ON THE EXISTENCE OF Ø-DEFINABLE NORMAL SUBGROUPS OF A STABLE GROUP

Anand Pillay*

There is a family of results concerning the existence of (\emptyset) -definable normal subgroups of a stable group. Namely:

(1) (Berline-Lascar [B-L]). If G is superstable, and

$$U(G) = \omega^{\alpha_1} n_1 + \dots + \omega^{\alpha_k} n_k + \beta (\beta < \omega^{\alpha_k})$$

then G has a normal subgroup K with $U(K) = \omega^{\alpha_1} n_1 + ... + \omega^{\alpha_k} n_k$.

(2) (Hrushovski [H]). If G is stable and its generic type is nonorthogonal to a regular type p, then there is a definable normal subgroup K of G such that G/K is "p-internal" and infinite.

(3) (Pillay-Hrushovski [PH]). If G is 1-based and connected then every type q = stp(a/A) ($a \in G$) is the generic type of a coset of a normal $acl(\emptyset)$ -definable subgroup K of G.

In this expository paper we will prove these results and some variants.

We work throughout over acl (\emptyset) (i.e. we assume acl $(\emptyset) = dcl (\emptyset)$). G is assumed throughout to be a <u>saturated</u>, <u>stable</u>, <u>connected</u> group. We prove:

Theorem A. Let g be a generic of G (over \emptyset), and let X \subseteq G be invariant and internally closed. Then there is a \emptyset -definable normal K \subseteq G such that (i) G/K \subseteq X and (ii) some stationarisation of tp(g/X) is the generic type of a generic coset of K° (the connected component of K).

^{*} Partially supported by NSF Grant DMS 8601289

Anand Pillay

(We will see that the Berline-Lascar result (1) above follows from Theorem A when we take $X = \{a \in G^{eq}: U(tp(a/\emptyset)) < \omega^{\alpha_k}\}$).

Theorem B. Let g be a generic of G, and $A \subseteq G^{eq}$. Then stp(g/A) is the generic type of a generic coset of a \emptyset -definable normal subgroup K of G if and only if for any generic a of G with a \downarrow_{\emptyset} gA, both $stp(g \cdot a/aA)$ and stp (a·g/aA) are 1-based types.

First some explanation of the notation:

Definition 1. (a) Let $X \subseteq M^{eq}$ (M stable saturated). We say X is <u>invariant</u> if X is fixed setwise by any automorphism of M. This clearly means that whether or not $a \in X$ depends on $tp(a / \emptyset)$.

(b) Let X⊆M^{eq} be invariant. We say that X is <u>internally closed</u> if for any a∈M^{eq}, if for some b∈M^{eq} a ↓ b and a∈dcl(X∪b) then also a∈X.
(c) q = stp(a/A) is said to be <u>1-based</u> if Cb(q)⊂acl(a).

The next Lemma also appears in [P].

Lemma 2. Let g be a generic of G, and $b \in G^{eq}$. Let $q = tp (g^b)(\emptyset)$. Let $K = \{a \in G: \text{ for } g' \land b' \text{ realising } q \mid a, tp(a \cdot g' \land b'/a) = q \mid a.\}$ Then for generic a of G, a/K (the left coset aK), is in the internal closure of $tp(b)^G$.

Proof. Let G_1 be saturated, $G_1 \downarrow_{\emptyset} g \land b$, and let $Y \subseteq G_1$ be a large independent set of generics. Let X = the set of realisations of tp(b) in G_1^{eq} . Let $a \in G_1$ be generic and independent with Y over \emptyset . Note that

$$tp(a \cdot g/G_1)$$
 is generic. (*)

Claim. tp($a \cdot g^b/G_1$) is definable over $Y \cup X$.

