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If dim(Ap) = 3, and p + 77la> then Ap is again regular

and depth(Ap ) = 3. At -ffi we have dim(A^_ ) = 3, and
'a

h
depth(A^ ) > 2, since clearly Y , Z - a form an A^ -regular

sequence. Hence (S2) holds for A.

Actually depth (A^ ) = 2, which gives us an example of a
a

local integral domain which is not a C-M ring, whence A itself

is not a C-M ring.

That depth(A-^£ ) = 2 is proved as follows. One can take
a

n=0. Let A1 = C[X4 ,X3Y,XY3,Y4 ]. Then A/ZA -A 1. Let 7TZ» be the

maximal ideal of A1 corresponding to the origin of Spec(A1). We

know from above that depth(Af^f) < 1, and depth (A^ ) > 2.

Furthermore we have

and since Z is A^ -regular, 1 > depth(A'_I) = depth(A^ ) - 1,Î Q 77Z rr̂

whence depth (A_ ) < 2. We are done.
/7Z.Q

It is a rewarding exercise for the reader to check that the

kernel *** of the homomorphism 9:«[T,T,T,T] -» (C[X ,X3Y,XY3,Y ]

- defined by cp^) = X4, cp(T2) = X
3Y, cp(T3) = XY

3, cp(T̂ ) = Y4 is

generated by T^ T3 - T2
3, T2 T^

2 - T3
3, ^, T^3 - T^, and that

no two of the above three polynomials generate <&£.

§5. BEHAVIOR UNDER LOCAL HOMOMORPHISM

In this section we let A, B be local rings, unless other-

wise specified, with unique maximal ideals ffL > TL respectively.

We recall that a homomorphism cp:A -» B is called local if
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cp(w.) C tL 3 or equivalently, cp (ft) = ttt>. Geometrically this

means that, in the associated continuous map acp:Spec(B) ->

Spec(A), the unique closed point of Spec(B) maps into the unique

closed point of Spec(A).

As an example of a non local homomorphism we consider the

inclusion of an integral local ring A into its field of

fraction B. Here the unique closed point (in fact the only

point) of Spec(B) maps into the generic point of Spec(A), as far

from the closed point as one can get!

3A. We study here the behavior of dimension under a

local homomorphism.

Let cp:A -» B be a local homomorphism, and let X = Spec(B),

Y = Spec (A), whence acp:X -> Y. Let acp = f. The inverse image

f" (y) of the unique closed point y of Y contains the unique

closed point x of X, and perhaps something more. In any event,

f"~ (y) consists of all those prime ideals p of B such that

cp"" (p) = ffl/, i.e. those prime ideals which contain 4u3 (we

consider B as an algebra over cp(A), and write fft, for cp(-Ht)). So

f (y) consists of the prime ideals of the ring B/«tB = Mtt® «B.

We have shown f" (y) = Spec(B/4n,B). In the sequel we shall

denote by k the residue field A/m,.

Optimally one would hope that dim X-dim(f~ (y)) = dim Y.

However, as we shall see, this is not always true. We begin

examining the situation with the following

Proposition 3.1. dim(B) < dim(A) + dim(k <g> AB)

Proof; Note that, with the identification k <8> ̂ B = B/m,B

one easily sees that k ® «B is a local ring with maximal ideal
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. Hence dim(k <8> ̂ B) < + °°.

Let dim(A) = m, and let BI, ...,sm be a system of parameters

of A. Lettft = s-j^ A + ...+ sm A. By definition A/0Z, is artinian,

whence W/^t is nilpotent in A/41, , i.e. a sufficiently high

power of every element of itft. is in -0£. Since an element of

is a linear combination of a finite number of elements of 7-12- with

coefficients in B, a sufficiently high power of every element of

*ftB is in 0£B, i.e. ntB/^fB is nilpotent in B/tftB. The nil-

radical vf of B/0&B contains ffcB/#B, whence

dim(B/m,B) =

= dim(B/0tB)

clearly B/^,B = B/S B + . . .+ s B. Let dim(BAfcB) = n, and

let T^, ...,¥ be a system of parameters of B/̂ tB. Let t. e B,

i = 1, ...,n be such that ¥. = t. + tftB. We have that

+...+ ¥n(B/̂ .B) is artinian, and clearly

C = B/(t., B +...+ t B + s-, B +...+ s B), i.e. t.,,...̂  ,

cp(s.)j . . . ,q>(s ) generate an ideal primary for-ft- . Then

dim(B) = s(B) < m + n, and the proposition is proved, since

n = dim(B/kfcB) = dim(B//ft,B).

