for every x < v.

Hence, by (12) and (14),
(15) fylc) € By x C for ceC and % < v.
By 2.4 (iii), there exists a central subalgebra B' of B such that

By €B' for % < v.
Therefore, by (15),

fyle) e(B' x C) N Dy for x < v;
and consequently, with the help of (14),
CGL_‘" [(B' x C) N Dyl.
Thus, our theorem holds for an arbitrary v < w.
Definition 2.10. Let

A- <A, +, 0oy Ogyeco, Og,...>

be an algebra, The center of A (or A)--in symbols A°--is the
union of all central subalgebras C of A.

The following examples will serve to illustrate this defini-
tion:

Examgle I. 1If

_A_- <A, +>

is a group, then A° is its center in the ordinary sense, i.e.
the set of all elements ceA such that

®
a +c=c +a for every acA.

Example II. Let

A‘ ‘As +, OOv 01"--, 05,-.->
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be a group with operators, i.e., let A be a group under the op-
eration +, and Og, Osyeee, Og;... be unary operations such that

Oglay + ap) = Oglay) + Og(ag) for all as, ajeA.

Then A° is what is usually called the Q-center of A, Q being the
set consisting of all the operations OE'.

Examgle III. If

£-<A, +, >

is a ring, then A® consists of all elements ceA such that
* aec = cea = 0 for every aegAo

Thus in particular, if A is a ring with a unit element, or a
ring without divisions of zero, then A° = {0}; more generally,
this applies to all rings in which no element different from

zero is nilpotent.

Examgle Iv. 1If

A= <A 4 0o, Ogyenn, 0fyane>

is an algebra, and if a, +a, = O implies a, = O for all a,,
ageA, then {0} is the only central subalgebra of A, and there-
fore A ={0}. The class of algebras which satisfy this condi-
tion includes all lattices and Boolean algebras (with x + v as
the least upper bound of x and v)? meny instances can also be
found among semigroups.

Example V. Let

A-(A’ +>

be an Abelian group, and let a be an element of A which is dif-
ferent from zero. For every infinite sequence of elements
80y B3yeee Byyees (With u < w) of A, we put

0(B0, Bgyeeey Byyeee) = 0 or Olag, 81y0es, Byseee) = 8,

10. In the theory of lattices and rings the term "center" is sometimes
used in the literature with an entirely different meaning; cf. Birkhoff [1],
pp. 23 f., and Jacobson (1], p.,22.

10
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according as the sequence a5, 83504+, 8¢ ,... has finitely many
or infinitely many distinct terms. It is easily seen that a sub~
group C of A is a central subalgetra of the algebra

A = <A, +, 0>

if, and only if, C is finite. An element ceA generates a finite
subgroup if, and only if, it is of a finite order. Hence, the
center of X is the set of all elements ceA which are of a finite
order. Thus, if A has infinitely many elements of a finite or-
der, then the center of A is not a central subalgebra of A; and

) furthermore, if the element a is of an infinite order, then this
center is not even a subalgebra of A since it is not clPsed under
the operation 0.

As is seen from the last example, the center of an algebra
A is not always a central subalgebra of A, and in fact it need
not even be a subalgebra of A. For our further purposes, howeveg
the notion of center proves useful only in those cases in which
A® is a central subalgebra of A. Some important particular cases
in which this condition is satisfied are discussed in the follow-
ing

Theorem 2.11. Let

A' <A, *, 0o, Ogye0e, OE"">

be an algebra.

(i) If A is finite or, more generally, if A is finite, then
A% is a central subalgebra of A.

(ii) The same conclusion holds in case all the operations 0o,
Ogye0ey Opyee. are of a finite rank (independent of wheth-
er A and A€ are finite or not).

Proof: If A€ is finite, then the family F of all central
subalgebras of A is finite; moreover, by 2.4 (i), F is non-emptv.
Hence the conclusion of the first part of the theorem follows
immediately by 2.4 (iii) and 2.10. Similarlv, the second part
can easily be derived from 2.1 and 2.10 by means of 2.4 (iii).

