
2. THE CENTER OF AN ALGEBRA

The study of groups has clearlv shown that the properties
of their direct decompositions depend to a large extent on those
of their center or, in the case of groups with a set Q of opera-
tors, on those of what is called tlje 8-center.8 This applies
also to arbitrary algebras in the sense of 1.1; however, the de-
finition of a center is in this case more involved. The center
of an algebra will be defined (in 2.10) as the set-theoretical
union of certain subalgebras which are referred to as central
subalgebras.

Definition 2.1. A subalgebra C of an algebra

A- < A, +, 00, Olf..., Pg,...>

is called a central subalgebra if it satisfies the following con-
ditions: '
(i) rf ceC, then there exists an element c eC such that

c + c « 0;

(ii) JLL &i» ageA and ct, c2eC, then

(at + c4 ) •»• (a8 + ca) « (a4 + at ) + (ct + ca);

(iii) If Og is a jm-arv operation, and if an , at,..., aK,... e A
and cn . Cj,..., CK. . ..£C for x < fjt, then

Conditions (ii) and (iii) of this definition are closely
related to conditions (iii) and Civ) of Definition 1.4; this
circumstance will play an essential part in further developments.
2.1 (ii) can clearly be replaced by condition (ii) of Theorem 2.2
below. In case the rank |A of an operation Og is finite,
2.1 (iii) is easily seen to be equivalent to each of the follow-
ing conditions:

(iii1) If an. at,..., aK....eA and CQ. GI,..., ĉ ....eC for
x < p, then

0£(*o + Cot ftt + Ct,..., a** €*,...)• Ogtfto, at,..., a*,...) + ^- 0^(0,0,..., 0, cx, 0,...).

9. See, e.g., Speiser [l], p. 30, for groups without operators, and
Ko l̂nek [l] , p. 273, for groups with operators.
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(Hi11). J£ a0, alf..., ay....eA for- x < fjt, ceC, and X * n,
then

Of(»o, »!,..., tfc.49 %+«• %•(,••»] *0£(ftft( *tt«**f *x*"*> * Og<0, 0,..., 0, c, O*..*).

2.2. Let C be a central subalgebra of an algebra

1 " <A, +, Oo, Oi,..., Og,...>.

We then have;
(i) If aeA and ceC, then a + c " c + a.
Cii ) If at, ageA and ceC, then

(at * as) * c - a4 * (a* + c) * (a* * c) * aa.

f HI) If ai, a 2e A, ceC, and at +c » as +c, then a± - aa.

Proof: By 2.1 (ii) we have for ait aaeA and ceC

(at + c) + (at +0) » (a± + aa) + (c + 0) and (at + 0) + (aa-*- c) * (a± -»-a2) + (0 + C).

Hence (ii) follows by 1.1 (ii1) and 1.2 (i). To prove (i) apply
(ii) with at - 0 and as -a. (iii) follows from (ii) and 2.1 (i).

Theorem 2.8. If C is a central subalgebra of an algebra

A . < A, +, Oo, Oi,...t Og,...>,

then
(i) C is a subtractive subalgebra of .A.;
(ii) C is an Abelian group under the operation +.

Proof: by 1.15, 2.1,and 2.2 (i), (ii).

Theorem 2.4. For every algebra

we have:
(i) {0} is a central subalgebra of A.
(i i) If P is a non-empty family of central subalgebras of A,

then the intersection of all subalgebras CeP is a central
subalgebra of A.

<iii) If Co. Ci CK>... with x < v < w are central aubalSe-
bras of A. then there exists a central subalgebra C pf A,

' such that CK — C for x < v.
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(iv) If C0> Ci,..., CK, ... with x <v < w are central subalge-

bras of A, and if II Cx exists, then J^J Cx is a central

subalgebra of A.

Proof: (i) is an immediate consequence of 2.1. (ii) follows
from 2.1 and 2.3 (ii). (iii) follows from (i), 2.1, and 2.2 (i);
we define C to be the set of all elements c of the form

•£
where

cHeC for x < v.