Proof of Claim. It is enough to show that $tp(a \cdot g^{b}/G_{1})$ is finitely satisfiable in $Y \cup X$. So suppose $\overline{m} \subseteq G$, and $\models \phi(a \cdot g, b, \overline{m})$. As Y is large there is $c \in Y$ with $\overline{m} \downarrow_{\emptyset} c$. By (*) $tp(a \cdot g/\overline{m}) = tp(c/\overline{m})$. Thus \models

 $\exists y(\varphi(c,y,\bar{m}) \land r(y)) \text{ where } r = tp(b/\emptyset). \text{ As } G_1 \text{ is saturated, we can find such } a y \text{ in } G_1, \text{ i.e. in } X. \text{ This proves the claim.} \\ \text{Let } Y_0 \cup X_0 \subset Y \cup X \text{ be small such that } tp(a \cdot g^b/G_1) \text{ is definable over } Y_0 \cup X_0. \text{ As } tp(g^b/G_1) \text{ is definable over } \emptyset \text{ we see that any automorphism } f \text{ of } G_1 \text{ takes } tp(a \cdot g^b/G_1) \text{ to } tp(f(a) \cdot g^b/G_1). \text{ Thus, if } f \text{ is a } Y_0 \cup X_0 \text{ automorphism of } G_1, \text{ then } tp(a \cdot g^b/G_1) = tp(f(a) \cdot g^b/G_1), \text{ i.e. } tp(g^b/G_1) = tp(a^{-1}f(a) \cdot g^b/G_1), \text{ that is } a^{-1}f(a) \in K. \text{ Thus } a^{-1}f(a) \in K. \text{ Thus } a/K \in dcl(Y_0 \cup X_0). \text{ But } K \text{ is } \emptyset\text{ -definable and } a \downarrow Y_0. \text{ Thus } a/K \text{ is in the internal closure } of X \text{ as required.} \square$

Lemma 3. Let $X \subseteq G^{eq}$ be invariant and internally closed. Let K be \emptyset -definable such that for generic a of G, a/K (left coset) is in X. Let L = intersection of conjugates K^g of K, g \in G. Then G/L \subset X (and L is normal \emptyset -definable).

Proof. First $L = K \cap K^{g_1} \cap \ldots \cap K^{g_n}$. Clearly L is normal and \emptyset -definable. Note that if a is a generic of G over g_i then a/K^{g_i} is interdefinable with a^{g_i}/K over g_i , and moreover a^{g_i}/K is a generic coset of K, and thus is in X. Thus, if a is a generic of G over g_1, \ldots, g_n then $a/L \in dcl(a/K, \ldots, a^{g_i}/K, g_1, \ldots, g_n)$. So a/L is in A (as X is internally closed) As every element of G/L is a product of generics of $G/L \subset X$.

Proof of Theorem A

Let K be the intersection of all \emptyset -definable subgroups L of G such that for generic a of G, $a/L \in X$. By Lemma 3, K is normal, clearly \emptyset -definable, and $G/K \subseteq X$. (K need not be connected). Let a realise the generic of K[°] over G.

So by definition, $tp(a \cdot g/G)$ is a generic of the coset $g/K^{\circ} (=a \cdot g/K^{\circ})$ of K° and so is definable over g/K° . On the other hand $g/_{K} \in X$ and $g/K^{\circ} \in acl$ (g/K). Thus $tp(a \cdot d/G)$ does not fork over X.

But by Lemma 2, $tp(a \cdot g/X) = tp(g/X)$. Thus $tp(a \cdot g/G)$ is a stationarisation of tp(g/X) and we finish.

Anand Pillay

Before proving the Berline-Lascar theorem, we recall some facts about U-rank.

Fact 4. $U(a/bA) + U(b/A) \le U(a^b / A) \le U(a/bA) \oplus U(b/A)$, and of course $U(a^b/A) = U(b^a/A)$.

Lemma 5. Let $U(a/A) = \omega^{\alpha_1}n_1 + ... + \omega^{\alpha_k}n_1 + \beta$ where $\alpha_1 > \alpha_2 > ... > \alpha_k$ and $\beta < \omega^{\alpha_k}$. Let $B \supseteq A$, and $U(a/B) = \omega^{\alpha_1}n_1 + ... + \omega^{\alpha_k}n_k$; let $c \in Cb(stp(a/B))$. Then $U(c/A) < \omega^{\alpha_k}$.