Some important properties of the center will be established
in the next three theorems, 2.12-2.14.

Theorem 2.12. Let Aoy, Asyeee, Ayg,ee. With ¥ < v < © be sub-
algebras of an algebra

A=<A + Ooy Ogpeeey Ogyene>
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such that
e ) e
Then

(A = AN A& for x < v,

Proof: Let % be an arbitrary ordinal less than v.
By 2.8 (ii) and the hypothesis, every central subalgebra of Ay

is also a central subalgebra of A. Hence, by 2.10,

(1) (A SA NAS.

On the other hand, it is seen from 2.10 that Ay/N A is the union
of all sets A, N C where C is a central subalgebra of A; while,
by 1.16, 2.6 (i), and 2.8 (i), and in view of the hypothesis,
every such set A, N C is a central subalgebra of A,. Hence,
again by 2.10,

(2) AN AS (A,

The conclusion follows from (1) and (2).

Theorem 2.18. Let B, C, and Do, Dyseee, Dyyeeo with
¥ <V <O be subalgebras of an algebra

A- < A, +1 001 Otv"ﬂv oar'-'>
such that B x C exi1sts and

B*C-!::\I'DK.

f B is a subalgebra of A, then

< = [

B xC [:I, [(B€ xC) ND,l.
Proof: By 2.9 and 2.10,

(1) c.c[:lv [(B° x C) ND,].

For any given central subalgebra B' of B there exist central
subalgebras Dg of Dy for x < v such that

(2) BrS !:vl D&;
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this follows from 2.6 (i1), 2.8, and the hypothesis. By 2.8 (ii),
2.4 (iv), and the hypothesis, kel D} is a central subalgebra

of B x C. Hence, by 2.8, there are central subalgebras B" and
C" of B and C, such that

I_l D..'(QB" x G".

X<v

Therefore,

D} € (B° x C) N\ D for % < v.
Thus, by (2),

B'C D, [(B° x C) N D,J.

Since this holds for every central subalgebra B' of B, we infer
by 2.10 that

C (3
B val [(B x C) N D,].
Henceq by (1),
< c' l
B" xC%= k<y [(B® x C) N DJ.

The inclusion in the opposite direction is obvious, and the
proof is complete.

heorem 2.14. Let B, C, and D be subalgebras of an algebra
A" <A, +, Og, Ogyoce, OE.o-->-

If B x C exists and B is a central subalgebra of A, then the
formulas

BxC=BxDand B* xC=B° xD

are equivalent.

Proof: Assume that
(1) BxC=BxD.
Then, by 2.18,

(2) B¢ x C = [(B€ x C) QB] x [(B x C) ND].
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By 1.16, 1.17, and (1),

(B* x C)NB =B x (B NC).
Hence, by (1) and 1.8 (i), (ii),
(B* x ()N B = B.
Consequently, by (2),
B x ¢ = B x [(B* x C) N D],
Therefore, by 1.7 (iii),
B x C SB® x D.

The inclusion in the opposite direction can be proved in a sim-
ilar way; so that finally

(8) B* x C =B x D.

Thus (1) implies (8).

Assume now, conversely, that (8) holds. We are going to
show that all the conditions of 1.4 are satisfied if in them we
replece C and D by D and B x C, respectively. If ae B xC, we
have
(4) a = b' + ¢ for some b'eB and ceC.

Hence, by (8), c is an element of B® x D, and therefore

(5) c = b" +d for some b"eB° and deD.

By 2.8 (i), B® is a central subalgebra of B x C. By (3), (4),
and (5), b' and d are elements of B x C; therefore, by (4), (5),

and 2.2 (i), (ii),

(8) a = b+ d where b = b'+ b" £ B and deD.

Suppose, conversely, that

(7) a = b + d where beB and deD.

Then, by (8),

d = b' + ¢ for some b'eB* and ceC.
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Hence, by (7) and 2.2 (i), (ii),

a = (b + b'") +d.