Remark. It is possible that inequality hold in the state-

ment of proposition 5-1. In fact one can take B = A/m, = k,

where dim(A) > 1. A more difficult example can be given, where

dim(A) = 2, B = C^A where C is a finite algebra over A and

dim(B) = 1. Clearly 1 < 2, whence the inequality.

As a consequence of Theorem 5.1 below we shall see that,

when B is A- flat, equality in proposition 5-1 does hold.



82

Flatness, however, is a stronger requirement than needed.

In fact, the conclusion of the following lemma is sufficient, as

we shall see, to guarantee equality in proposition 5.1.

Lemma 5.1. Let cp:A -» B be a homomorphism of (not

necessarily local or noetherian) rings and let B be A-flat.

Let X = Spec(B), Y = Spec(A), acp:X -» Y. Let V be an irreducible

closed subset of Y. Then the generic points of all the

irreducible components of acp~ (V) are mapped into the generic

point of V.

Proof; Let V = Spec(A/p ), where p denotes the generic

point of V. Let aq> = f. Then f"1(V) = Spec(B/p B) =

Spec(A/p <g> AB). Since B is A-flat, B/p B is A/p -flat. In

fact, if

is an exact sequence of A/p -modules, it is also an exact

sequence of A-modules and, since B is A-flat

0 -» M <8> ^B -» N <S> ^B is exact.

But

M <g> A M <8> A/ (A/p

N ® AB - N ® A/p

whence (A/p ) ® .B is A/p -flat. The homomorphism cp induces a

canonical homomorphism A/p -»B/pB, i.e. we may assume V = Y,

and hence f""1 )̂ = X. We denote by QX and OY the sheaves of

local rings of X and Y respectively. (See the introduction)

Let T be an irreducible component of X, with x as generic

point. Let f(x) = y. We have to show that y is the generic
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point of Y. Since flatness is preserved under localization,

y

is 0 -flat. In fact it is faithfully flat, i.e.y
-0 4s 0 where m, denotes the unique maximal ideal of 0 .x x y y

To see this we observe that, if #t -0 = 0 then, byy jt x

Nakayama!s lemma 0 = 0, a contradiction. Since 0 is faith-x x
fully flat over 0 , by proposition 8 of B.C.A., I, §3> no. 5,

y
we have that the homomorphism $v.:Q.r->0 is injective, and thatx y x
Spec(0 ) -»Spec(0 ) is surjective. Let yf be the generic pointx y
of Y. Then j , C j > whence j .- 0 e Spec(0 ) and there exists

a prime ideal p e Spec(0x) such that ?X""
1()P ) = Jy!" 0 .

0 = B. and jv is minimal, whence P= j • Ov. Then yf = y,
X J X X X

Q.E.D.

Note. Lemma 5.1 shows that the projection indicated in the

figure is not a flat morphism.

$

¥e return now to discussing when equality holds in

Proposition 5.1.

Theorem 5.1. Let A, B be local, noetherian rings,

cp:A -> B be a local homomorphism, X = Spec(B), Y = Spec(A),
acp:X -> Y the associated morphism. We assume the following

condition:

(*) For every closed irreducible subset V of Y,

V =(= {'fit}, none of the irreducible components of acp~ (V) are
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dim(B) = dim(A) + dim(k <8> AB).

Remark. By lemma 5-1 (*) clearly holds if B is A- flat,

since {TTL} is not the generic point of V. This justifies the

remark made after proposition 5-1-

Proof ; We proceed by induction on n = dim(A). n = 0.