If the hypothesis of (iv) is satisfied and if C is defined in the
way just indicated, then

K<V *

Hence (iv) holds.

Theorem 2.5. If B and C are central subalfiebras of an alge-
bra

A - < A, +, 0 Of 0 i,..., 0 g,... >

or. more generally, if B is a subtractive subalgebra of A and C
is a central subalflebra of &, then
(i) BAG is a central subalgebra of JU
(ii) B x c exists if. and only if. B AC « {0}.

Proof: (i) Let us replace C and B AC in 2.1. Condition
.2.1 (i) is then satisfied by 1.14; conditions 2.1 (ii), (iii)
obviously hold; and hence B AC is a central subalgebra of A.
(ii) Assume that

(1) B A G - <0>.

Let D be the set of all elements d of the form

d » b + c where beB and ceC.

By 2.1 (ii), (iii), D is a subalgebra of A and conditions
1.4 (i), (iii), (iv) are satisfied. It remains to show that
1.4 (ii) holds. Suppose that

(2) b i + c t
m b § 4 . c § w i t h b i t b t e B and c t , c«eC.

By 2.1 ( i ) ,
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(3) Ci + Ci - 0 where CteC.

Hence, by (2) and 2.2 (ii),

bt - ba + (ca * 5i).

Therefore, by (1), (2), and 1.15,

ca + c4 - 0.

Consequently, by 2.2 (iii), (3), and (2),

ct
 B ca and bi * ba»

Thus 1.4 (ii) holds, and we have

(4) D - B x c.

Conversely, (4) implies (1) by 1.8 (i); and the proof of (ii) is
complete.

Theorem 2.6. Let E and C be aubalgebras of an algebra

1 • < A, +, 00, Olf.... Og, ...>.

We then have:
(i) Ij[_ C C B and C is a central subalgebra of A, then C is a

tral subaleebra of B.
(ii) .!£ A « B x Bf for some subalgebra E1, and C is a central

subalgebra of B, then C is a central subalgebra of A.

Proof: by 1.4, 1.6 (i), (ii), and 2.1.

Theorem 2.7. Let B and C be subalgebras of an algebra

A. - < A, +, 00, Oi,..., 05,...>

and let f be a B, C-homomorphism. If. Bf is a central subalgebra
of B. then fIB1) is a central subalgebra of f*(B).

Proof: bv 2.1.

Theorem 2.8. Let B, B0, B!,..., Bx,... with * < v < w be_
subalgebras of an algebra

A - < A, +, 00, Ott.... Og,...>
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and let n B«.
K<V

If C is a central aubalgebra of B, then there exist central sub-
algebras Cx of BK for x < v such that

Proof: by 1.20, 8-6 (ii), and 2.7. (We put CK - f^CO for
x < v where f0f flf...f fK,... are homomorphisras with the prop-
erties stated in 1.20.)

Theorem 2.9. If P, C, and D0, Dif..., DK,... with x < v < <•>— ——. ~
are subalgebras of an algebra

1 - < A, +, 00, Olf...f Q£,...>

such that B x c exists and

- I I D K ,KB x c
H<V

then there exists a central subalgebra Bf of B such that

C-C M [(Bf x C) H DJ.
K<V

Proof: Consider f i rs t the case v - 2. By 1.20 there ex-
ists a B x C, D0 - homoraorphism f and a B x C, D0 - horaoraorphism
g such that

(1) a « f ( a ) + g ( a ) for a eB x C, f * ( B x C ) « D0, and g * ( B x C ) = D t.

Hence, by 1.4 ( i ) ,

(2) C^ f * ( C ) x g * ( C ) .