Therefore, & is in B x C. Thus, 1.4 (i) is shown to hold. Now
suppose that

(8) by, boeB; ds, doeD; and by + dy = b, + ds.
Then, by (8),
(9) dy =h] +cq and dg = b} + ¢, for some b}, bieB“ and Cy, CoeC.
Hence, bv 2.1 (1),
(10) b! + by = 0 and b} + b} =0 where by, bieBe.
Ry (8), (9), and 2.2 (i), (ii),

by + dy = (bg *+ bl) + c4 and by + do = (by + b}) + co.
Therefore, by (8) and (9),
(11) by + bi = by + b; and cs = ca.
Conditions (9) and (10) give by 2.1 (i), (ii)

¢y = b{ + d,; and c, = bY +d,.

Therefore, by (8), (8), (10), and (11),
(12) by = bj and d, = d..

Hence, by (10) and 2.2 (iii), by = b}, and further, by (11) and
2.2 (iii),

(13) by = b,.

We have thus shown®that (8) implies (12) and (18), and that con-
sequently 1.4 (ii) holds. Furthermore, for anv elements by, be
in B and d,, de in D, we have (9), and hence

(b + de) + (bg + dg) = [hy + (b] + ca)] + [by + (b} + co)l;
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by applvying 2.2 (i), (ii) and 1.4 (iii) several times, we arrive
at
(bg + d;) + (bg + dg) = (b’, + bg) + (d’, + do).

Thus, 1.4 (iii) is satisfied. 1.4 (iv) can be verified in a
similar wavy. Therefore (8) implies (1), and the proof is now
complete.

Like the notion of a center, the familiar notion of central
isomorphism” can also be extended to arbitrarvy algebras in the
sense of 1.1. We define:

Definition 2.15. Let B and C be subalgebras of an algebra

A=< A, +, 0oy Osyees, OE,--.>.

A B, C-isomorphism f is called a central B, C-i somorph1sm if
there exists a central subalgebra D of A such that, for every

element beB, f(b) can be represented in the form °

f(b) = b +d with deD.

In case a central' B, C-isomorphism exists, the subalgebras B
and C are called central-isomorphic, in symbols,

P EC.

It should be pointed out that the notion of central iso-
morphism is relative to a "superalgebra" A. Hence the question
arises whether two subalgebras B and C which are central-iso-
morphic in A are also central-isomorphic in a subalgebra A' of
A which includes both B and C. It turns out that, in general,
the answer is negative; it is affirmative, however, in case A’
is a subtractive subalgebra of A.

Theorem 2.18. For any subalgebras B, C, and D of an alge-

bra
A = < Av +, 001 ots"'v pEr"'>
we have: ’
(i) B £ B.
(ii) If B2 C, then C = B.

11. Cf. Speiser [1], p. 134.
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(iii) If B=C and C =D, then B = D.

(iv) If B=C, then B = C.

(v) Assuming that C x D exists, we have B = C x D if, and only
if, there exist subalgebras C' and D' of A such that B = C' x D',
ct=C, and D' = D.

Proof: (i) is obvious by 2.4 (i) and 2.15. (ii) follows
from 2.1 (i), 2.2 (ii), and 2.15. (iii) can easily be derived
from 2.2 (ii), 2.4 (iii), and 2.15. (iv) is an immediate conse-
quence of 2.15. Finally, (v) follows from 1.4, 2.1 (il), 2.4 (ii),
and 2.15.

Theorem 2.17.12 f B, C, and D are subalgebras of an algebra

A =< A’ +, Oo, Oz,oo-, 0&,-..>
such that
A=Bx(C=3BxD,

then
Proof: For any given element aeA let f(a) be the unique
element in C and gla) the unique element in D such that
a = b' + f(a) = b" + g(a) for some b', b"eB.
By 1.20 and 1.4 (ii), f is a D,C-homomorphism and ¢ 1s a C,D-

homomorphism. We first show that g is a C,D-isomorphism, and
then that this isomorphism is central.

For every element ceC we have
(1) c = b, + gle) and g(ec) # b, + fglec) where.b,, byeB.
Therefore, by 1.6 (ii),
(2) e = (by + by) + fgle).