Then Spec (A) = {lit} and 772. is nilpotent. Hence m*B is contained

in the nilradical of B, whence dim(B/rw.B) = dim(B), and the

theorem holds in this case. Assume n > 0, let -^, , . . . /M be the

minimal primes of B, = cp~ ()* i * l*-..*r. Assume

p. =77l for some 1, 1 < i < r. Since dim(A) > 0, there exists

a prime ;P e Spec A with J> C 1tl. Then clear ly 77& = p . =

^1) implies % D pB. Now V(^) 4= {772} , and ̂ ± D f> B
e ECP~ ( V ( P ) ) * whence ^ is the generic point of an

irreducible component T of aq>~ ( V ( j P ) ) . From Tfl = cp~ ( ^. ) we

see acp(^i) ="77Z, whence TC acp~ (77^)^ contrary to assumption

(*). Therefore 772. + ^±, i = 1, ...,r.
i i

Let now p,, ..., p be the minimal primes of A. Since

dim(A) > 0, 7fo± P j, j = 1, . . -,s. Hence

TnC (U PJU (U p!.) = E.
i=l ri j=l ' J

Let x e 77Z, x k E. By proposition 2.6, since x £ p .,

J = 1, ...,s, and cp(x) £ ^±, i = 1, ...,r

dim(A/xA) = n - 1

dim(B/xB) = dim B - 1



Furthermore since Spec(A/xA) C Spec(A), Spec(B/xB) C Spec(B),

and fft(A/xA) is the closed point of Spec(A/xA), (*) holds for

A/xA and B/xB. Hence we can apply the induction assumption,

whence, letting A1 = A/xA, B! = B/xB, dim(B) - 1 = dim(B/xB) =

dim(A/xA) + dim(A!A«i ® A1"5') wnere "ttt1 denotes the unique

maximal ideal IftA1 of A1.

Now

tf = A/1ft' and A/f?lx ® A/xA B/xB =

® A/xA (A/xA ® AB) = A/fft, ® AB

and finally

dim(B) - 1 = dim(A) - 1 + dim(k <8> AB)

and the theorem is proved.

We may ask if, when equality holds in proposition 5.1,

B is A-flat. The answer is yes, but under fairly strong

conditions on A and B. Namely

Proposition 5.2. Let cp:A -» B be a local homomorphism.

Assume furthermore that

1) A is regular

2) B is C-M

3) dim(B) = dim(A) + dim(k <g> AB)

Then B is A-flat.

Proof; We proceed by induction on n = dim(A). n = 0

implies A is a field (since A is regular), and any vector

space over A is flat.
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Let n > 0. Since A is regular, there exists x

x £ 4Q, . Since A is an integral domain x is A-regular. Let

A1 = A/xA. Then Af is also regular, by corollary 4.2, and

dim(A!) = dim(A) - 1 "by proposition 3.1.

Let B! = B/xB. By proposition 5.1 we have

dim(Bf) < dim(A') + dim(Af/mf <8> A,B
f)

where ff|J denotes the unique maximal ideal ?UA! of A1.

Now A'/tn,1 = A/W. = k, £Chd A/m, <8> A/AXA B/xB - A/-m, <8> AB.

From the Hauptidealsatz we have

dim(B) - 1 < dim(B')

whence

dim(B) - 1 < dim(Bf) < dim(A) - 1 + dim(k <8> AB) = dim(B) - 1.

Therefore dim(Bf) = dim(B) - 1 whence (since B is C-M), x is

B-regular by proposition 3.2, whence B1 is C-M.

Hence 1), 2), 3) of the statement of our proposition hold

for A1 and Bf, whence, by the induction assumption, Bf is A1-

flat. Now the canonical homomorphism

xA <8> JB -» xB

is clearly surjective and, since x is B-regular, it is also

injective. Hence, by(iii) of theorem 1 of B.C.A., Ill, §5,

no. 2, B is A-flat and the proposition is proved.

Remark. The following examples show that there is no hope

of improving proposition 5-2.