By 1.20 there exists a B x c, E - horaoraorphism h wi th the follow-
ing property:

(3) For every element a eB *C there is an element ceC such that
a • h (a) + c.
Let

(4 ) B 1 - h * [ ( f * ( C ) x g * ( C ) ] *

We are going to show that all the conditions of 2.1 are satis-
fied if A and C are replaced by B a-nd Bf. We begin with
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condition 2.1 (ii). Let bt and bfl be any elements of B, and bi
and b| any elements of B1. By 1.4 (ii), (3), and (4) we have

161 bt • h(b»), b. * fcCbt), M mil M bi • h(dt) and U- h(d.) for MM tlMHto dft, d.tf»(C) * 1*161.

Hence
f ( d t ) , f ( d . ) e f « ( C ) .

Consequently,

(6) f ( d i ) - f ( c t ) and f ( d a ) « f ( c f l ) for some c i f c f leC.

By 1.4 ( i i i ) and the hypothesis,

(bt + Cj) + (ba * c t) • (b t + ba) «• (c4 + c f ) ;

therefore, by (8 ) ,

[f(b t) + f (d») ] + [f(ba) + f (d a ) ] « [ftbj * f tb 8)] + [ f (di) + f(da)] ;

and hence*

(7) f [ C b t + d») + (ba + d,)l - f t ( b t + b,) + (d& + d.)].

Similarly,
4

C8) g[(bt + dt) + (ba + d*)] - g[(bt + b«) + (dt + d.)].

Formulas (1), (7), and (8) give

(bi + dt) + (b. + d«) - (bt + bt) + (dt + dt);

together with (5), this implies 1.4 (ii), i.e.,

(9) (bt + bi) + (bt + bi) - (bt + b8) +(bl + bs ) for any
bt, b*eB and bi, b.eB*.

To derive 2.1 (iii), we proceed analogously applying
1.4 (iv) instead of 1.4 (iii). If finally b is any element in
B1, we have by (4)

b - h(a) where a e f*(C) x g*(C).

Therefore, for some elements c, cfeC,

(10) b - hf(c) * hg(cf ).
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By (1), (3), and 1.6 (ii),

(11) hf(c) + h*(c) - 0 and hg(c') + hf(c') - 0.

Since, by (4), the elements hf(c), hg(c), hg(c'), and hf(c')
are in B1 and hence also in B, we conclude from (9) and (11) that

hg(c')] + [hg(c) +hf(c')l -0.

Consequently, in view of (10),

b + b - 0 where b - hg(c) + hf(c');

and condition 2.1(i) is shown to hold. Thus, Bf proves to be
a central subalgebra of B.

By (8), (4), and the hypothesis,

f*(C)C Bf x c and g*(C) C B1 x C.

Hence, by means of (1),

f«(C) SL (Bf x c) n Do and g*(C) £ (Bf x C) n Dt.

Therefore, bv (2),

c e KB* x c) n DO] * [(B
1 x o n DJ.

This completes the proof for v - 2.

If now v is an arbitrary finite ordinal, we put

(12) D» c " J I Dx x I I DK+X
 for 0<x<v.

* * X<K-1 A X<V-K KTA

We then have be hypothesis

(13) B x C - DK x DJ for x < v.

By 1.20 and the hypothesis, there exist B x c, DK - homomor-
phisras fx with x < v such that

(14) a • /L fK(a) for a e B x c.

By (18) and the first part of the proof, there are central sub-
algebras Bx of B with
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G£ [(BK x c) H DK] x D£ for every x < v.

Hence, by (1)8) and (14),

(15) fK(c) e BK x c for ceC and x < v.

By 2.4 (ill), there exists a central subalgebra B1 of B such that

Bx £ B
1 for x < v.

Therefore, by (15),

fK(c) e(Bf x C) f\ DK for x < v;

and consequently, with the help of (14),

C C Q [(B' x C) O DK].

Thus, our theorem holds for an arbitrary v < to.

Definition 2.10. Let

A - <A, +, 00, Ot,..., Og, ...>

be an algebra,. The center ££ A (JOT A) — in symbols A* —is the
union of all central subalgebras C of A.