Sigce c, fgle)eC and C is a subtractive subalgebra of A, this
implies that by + b ¢ C. But by + b, ¢ B; hence, by 1.8 (i),

12. For groups this theorem is known; see Kurosh [1], p. 108.
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by + be = 0.
Consequently, by (2),
(8) fgle) = ¢ for every ceC.
Therefore
(4) glce) = glcg) implies ¢4 = ¢ for ¢4, cyeC.

Similarly we obtain
gf(d) = 4 for deD.

Hence, if deD, there is an element ceC such that d = g(c). We
thus conclude that

g*(C) = D.

Therefore, by (4), ¢ is a C, D-isomorphism.

By 2.9 and the hypothesis, there exists a central subalgelra
B' of B for which

(5) D € [(B' x D) NBY x C.

By 1.18 and the hypothesis, B is subtractive subalgebra of A.
Consequently, by 1.17,

(6) (B' x D) NB =B' x (BN D).
Bv 1.8 (i),
BnND = {0}.
Hence, by (5) and (8),
(7) DS B' x C.

By 2.8 (ii), B' is a central subalgetra of A. If ceC, then n
g(c)eD whence, by (7),

glc) = b + ¢! with beB' and c'eC.

Therefore, by (1), (8), 1.4 (ii), and the hypothesis,
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(8) gle) = b + c.

We have shown that, for every element ceC, there exists an ele-
ment beB' which satisfies (8). Hence, by 2.2 (i) and 2.15, ¢ is
a central C, D-isomorphism, and consequently,

C =0D.

This completes the proof.

Theorem 2.18. If B, C, and D are subalgebras of an algebra

A =< Av +, 00, 01,0--, 05,.-.>
such that B x C exists and

BxC=BxD,

= D.

Proof: We can repeat here the first part of the proof of
2.17 without any changes. We could also argue as follows: By
2.17, C and D are central-isomorphic in the algebra B x C; hence
we obtain the conclusion by 2.18 (iv).

We conclude this discussion with a rather special theorem,
which will be used as a femma in the next section (in the proof
of 8.7).

Theorem 2.19. If B and C are subalgebras of an algebra

A=< A, +, 0oy, Ogyece, 05,--.>

such that B x C exists and is a subtractive subalgebra of A, and
if B 2C, then B and C are central subalgebras of B x C.

Proof: Let.D be a central subalgebra of A and f a B, C-
isomorphism which satisfy the conditions of 2.15. Then every
element beB can-be represented in the form

(1) b=c +dwith ceC and deD.

\

We want to show that all the conditions of 2.1, with both A and
C replaced by B, are satisfied. If, in fact, by, be, bi, b2eB,
we have

(2) bl = ¢, + d, and b} = co + d, where ¢4, c2eC and ds, de€D.
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Therefore, by 2.2 (ii),

(b; + bg’, ) + (bg + b:) = [(b’, + C’,) + dg] + [(bg + c,) + dg]o
Hence, by 1.4 (iii), 2.1 (ii), 2.2 (ii), and (2),
(by + bi) + (by + bg) = (by + bg) + (bi + bi).

Thus 2.1 (ii) holds. To derive 2.1 (iii) we proceed in a similar
wave

Let now b be any element of B. We then have (1); and by
applving 2.1 (i) to the subalgebra C = D, we obtain

(8) d +d = 0 where deD.
We now apply 1.15, first to (1) and then to (8); and we conclude
that _
d, d e B xC.
Hence, by 1.4 (i),
) d =1 + ¢ for some beB and ceC.
Therefore, by 1.6 (ii), 2.2 (ii), (1), and (8),
(b+b) +c=c.
This gives, by 1.4 (ii),
b+b=0;

so that condition 2.1 (i) is also satisfied.

Thus, B is a central subalgebra of itself, and consequently,
by 2.8 (ii), it is a central subalgebra of B x C. For similar
reasons C is a central subalgebra of B x C, and the proof is
complete.