Example 1. Take A1 = C[T], B1 = (I[X,Y]/[(X-Y)2(X+Y),

(X-Y)(X+Y)2] then let
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be defined by f(T) = the class of (X+Y)(X-Y), and let A,B be

the localizations of A',B! at T, (X,Y) respectively. Then we

have

1) B is not C-M

2) B is not A-flat

Example 2. Let A1 = 0[X2,XY,Y2], B1 = <F[X,Y], f:A« -»Bf

the inclusion, A = the localization of A1 at (X2,XY,Y2), B = the

localization of Bf at (X,Y). Then we have

1) A is normal and C-M

2) B is regular

3) B is not A-flat

5B. We now study the behavior of the notion of depth

under local homomorphisms.

Once again, with the same notations as in section 5A, we

wish to relate the depths of the three rings A, B, fe/w,B. More

specifically, we shall investigate under what conditions we

have

depth(B) = depth(A) -f depth(k <g> AB)

Unfortunately here we have no parallel to proposition 5-1*

as the following two examples show:

1. Let t e A be A-regular, B = A/tA. Then, by theorem 3-1*

depth B = depth(A) - 1 < depth(A)

whence we get depth(B) < depth(A) + depth(k ® ̂ B).
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2. Let A be a non C-M ring with nilradical vf =(= 0. Let

B = A/*T . If dim(A) = 1 we have dim(B) = 1, and since A is not

C-M depth(A) = 0, depth(BAn,B) = 0 (since A -> B -> 0 is exact,

is a maximal ideal and B/ntB is a field). But depth(B) = 1.

To see this, let p,, . .., p. be the minimal primes of A. Since

t
dim(A) = 1, 1tt 4= P±> 1 = 1, ...,t, whence m (t U p±. Let

t t
x e ttt , x t ^ P • * and let x = x + vT e B. Since *T = O P.,

i=l 1 i=l x

we see that x" is not a zero divisor in B.

Even though, in general, depth has an irregular behavior

under local homomorphisms, it does behave nicely under flat,

local homomorphisms . In fact we have

Theorem 5 • 2 . Let cp :A -» B be a local homomorphism and

assume that B is A-flat. Then

depth(B) = depth(A) + depth(k

Proof ; We proceed by induction on n = depth (A) +

depth(k (8) AB).

1) n = 0. Then depth(A) = depth(k <8> AB) = 0. Hence

Hfls€. Ass (A) and ttB/wtB e Ass(B/flt3)> by theorem 3-1. Now, by

Theorem 2 of B.C. A., IV, §2, no. 6, we have

Ass(B) = U Ass(B/pB). Since m, e Ass (A),
p e Ass (A)

Ass(B) D Ass(B/ittB), whence ffc(B/#23) e Ass(B/f/z,B) implies

tl, e Ass(B). Therefore depth(B) = 0 by theorem 3.1.

2) Assume n > 0. We proceed in two steps.

Case 1. depth(A) > 0. Then there exists x e *fl* such that

x is A- regular.



Let A1 = A/xA, Bf = B/xB. Then

(A'/ntA')®A,B
f = (A/7fc)®

Since B is A- flat, the exact sequence

0 -> A -» A If is multiplication by x

gives an exact sequence

0-»A<8> AB-»A<g> AB

whence x is B- regular. Hence depth (A1) = depth(A) - 1,

depth(B!) = depth(B) - 1. Furthermore, Bf is A1 - flat (see

proof of Lemma 5.1 or Corollary 2 of B.C. A., I, §2).

We can hence apply the induction assumption.

Since

depth(A!) + depth((A'AnA! ) ® AI
B|) =

depth(A) - 1 + depth(k <8> AB)

we have

depth (B1) = depth (A1) + depth(k <8> AB)

whence the theorem, in this case.