The following examples will serve to illustrate this defini-
tion:

Example I. If

A - <A, +>

is a group, then Ae is its center in the ordinary sense, i.e.
the set of all elements ceA such that

a + c - c * a for every aeA.
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be a group with operators, i.e., let A be a group under the op-
eration +, and 00f Oi,..., Og,... be unary operations such that

Og(ai + at) - Og(at) + Og(aa) for all at, aaeA.

Then Ac is what is usually called the Q-center of A, Q being the
set consisting of all the operations Og.§

Example III. If

A - < A, +, •>

is a ring, then Ac consists of all elements ceA such that

* a-c » c-a • 0 for every aeAjo

Thus in particular, if A is a ring with a unit element, or a
ring without divisions of zero, then Ac - }0!; more generally,
this applies to all rings in which no element different from
zero is nilpotent.

Example IV. If

A - < A, +, 00, Olf..., Og,...>

is an algebra, and if a* + a2 - 0 implies a2 - 0 for all at,
aaeA, then {0} is the only central subalgebra of 4, and there-
fore Ac -{0}. The class of algebras which satisfy this condi-
tion includes all lattices and Boolean algebras (with x + v as
the least upper bound of x and v)1? many instances can also be
found among semigroups.

Let

A - <A, +>

be an Abelian group, and let a be an element of A which is d i f -
ferent from zero. For every in f in i t e sequence of elements
a0, a*,... aK , . . . ( w i t h x < w) of A, we put

a^, . . . ) * 0 or 0(ao, ai,..., â ,...) * a,

10. In the theory of lattices and rings the term "center" is sometimes
used in the literature with an entirely different meaning; cf. Birkhoff [l],
pp. 23 f., and Jacobson [ll, p.,22.
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according as the sequence a0, aly..., aK,... has finitely many
or infinitely many distinct terms. It is easily seen that a sub"'
group C of A is a central subalgetra of the algebra

A - <A, + , 0>

if, and only if, C is finite. An element ceA generates a finite
subgroup if, and only if, it is of a finite order. Hence, the
center of A is the set of all elements ceA which are of a finite
order. Thus, if A has infinitely many elements of a finite or-
der, then the center of I is not a central subalgebra of A; and
furthermore, if the element a is of an infinite order, then this
center is not even a subalgebra of A since it is not closed under
the operation 0.

As is seen from the last example, the center of an algebra
A is not always a central subalgebra of A, and in fact it need
not even be a subalgebra of A. For our further purposes, however
the notion of center proves useful only in those cases in which
Ae is a central subalgebra of A. Some important particular cases
in which this condition is satisfied are discussed in the follow-

ing

Theorem 2.11. Let

A - < A, +, 00, Oi,..., Og,...>

be an algebra.
(i) If A is finite or, more generally, if Ac is finite, then

Ac is a central subalgebra of A.
(ii) The same conclusion holds in case all the operations 00,

Oi,..., Og,... are of a finite rank (independent of wheth-

er A and Ac are finite or not).

Proof: If Ac is finite, then the family F of all central
subalgetras of A is finite; moreover, by 2.4 (i), F is non-empty.
Hence the conclusion of the first part of the theorem follows
immediately by 2.4 (iii) and 2.10. Similarly, the second part
can easily be derived from 2.1 and 2.10 by means of 2.4 (iii).

Some important properties of the center will be established

in the next three theorems, 2.12-2.14.

Theorem 2.12. Let A0, At,..., AK,... with x < v < w be sub-

algebras of an algebra
*

A - < A, +, 00, Oi,..., Og,...>
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such that

Then
(Ax)

c - \Kn Ac for x < v.

Proof: Let x be an arbitrary ordinal less than v.
By 8.6 C i i ) and the hypothesis, every central subalgebra of A
is also a central subalgebra of A. Hence, by 2.10,

CD CAH)
C CAK n A

C.