Proof. Let $a_1, a_2, ...$ be a Morley sequence in stp(a/B). So $c \in acl(a_1, ..., a_n)$ for some $n < \omega$. By Fact (4) we have: (\overline{a} denotes $(a_1, ..., a_n)$) $U(\overline{a}/cA) + U(c/A) \le U(\overline{a}c/A) \le U(c/\overline{a}A) \oplus U(\overline{a}/A)$. But $\omega^{\alpha_1}n_1 \cdot n + ... + \omega^{\alpha_k}n_k \cdot n \le U(\overline{a}/cA), U(c/\overline{a}A) = 0$ and $U(\overline{a}/A) < \omega^{\alpha_1}n_1 \cdot n + ... + \omega^{\alpha_k}(n_k \cdot n + 1)$. Thus $\omega^{\alpha_1}n_1 \cdot n + ... + \omega^{\alpha_k}n_k \cdot n + U(c/A) < \omega^{\alpha_1}n_1 \cdot n + ... + \omega^{\alpha_k}(n_k \cdot n + 1)$, whereby $U(c/A) < \omega^{\alpha_k}$.

Corollary 6. Let $U(G) = \omega^{\alpha_1}n_1 + ... + \omega^{\alpha_k}n_k + \beta \ (\beta < \omega^{\alpha_k})$. Then there is a normal \emptyset -definable subgroup K of G, with $U(K) = \omega^{\alpha_1}n_1 + ... + \omega^{\alpha_k}n_k$.

Proof. By Lemma 5, there is $c \in G^{eq}$ with $U(c/\emptyset) < \omega^{\alpha_k}$ and $U(g/c) = \omega^{\alpha_1}n_1 + \ldots + \omega^{\alpha_k}n_k$ (where g is a generic of G over \emptyset). On the other hand, if $X = \{a \in G^{eq}: U(a) < \omega^{\alpha}\}$, then by Fact 4 $U(g/X) \ge \omega^{\alpha_1}n_1 + \ldots + \omega^{\alpha_k}n_k$. Thus $U(g/X) = \omega^{\alpha_1}n_1 + \ldots + \omega^{\alpha_k}n_k$. Clearly X is invariant and internally closed. So by, Theorem A we find a subgroup K of G which is normal and \emptyset -definable, with $U(K) = \omega^{\alpha_1}n_1 + \ldots + \omega^{\alpha_k}n_k$ (tp(g/X) is the generic type of a coset of K, so U(g/X) = U(K)).

We now consider Hrushovski's result. Let $p \in S(A)$ be a regular type, not orthogonal to \emptyset . We say c is p-internal over \emptyset if $\exists B c \downarrow_{\emptyset} B$ and realisations $d_1 \dots d_k$ of extension of conjugates of p over B such that $c \in dcl$ (B,d_1,\dots,d_k) . Note that {c:c is p-internal over \emptyset } is invariant and internally closed.

Lemma 7. (T stable). Let $tp(a/\emptyset)$ be nonorthogonal to p (p regular). Then there is c which is p-internal over \emptyset such that a \downarrow c. (In fact we can choose $c \in dcl(a)$, and c having "nonzero p-weight").

Proof Let $a \downarrow B$ and let e realise plB, such that $a \not\downarrow e$. Let D =

Cb(stp(eB/a)). So $D \not\subseteq acl(\emptyset)$. Let $\{e_iB_i : i < \omega\}$ be a Morley sequence in stp(eB/a). Then $D \subseteq dcl(\{e_i, B_i : i < \omega\})$, and $D \subseteq acl(a)$. A nonalgebraic member of D will then satisfy the requirements (as $D \subseteq acl(a)$, $D \downarrow_{\emptyset} \{B_i:i < \omega\}$).

Now we can obtain Hrushovski's result (2) mentioned in the introduction: for suppose the generic type of G is nonorthogonal to regular p. By Lemma 7, we can find generic g of G and c p-internal over \emptyset such that $g \downarrow c$. Let $X = \{c \in G^{eq}: c \text{ is p-internal over } \emptyset\}$. By Theorem A, there is \emptyset -definable normal K < G with $G/K \subseteq X$. (In fact it turns out that the generic of G/K again has "nonzero p-weight").