Case 2. depth (B̂ tl/B) > 0. Then there exists a

J € 4tB/HtB which is B/wB- regular. Let y e n, be such that

y = y + #&B. The rest of the proof is based upon the

following

Theorem 5.3. Let A, B be noetherian local rings, tn> H>

their respective maximal ideals. Let k = A/#̂  and let cp:A -^ B

be a local homomorphism. Let M, N be two finitely generated

B-modules, and u:M-»N a B- homomorphism, whence
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u <8> 1:M <8> Ak -» N <8> Ak

is a B ® .k-homomorphism. Assume that N is A-flat. Then the

following two conditions are equivalent:

1) u is injective, and coker (u) is A-flat

2) u <8> 1 is injective.

Proof; ¥e write gr(M) for gr,%~ (M) and similarly for N.

Note that

M (8) Ak = gr0(M)

N <8> Ak = gr0(N)

k= gr0(A).

1)=>2). From the exact sequence

(*) 0 -» M -^ N -» coker(u) -> 0

and from Grothendieck!s E.G.A., 0, 6.1.2 we see that M is A-

flat, and that u <8> 1 is injective. (Tensor (*) with k.)

2) = > 1). We have grQ(u) :grQ(M) -» grQ(N) is injective.

Since N is A-flat, by theorem 1, B.C.A., Ill, 5, 2, the

canonical homomorphism cp :gr(A) <8> /A\ grA(N) -» gr(N) is
Sro\A/ u

bijective. Hence we can apply proposition 9* B.C.A., Ill 2, 8,

and thereby obtain that gr(u) is injective, and that coker(u)

satisfies (iv) of theorem 1, B.C.A., Ill, 5, 2. (with M =

coker(u), U = 1tt)- Since gr(u) is injective, and since the

H-adic topology on M is Hausdorf (B is local and M is finitely

generated) from Corollary 1, B.C.A., Ill, 2, 8, we obtain that
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u is injective. Furthermore, since M and N are finitely

generated B-modules, so is coker(u), and since B is noetherian,

coker(u) is "idealement se'pare'" for ft,. (See Definition 1, B.C.A.

Ill, 5-1* and example 1 thereafter.) Since q> is a local

homomorphism, it follows that coker(u) is "idealement separe'"

for 1ft,. Hence condition (iv) of theorem 1, B.C.A., Ill, 5, 2,

implies condition (i) of the same theorem, i.e. Coker(u) is

A-flat (we use here the noetherianity of A). Q.E.D.

¥e return to the proof of Case 2, Theorem 5.2. We had

depth(B/MtB) > 0, and we had y e HB/fn3, J was B/fftB-regular,

and y € B such that y = y + fltB. Apply Theorem 5-3 to the

B-homomorphism u:B -* B defined by u(b) = yb. Since "y is

B ® ̂ k-regular,

u ® 1:B ® Ak -* B ® Ak

is injective, whence u is injective and coker(u) is A-flat, i.e.

y is B-regular and Bf = B/yB = coker(u) is A-flat. (One can

easily show that, conversely, if y is B-regular then B1 is

A-flat.)

By Theorem 3.1* we have

depth(B') = depth(B) - 1.

Now B1 <g> Ak = (B/yB) <8> Ak = (B <8> Ak)/y(B ® Ak). Therefore,

again by Theorem 3-1* depth (Bf ® Ak) = depth (B ® Ak) - 1.

Finally q>':A -»Bf is aigain local and Bf is A-flat. We can

therefore apply the induction assumption (since depth(A) +

depth(B« <8> Ak) = [depth(A) + depth (B ® Ak)] - 1) and we get
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depth(B) - depth(B') + 1 = depth(A) + depth(B» <g> Ak) + 1 =

depth(A) + depth(B <8> Ak)

and Theorem 5.2 is proved.

Corollary 5«1« Under the same assumptions as in Theorem

5.2, B is a C-M ring, if, and only if, A and B/tftB are C-M rings.

Proof: From Theorems 5.1 and 5-2 we have

(a) dim(B) - dim(A) + dim(k <8> AB)

(b) depth(B) = depth(A) + depth(k <8> AB).

Therefore, if A and B/fltB are C-M rings, so, trivially is B.