On the other hand, it is seen from 8.10 that AKA Ae is the union
of all sets A* O C where C is a central subalgebra of A; while,
by 1.16, 2.5 (i), and 2.6 (i), and in view of the hypothesis,
every such set AKn C is a central subalgebra of AK. Hence,

* again by 2.10,

(S) AKH A
c £ (AX)

C .

The conclusion follows from CD and (2).

Theorem 2.13. Let B, C, and D0, Dlf..., DK,... with
x < v < w be subalgebras of an algebra

A. - < A, +, 00, Oi,..., Og,...>

such that B x C exists and

1! BC is a subalgebra of A, then

Bc xc - fl [ (B c xC) ODJ.

Proof: By 2.9 and 2.10,

CD C £ t C B c x C) O DH].

For any given central subalgebra Bf of B there exist central
subalgebras D£ of DK for x < v such that

( 2 ) B »
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this follows from 2.6 (ii), 2.8, and the hypothesis. By 2.6 (ii),
2.4 (iv), and the hypothesis, Fj D£ is a central subalgebra
of B x C. Hence, by 2.8, there are central subalgebras B" and
C" of B and C, such that

£ B» x q«.
K<V *
M D'

Therefore,

D£ £ (Bc x C) O D for x < v.

Thus, by (2),

B1 £ [(Bc x C) O DK].

Since this holds for every central subalgebra B1 of B, we infer
by 2.10 that

Bc C 1^1 [(Bc x C) H DJ.

Hence% by (1),

Ec x C^£ I I C(BC x C) H DJ.

The inclusion in the opposite direction is obvious, and the
proof is complete.

Theorem 2.14. Let B, C, and D be subalgebras of an algebra

A*- < A, +, 00> Oi,..., Og >.

11 B x C exists and Bc is a central subalgebra of A, then the
formulas

are equivalent.

Proof: Assume that

(1) B x c - B x D.

Then, by 2.13,

(2) Bc x C - [(Bc x C) Q B] x [(Be x C) H D].
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By 1.18, 1.17, and (1),

Hence, by (1) and 1.8 (i), (ii),

(Be x C) n B - B.

Consequently, by (2),

Bc x c - Bc x [(Bc x C) H D].

Therefore, by 1.7 (iii),

Bc x c £BC x D.

The inclusion in the opposite direction can be proved in a sim-
ilar way; so that finally

(8) B* x c - B x D.

Thus (1) implies (8).

Assume now, conversely, that (8) holds. We are going to
show that all the conditions of 1.4 are satisfied if in them we
replace C and D by D and B x c, respectively. If a e B x C, we
have
(4) a - bf + c for some b feB and ceC.

Hence, by (8), c is an element of Bc x D, and therefore

(5) c - b" + d for some b"eBc and deD.

By 2.6 (i), Bc is a central subalgebra of B x c. By (8), (4),
and (5), bf and d are elements of B x C; therefore, by (4), (5),
and 2.2 (i), (ii),

(6) a - b + d where b - b!+ blf e B and deD.

Suppose, conversely, that

(7) a - b + d where beB and deD.

Then, by (8),

d - b1 + c for some bfeBe and ceC.
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Hence, by (7) and 2.2 (i), (ii),

a - (b + bf) + d.

Therefore, a is in B * C. Thus, 1.4 (i) is shown to hold. Now
suppose that

(8) b l f b a eB; d l f d a e D ; and b t + d t - ba + da.

Then, by ( 3 ) ,

(9) dt * b| + Ct and da * ba + ca for some b[, bJeB° and cif eaeC.

Hence, bv 2.1 ( i ) ,

(10) bi + b'i - 0 and ba + bJJ -0 where bj, b'ieBc.

Py ( 8 ) , ( 9 ) , and 2 .2 ( i ) , ( i i ) ,

bi * dt - (bi + bl) + ct and ba + da - (ba + b|) + ca.

