
ON SUPERSTABLE FIELDS WITH AUTOMORPHISMS

Ehud Hrushovski

The Lie-Kolchin theorem states, essentially, that every connected

solvable algebraic group over an algebraically closed field has a nilpotent

derived group. This was generalized by ZU*ber and Nesin (independently) to

groups of finite Morley rank. It was known that all ingredients of Nesin's

proof generalize easily to superstable groups (satisfying an appropriate

connectedness condition), except for the non-existence of definable groups of

automorphisms of the field. The purpose of this note is to prove this fact: if F

is a field, G a group of automorphisms of F, and (F,G) is superstable, then

G = (1).

All groups are taken to be «> -definable in (E, the universal domain of a

superstable theory. We will use the notation of [M], and the theory of local

weight in groups from [H, §3.3]. The basic definition is that of a regular type.

The idea is that the elements of the group are co-ordinatized by n-tuples of

realizations of the regular type. Thus for example if A = (Z/2Z)00, with generic
type p, then B = A x A is p-simple: an element of B is a pair of elements, of

A. But if B = (Z/4Z)G), and A is identified with 2B, then B is not p-

simple: an element of B can be analyzed in terms of p, but not in one step.

Call a group p-connected if it is p-simple, connected, and has a generic type

domination-equivalent to a power of p. One has the following existence

property.

Fact 1. Let G be a group, H a group acting on G, and suppose the generic

type of G is non-orthogonal to the regular type p. Then G has a normal, H-

invariant subgroup N such that G/N is p-simple.
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If p is chosen to have minimal possible U-rank, so that every forking
extension of p is orthogonal to G, then every generic type of G/N will
necessarily be =pn for some n. In particular, every (superstable) group G

has a filtration G = Gn^>Gn-i
=:>...:::>Gj = (1) such that each Gj is normal in

G, and G/Gn is p-connected for some regular type p. So every simple group
is p-connected for some p. The same is true for fields: If G = Ga is the
additive group of a field, then the multiplicative group H = Gm acts transitively
on Ga-(0). Since the filtration can be chosen to consist of H-invariant groups,
it follows that n = 1 and Ga is p-connected.

«r

Lemma 2 (Zil'ber): Let G be a p-connected group acting on the p-connected
Abelian group V. Assume that V has no nontrivial G-invariant p-connected

subgroups of smaller p-weighL Let F = EndG(V). Then F is a definable
field, and V is definably an F-vector space.

Proof: Let a G V- (0). By the indecomposability lemma (to be proved

below), the subset of V generated by {x-a : x realizes the generic type of G
over a} by the operation (u,v,w) » u - v + w is a coset of some

oo-definable subgroup of V. By minimality, this subgroup must be all of V.
A fortiori, Ga generates V. Thus V is a simple Z[G]-module. By Schur's
lemma, F is a division ring. Now F-(0) is the set of G-automorphisms of
V: by [H, §4.2, lemma 2 and §3.4, theorem 2], it is definable. Hence so is
F.

The use of the "indecomposability lemma" could have been avoided, but this
seems pointless.

Proposition 3: Let F be a field, G a group of automorphisms of F, and
assume that the structure (F,+,-,G, action of G on F) is superstable. Then
G = l .
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Proof : If G is finite, then F must be algebraic over the fixed field FQ of G.
FO is a definable subfield, so it is algebraically closed; so F = FQ, i.e. G = 1.

Suppose G is infinite. Let FQ be the algebraic closure of the prime
field of F. Note that each element of FQ has finite orbit under the action of G,
so the connected component G° of G must fix FQ pointwise. Choose any
element oe G°, a * 1. We will show that the structure (F,+,-,a) is already

unsupers table.
Case 1 F has characteristic 2.
Let h(x) = a(x)+x. h is an additive endomorphism of F. The kernel K of h

is precisely the fixed field of F. Let p be a regular type such that K is p-
connected. As K is a proper subfield of F, we have wp(K) = 0. By
additivity of weight, wp(range(h)) = wp(F); so by semi-regularity, the range of
h is all of F. In particular, there exists x e F such that h(x) = 1. So a(x) =
x + 1 * x, but a2(x) = a(x+l) = x+2 = x. Let KQ = {x: ax = x},
KI = {x: a2x = x}. Then KI is an extension of degree 2 of KQ,

contradicting the fact that KQ is algebraically closed.

Case 2 F has characteristic other than 2.
Define h by: h(x) = a(x)/x for x* 0. Then h is a multiplicative

endomorphism whose kernel is a proper subfield (minus {0}), so h is onto.
Choose x such that h(x) = -l, and continue as in the previous case.

Problem 3. If a is an automorphism of a field F, and (F,o) is

superstable, must a be a power of the Frobenius automorphism? (Note that a

must have a finite fixed field by the above proof, so in particular F has prime

characteristic).