Conversely, let B be a C-M ring. We have:

dim(A) > depth(A)

dim(k <8> AB) > depth(k <8> AB)

and

dim(A) + dim(k ® AB) = dim(B) =

depth(B) = depth(A) + depth(k (8) AB).

Therefore dim(A) = depth(A) and dim(k ® AB) = depth(k ® AB),

i.e. A and B/fftB are C-M rings. The corollary is proved.

Theorem 5.2 and Corollary 5.1 are local in nature. We are

now going to examine some of the global consequences of flat-

ness.

As usual we let A, B be two rings, X = Spec(B),

Y = Spec(A), Ox = the sheaf of local rings B^ of X, OY = the

sheaf of local rings A of Y. If cp:A -> B is a given
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homomorphism the subschemas acp (y) of X are called the fibres

£f X over Y.

We recall that to say that X satisfies (Ŝ ) is to say

that, for all x € X

depth(0Y T) > mln[k, dim(0Y Y)]
JV. y A. •""" 1\. j A.

(See definition 4.6). We also remark that, if A is

a C-M ring then X satisfies (S,) , by (3.5).

Theorem 5 • ̂  • Let cp:A -» B be a homomorphism of (not

necessarily local) rings. Let X = Spec(B), Y = Spec (A), and

assume acp:X -> Y is a flat morphism(i.e. B is a flat A-module

under cp) . Then

1) If X satisfies (Sfc) so does Y

2) If Y and every fiber of X over Y satisfy (S,) so

does X.

Proof ; 1. Let y € Y, x the generic point of an

irreducible component of acp~ (y). By lemma 5.1 acp(x) = y and

theorem 5-1 applies. We have to show that

) > minfk, dim O] . If O = A , O. = B we

have k(y) = A^ /^A , k(x) = Bp /jpBp and cp~ 1 ( )D) = ^ .

Furthermore B^ is A^ -flat. Since x is the generic point of an

irreducible component of aqT (y), we have dim(Bp AyBn ) - 0,

whence depth(Bp /<H B^ ) = 0. Therefore

0 = dim(0x ® Q k (y ) ) = depth(0x <8) Q k (y) )
«y «y

By theorems 5-1 and 5.2 we obtain

dim(0 ) = dim(0 )



depth(0Y) = depth(0,JA. y

and since 0 satisfies the condition (̂ k-)* so ^oes 0 >

Q.E.D.

2) Let x € X, y = acp(x). From theorems 5.1, 5.2 we have

dim(0x) = dim(0y) + dim(0x e Q k(y))
o'

depth(0x) = depth(0y) + depth(0x <8> Q k(y))
y

By assumption both 0 and 0 <8> n
 k(y) satisfy the condition of

y x °y
(S, ). Hence so does 0 , Q.E.D.

(Note that here we do not know that x is the generic point of

an irreducible component of aq>~ (y)!).

The answer to the following question is at the moment

unkown: Let A, B be local rings cp:A -> B a local flat morphism.

If A and B/mB satisfy (Sfc), does B satisfy (Ŝ )? The

crucial difference between the situation here and the one in

theorem 5-^ is that here we assume (Sfc) only for the fiber o£

Spec(B) over the closed point of Spec(A), while in 2) of

theorem 5A (S, ) is assumed for all fibers.

The previous theorem dealt with the behavior of the

condition (S,) under global flat morphism. We now examine the

behavior of the notion of regularity in the local case.

Theorem 5«5« Let A, B be noetherian, local rings, cp:A -» B

a local morphism and let B be a A-flat. Then

1) If B is regular, so is A

2) If A and B/fttB are regular, so is B.



95

Proof; 1) Since B is A-flat, the same argument as in the

proof of Corollary 4.3 (replacing A^ with B) shows that

coh. dim(B) < coh. dim(A).

1) is therefore a trivial consequence of the Hilbert-

Serre theorem (theorem 4.2).