Therefore, bv (8) and ( 9 ) ,

(11) bt + bi - ba + ba and ct - ca.

Conditions (9) and (10) give bv 2.1 ( i ) , ( i i )

Ci - b! + dft and ca - bl + d a .

Therefore, by ( 3 ) , ( 8 ) , (10), and (11),

(12) bk1 - ba' and dft - d..

Hence, by (10) and 2.2 (iii), bl • ba, and further, by (11) and
2.2 (iii),

(18) bt - b,.

We have thus shown-that (8) implies (12) and (18), and that con-
sequently 1.4 ( i i ) holds. Furthermore, for anv elements b l f ba

in B and d l t da in D, we have (9), and hence

(bi + d») + (b. + d.) * tb! + (bl * d)] + [ b a * + (b4 + c , ) l ;
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by applying 2.2 (i), (ii) and 1.4 (iii) several times, we arrive
at

(bi + dt) + (ba + da) - (bi + ba) + (di + da).

Thus, 1.4 (iii) is satisfied. 1.4 (iv) can be verified in a
similar wav. Therefore (3) implies (1), and the proof is now
complete.

Like the notion of a center, the familiar notion of central
isomorphism11 can also be extended to arbitrary algebras in the
sense of 1.1. We define:

Definition 2.15. Let B and C be subalgebras of an algebra

A « < A, +, 00, Olf..., Og,...>.

A B, C-isomorphism f is called a central B, C-isomorphism if
•there exists a central subalgebra D o£ A. such that, for every
element beB, f(b) can be represented in the form '

f(b) - b * d with deD.

In case a central' B, C-isomorphism exists, the subalgebras B
and C are called central-isomorphic, in symbols.

B a C.

It should be pointed out that the notion of central iso-
morphism is relative to a "superalgebra" A. Hence the question
arises whether two subalgebras B and C which are central-iso-
morphic in A are also central-isomorphic in a subalgebra A1 of
A which includes both B and C. It turns out that, in general,
the answer is negative; it is affirmative, however, in case A1

is a subtractive subalgebra of A,-

Theorem 8.16. For any subalgebras B, C, and D of an alge-

bra
A - < A, +, 00, Oi,..., 0gf...>

we have:

(i) B = B.

(ii) If B = C, then C = B.

11. Of. Speiser [l], p. 134.



32 DIRECT DECOMPOSITIONS OP FINITE ALGEBRAIC SYSTEMS

(ill) If B = C and C = D, then B = D.

(iv) If B = C, then B - C.

(v) Assuming that C x D exists, we have B = C x D if, and only
if. there exist subalgebras C1 and D1 of A such that B - C1 x Df,

C1 = C, and D1 * D.

Proof: (i) is obvious by 2.4 (i) and 2.15. (ii) follows

from 2.1 (i), 2.2 (ii), and 2.15. (iii) can easily be derived

from 2.2 (ii), 2.4 (iii), and 2.15. (iv) is an immediate conse-

quence of 8.15. Finally, (v) follows from 1.4, 2.1 (ii), 2.4 (ii),

and 2.15.

Theorem 2.17.18 Lf B, C, and D are subalgebras of an algebra

A - < A, + , 00, Olf..., Og,...>

such that

A - B x C - B x D ,

then

C = D.

Proof: For any given element aeA let f(a) be the unique

element in C and g(a) the unique element in D such that

a - b1 + f(a) - b» + g(a) for some b1, b"eB.

By 1.20 and 1.4 (ii), f is a D,C-horaomorphism and g is a C,D-
homomorphism. We first show that g is a C,D-isoraorphism, and

then that this isomorphism is central.

For every element ceC we have

(1) c - bt + g(c) and g(c) * b* + fg(c) where.blt baeB.

Therefore, by 1.6 (ii),

(2) c - (bt + ba) + fg(c).