Finally, by a slight refinement of [PH] we give necessary and sufficient conditions for stp(g/A) (g generic of G) to be a generic type of a (generic) coset of an \emptyset -definable normal subgroup.

Proof of Theorem B.

Suppose first stp(b/A) to be generic type of a generic coset of K, where K is \emptyset -definable, normal and of course connected. Let a be generic of G over g^A. So stp(g/aA) does not fork over A. Let $G_1 \supseteq a A$, stp(g/G₁) dnf over A. Let q = generic type of K over G₁. By assumption, $tp(g/G_1) = q \cdot b = b \cdot q$ for some $b \in G$. But then $tp(g \cdot a/G_1) = tp(q \cdot (b \cdot a)/G_1)$ and $tp(a \cdot g/G_1) = tp((a \cdot b) \cdot q/G_1)$. But then $tp(g \cdot a/G_1)$ is definable over $b \cdot a/K = g \cdot a/K \in dcl(g \cdot a)$, so is 1-based. Similarly $tp(a \cdot g/G_1)$ is 1-based.

Conversely, suppose the right hand side conditions hold. Again, let a be generic of G over gA, and let $G_1 \supset A \cup a$ with $tp(g/G_1)$ not forking over A.

Let $K_1 = \text{left stabiliser of tp}(g/G_1)$ (= {b \in G_1:tp(b \cdot g/G_1) = tp (g/G_1}), and let $K_2 = \text{right stabiliser of tp}(g/G_1)$. So K_1, K_2 are both acl(A)-definable.

Then any automorphism of G_1 which fixes acl(A) and $tp(a \cdot g/G_1)$ fixes a/K_1 (=left coset aK_1). Thus as $tp(a \cdot g/G_1)$ is based, $a/K_1 \in acl(A \cup a \cdot g)$. On the other hand $stp(g/a \cdot g \cup a/K_1 \cup A)$ does not fork over A. But the right coset of g mod K_1 is definable over $a \cdot g \cup a/K_1 \cup acl(A)$.

Thus the right coset $g/K_1 \in stp(g/a \cdot g \cup a/K_1)$. It easily follows that stp(g/A) is the generic type of the right coset $K_1 \cdot g$ of K_1 . (1)

We can do the same thing for K_2 , deducing that stp(g/A) is the generic type of the left coset g·K₂ of K₂. (2) Note also that $K_1 = left$ stabiliser of $tp(g \cdot a/G_1)$, so as the latter type is by assumption 1-based, K_1 is $acl(g \cdot a)$ -definable. (3)

Similarly K₂ is acl(a·g)-definable. (4) As $g \cdot a \downarrow A$, $a \cdot g \downarrow A$, it follows from (3),(4) and the acl(A)-definability of K₁, K₂, that both K₁,K₂ are acl(\emptyset)-definable.

It easily follows from (1) and (2) that $K_1g = K_2$. As both K_1, K_2 are acl (\emptyset)-definable and g is generic over \emptyset it follows that for generic independent g_1, g_2 of G $K_1^{g_1} = K_2 = K_1^{g_2}$, and $K_1^{g_1g_2^{-1}} = K_1$.

But $g_1 \cdot g_2^{-1}$ is also generic, so $K_1^g = K_1$ for generic g. Thus K_1 is normal and $K_1 = K_2$, proving the Theorem.

198 On the existence of Ø-definable normal subgroups of a stable group

References

- [B-L]. Chantale Berline and Daniel Lascar, Superstable groups, Annals of Pure and Applied Logic, 30 (1986).
- [H]. E. Hrushovski, Ph.D. Thesis, Contributions to Stable Model Theory, Berkeley 1986.
- [P-H]. A. Pillay and E. Hrushovski, Weakly normal groups. Logic Colloquium '85, North-Holland 1987.
- [P]. Bruno Poizat, Groupes stables, Nur Al Mantiq Wal Ma'rifah, 1987.