2) Let dim(A) = m, and let x̂ ,... ,xffl be a regular system

of parameters of A. Since B is A-flat, cp(x.,),.. .,q>(x ) are

B-regular. (Tensor the exact sequence 0 -» A/x̂ A*.. ,+x. .A -»

A/x-jAf.. •+x...A with B.) Now by assumption

B/m,B = B/9(x1) B + ...+ <p(xm) B is regular. Therefore by

proposition 4.1, B is regular. (Replace A with B and U with

ftt̂ B in the proposition.)

Corollary 5.2. Let A be a ring, T,, ...,T independent

transcendentals over A. Then:

i) If A is regular, so is AfT-^,.. ,,Tn] (in particular

if k is a field, kfT^ ...,Tn] is regular).

ii) If A is C-M, so is AfT^ .. .,Tn] (in particular, if

k is a field, k̂ ,.. ,,Tn] is C-M).

Proof; Clearly it suffices to prove i) and ii) when n s 1,

the general case following by induction. Let now B = A[T] .

Since B is A-free, it is A-flat. Let -m. be a maximal ideal of

B, 11, the prime ideal of A given by ffr= UlCl A. Then B^ is

A^-flat and, by theorem 5-5* to prove i) and ii) it suffices to

show that A^ and B^/ttB^ are regular, and C-M, respectively,
IIS *W* *i(S

under the corresponding assumptions for A. That A^ is regular

when A is regular follows from Corollary 4.3 to Hilbert-Serre
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theorem (theorem 4.2). If A is C-M, then so is A^ by

proposition 3.5«

Now

where k = A^/itA^ and -nt1 is the canonical image of

tH,(B/nB) in k[T]. k[T] is a principal ideal domain, k[T] f
#1*

is a discrete valuation ring, hence regular and, a fortiori,

C-M (Corollary 4.1). The theorem is proved.

Having examined the behavior of dimension, depth, (Sk),

and regularity under flat morphisms, we complete the analysis

with the study of the behavior of condition (R, ) .

Let as usual cp:A -» B be a flat morphism, and let

X = Spec(B), Y = Spec(A), f = acp:X -» Y. We say that X

satisfies (Rfc) if the ring B does, and similarly for the

spectrum of any ring. We remark that to say X satisfies (Rfc) is

equivalent to saying that, when dim 0 < k, QX is regular, (see

definition 4.6) Now:

Theorem 5.6. Let cp:A -» B be a flat morphism. Then:

1) If X satisfies (Rfc) so does Y

2) If Y and f"1(y) satisfy (Rfc), for all y e Y, so

does X.

Proof: Let y e Y, x e f" (y) . Since B is A- flat we have

that Ov is 0 -flat, whence, by Theorem 5.1x y

(*) dim(0x) = dim(0y) + dim(0x <8> Q k(y))
y
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where k(y) = Oy/f|ty.

1) We have to prove that 0 is regular if dim(0 ) < k.y y "~~
If we choose x to be the generic point of an irreducible

component of f" (y), we have dim(0x <8> Q k(y)) = 0 (since

B. /j B. is artinian), whence
Jx y jx

dim Ov = dim Oxr < kx y —•

and therefore 0 is regular. Then, by theorem 5-5> 0 isx y
regular and 1) is proved.

2) Let now x e X be arbitrary, dim 0 < k, and letx •""
y = f(x). We have to show that Ox is regular. Prom equation

(*) above we have dim(C) ) < k and dim(0v <8> n k(y)) < k- By
y _ x uy —

assumption (Rk) holds for Y and f (y) = Spec (B ® A k(y))« Hence

0 and 0 ® n k(y) are regular (note that 0 ® o k(y) is the
y y y

local ring £f x in f" (y)!)* and by theorem 5.5, QX is

regular, Q.E.D.

A quick comparison shows that theorems 5-^ and 5-6 are

identical if one replaces (S, ) by(R, ). It is then natural to

ask the same question about(R, ) that was asked about (S, ) after

the end of the proof of the theorem namely: Let A, B be local

rings, cp:A -» B a local flat morphism. If A and B/wtB satisfy

(Rfc), does B satisfy (Rk)?