Since c, f g ( c ) e C and C is a subtractive subalgebra of A, this
implies that b4 + ba e C. But b£ + ba e B; hence, by 1.8 ( i ) ,

12. For groups this theorem is known; see Kurosh [l], p. 108.
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bi + ba " 0.

Consequently, by (2),

(8) fg(c) - c for every ceC.

Therefore

(4) g(ci) * g(c9) implies Ci • c9 for cit caeC.

Similarly we obtain

gf(d) • d for deD.

Hence, if deD, there is an element ceC such that d » g(c). We
thus conclude that

g*(C) • D.

Therefore, bv (4), g is a C, D-isomorphism.

By 2.9 and the hypothesis, there exists a central subalgebra
Bf of E for which

(5) D £ C(Bf x D) O Bf x C.

By 1.16 and the hypothesis, B is subtractive subalgebra of A.
Consequently, by 1.17,

(6) (B1 x D) O B - Bf x (B fl D).

Bv 1.8 (i),

B n D - <0>.

Hence, by (5) and (6),

(7) D£. Bf x c.

By 2.6 (ii), Bf is a central subalgetra of A. If ceC, then *
,g{c)eD whence, by (7),

g(c) « b + c1 with beB1 and cfeC.

Therefore, by (1), (3), 1.4 (ii), and the hypothesis,
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(8) g(c) - b + c.

We have shown that, for every element ceC, there exists an ele-
ment bEB1 which satisfies (8). Hence, by 2.2 (i) and 2.15, g is
a central C, D-isomorphism, and consequently,

C » D.

This completes the proof.

Theorem 2.18. If B, C, and D are subalgebras of an algebra

A « < A, +, 00, Olf..., Og,.-.>

such that B x c exists and

B x c - B x D,
then

C - D.

Proof: We can repeat here the first part of the proof of
2.17 without any changes. We could also argue as follows: By
2.17, C and D are central-isomorphic in the algebra B x C; hence
we obtain the conclusion by 2.16 (iv).

We conclude this discussion with a rather special theorem,
which will be used as a femma in the next section (in the proof
of 3.7).

Theorem 2.19. If B and C are subalgebras of an algebra

A - < A, +, 00, Ot,.-., Og,...>

such that B x c exists and is a subtractive subalgebra of A, and
i£ B = C, then B and C are central subalgebras of B x c.

Proof: Let.D be a central subalgebra of & and f a B, C-
isoraorphism which satisfy the conditions of 2.15. Then every
element beB can-be represented in the form

(1) b - c + d with ceC and deD.

We want to show that all the conditions of 2.1, with both A and
C replaced by B, are satisfied. If, in fact, biv ba, bi, bseB,
we have

(2) bi « c4 + dt and bi « ca + da where ct, cfleC and di, daeD.
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Therefore, by 2.2 (ii),

(hi + b{ ) * (bji + bj) - [(hi + c&) + dj + [(b. + ca) + d.l.

Hence, by 1.4 (ill), 2.1 (ii), 2.2 (ii), and (2),

(bt + bj) + (b, + bi) - (bt + b.) + (bi + bi).

Thus 2.1 Ui) holds. To derive 2.1 (iii) we proceed in a similar
way.

Let now b be any element of B. We then have (1); and by
applying 2.1 (i) to the subalgebra C " D, we obtain

(3) d + d " 0 where deD.

We now apply 1.15, first to (1) and then to (3); and we conclude
that

d, d e B x CU

Hence, by 1.4 (i),

* d « b + c for some TeB and "ceC.

Therefore, by 1.6 (ii), 2.2 (ii), (1)-, and (3),

(b + T) + "c - c.

This gives, by 1.4 (ii),

b + "b - 0;

so that condition 2.1 (i) is also satisfied.

Thus, B is a central subalgebra of itself, and consequently,
by 2.6 (ii), it is a central subalgebra of B x C. For similar
reasons C is a central subalgebra of B x C, and the proof is
complete.