As with (Sfc), the crucial difference between the situation

here and the one in theorem 5.6 is that here we assume (Rfc)

only for the fiber of Spec(B) over the closed point of Spec(A),

while in theorem 5.6 we assume (R,) for all fibers. Here the

answer is known, in the negative. As usual the counter example



Is due to Nagata.

The following theorem is an immediate application of

theorems 5.4 and 5.6, coupled with the characterization of

reduced (normal) rings given in propositions 4.5 and 4.6.

Theorem 5.7* Let q>:A -*B be a flat homomorphism of (not

necessarily local) noetherian rings. Then:

1) If B is reduced (normal), so is A

2) If, for every vj € Spec (A), A and B/ B are

reduced (normal), so is B.

Proof; Obvious.

We complete this section with a few remarks concerning the

following situation.

A field k, a noetherian overring A of k, and a field

kj D k are given. The ring A1 = A ® fck
f is an overring of k1.

We leave to the reader the verification of the following

statements:

Prop os it ion 5•3.

1) Af is noetherian if [k»:k] < °° (A1 need not be

noetherian in general).

2) If A is a local ring, A1 is semi-local.

3) A1 is a flat A-module.

4) If x1 € Spec(A'), x = the image of x1, then

dim AX = dim A
f
x,.

5) Under the same assumption as in 4), depth(Ax) =

depth(A'xl).

6) Under the same assumption as in 4), AX is C-M if, and

only if, A'xl is C-M.
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7) A satisfies (Sfc) if, and only if A
1 satisfies (Sfe).

1, 2) and 3) have easy proofs. To prove 4), 5), 6),

7) apply theorems 5-l> 5^2, corollary 5-1* and

theorem 5-4.

Theorem 5.8. Let k be a field, A an overring of k, k1 a

field containing k, A1 = A ® Jfc1. If A1 is, respectively,

regular, (Ri,)* normal, reduced, then A is regular (R̂ ),

normal, reduced.

Proof; Follows directly from the previous results of this

section.

In general, however, A1 need not be regular if A is, as

the following example shows:

Let k be a non perfect field k 4= kP* P > 2 and let

a e k, a t kP. Let

A = k[X, Y]/(Y2 - Xp + a)

The Jacobian criterion (Proposition 4.3) tells us that A is

regular. Now let k1 = k(a 'p). Then one easily verifies,

from Xp - a = (X - a1/<p)p that

A' s k'[X, Y]/(Y2 - Xp)

and again proposition 4.3 tells us that A1 is not regular.

We leave as an exercise to the reader the proof of the

following

Theorem 5«9_« Under the same assumption as in theorem 5.8,

if A is regular and k1 is a separable extension of k, then A1

is regular.

Theorem 5^9 prompts us to introduce the following
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Definition 5.1. Let k be a field, A an overring of k.

The ring A is said to be geometrically regular if, for all

finite field extensions k1 of k, the ring A1 = A <8> k1 is
K.

regular.

Corollary 5«3* a) Every regular overring of a perfect

field is geometrically regular. .

b) Every regular overring of an algebraically closed

field is geometrically regular.

Remark. Let again A1 = A ® ̂ .k1. Some of the properties of

A1 can be deduced from those of A and of the field extension k1

of k. This process of deduction is known as ascent. Conversely,

some of the properties of A can be deduced from those of A1.

This latter process of deduction is known as descent.

§6. COMPLETION AND NORMALIZATION

^A- Completion. Let A be a noetherian local ring, Ht its

maximal ideal. It is well known(see Corollary after Proposition

5 in B.C.A., Ill, §3, no. 2) that H tn,n = (°)- Tnis implies

that the collection {t£n} can be taken as the basis of a filter

of neighborhoods of 0 in a (unique) Hausdorff topology which is

consistent with the ring structure of A (i.e. A is a Hausdorff

topological ring).

The set ft of (equivalence classes of) Cauchy sequencesof

elements of A can be given a topological ring structure which is

obviously complete (i.e. every Cauchy sequence in A is

convergent). We refer the reader to the third chapter of

B.C.A. for the proof of the above statements, as well as for the