Proposition 4: Let G be a p-connected group acting on the p-connected

Abelian group V. Let N be a normal Abelian subgroup of G. Assume that

V,G,N are non-trivial, and that every proper G-invariant p-connected
subgroup of V is trivial. Let R = EndN(V) and let F be the center of R.
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Then F is a definable field, V is (definably) a finite-dimensional F-vector

space, and G acts F linearly on V.

Proof: Let U be a p-connected, N-invariant subgroup of V of least possible

non-zero p-weight By the minimality of A and the finiteness of p-weight, V

is a finite direct sum of G-conjugates of U. It follows that R is isomorphic to
the nxn matrix ring over Endn(U), so the center F of R is isomorphic to

EndN(U). By lemma 2, F is a definable field; so R is definable. Since N is
Abelian, eachaeN acts on V as an N-endomorphism. This gives an

embedding of N into the center of R, i.e. into F. In particular, wp(F) > 0,

so V is finite-dimensional as an F-space. R and its action on V are clearly

0-definable, hence so is F=center(R). Thus G acts on F naturally. By

proposition (3), the action is trivial. So G acts F-linearly on V.

The rest of Nesin's proof of the Lie-Kolchin theorem is routine.

We now present a version of ZiTber's indecomposability theorem in the

context of regular types; Lascar and Berline have proved it at the same level of

generality using U-rank, so it is only presented in order to demonstrate the

technique. A subset C of G is a (left) coset of some subgroup if and only if
C is closed under the operation: fay^-tty^z. If this is the case, then C is

a right translate of a unique subgroup S of G, namely S = CC~1. If C is

(oo-) definable, then so is S, and a type of C is called generic iff it is a

translate of a generic type of S. The coset generated by a subset X of G is

by definition the closure of X under the above operation.

Remark 5: Let q be a type of elements of a group G.

(a) q is the generic type of some oo-definable subgroup of G iff q satisfies:

for (ai,a2) h q2, aia2 1= q.

(b) q is the generic type of a oo-definable coset of G iff q satisfies: for

(ai,a2,a3) 1= q3, aiai^as 1= q.
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Proof:
(a) Let S = {ab:a [=qandb hq}. Note that if (ai,a2> hq2, then
&1&2 hq I ai: for any translation-invariant rank,
rk(q) = rk (aia2/0) ^ rk (aia2/ai) = rk (a2/ai) = rk (a2/0)=rk(q), so equality

holds. It follows that whenever (bib2> 1= q2, brHfc 1= q. To see that S is a

group, it suffices to show that if a,b,c each realize q, then abc=de for some
d, e realizing q. Let f hq I {a,b,c}. Then abc = (afXf^bc). By the
previous remark, f-1b Mq, and one sees easily that Hta-lC; so Hbc M q.

Let d = (af),e = (f1bc).
(b) Let r = stpCaiai"1) for (ai,a2) hq2. r clearly satifies the condition for

being the generic type of a group S. By definition of r, q is the generic type
of Sa2 whenever a2 N=q.

Proposition 6 (Indecomposability): Let G be a group, p a regular type.
Let F* = {s: s = stp(a /0) for some a e G, s a pn for some n > 0, and s
isp-simple}. Assume wp(s) is bounded for seF*. Then:
(a) If reF*, then the coset generated by {x e G: x |= r} is oo-definable, with

generic type in F*.
(b) Let GI (i e I) be a collection of oo-definable connected groups whose

generic types are in F*. Then the group generated by UjGi is oo-definable,
and its generic type is in F*.

Proof: Define two operations on F*: if q,reF*, choose (a,b) Nq®r, and

let q"1 = stp(a-1), q-r = stp(a-b). Note that • is associative. Also, wp(q-l) =
wp(q), and wp(q-r) > wp(q). [wp(ab) > wp(ab/b) = wp(a/b) = wp(a)].

Let F be a subset of F* closed under the operation: (qi,q2,qs) —>
qrq2"1-q3. Choose qeF of largest p-weight. Then for any reF one has

wp(q)>wp (q-r -1) = wp(q). Recall that if t is p-simple and n pn then every
forking extension of t has smaller p-weight than t. It follows that if (a,b,c) t=
q® r ® r then ab"1 4 b. Since we also have ab"1 i c, stpCb/ab"1)= stpCc/ab"1),
so there exists af h q such that ab~l = a'c"1. So ab'lc = a'c^c = a'. This
shows that with our choice of q, q-r!-r = q for any reF. In particular,
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q. q-l.q = q9 so by Remark 5, q is the generic type of some oo-definable

coset.

To prove (b), let qj be the generic type of GI, and let F be the
closure of {qj : ie 1} under the operation defined in the first line of the

previous paragraph. One obtains an oo-definable coset C with generic type q

such that q-qjf1-qj = q for each i. It follows that each GidS, where S is

the subgroup of G for which C is a right coset of S. From the construction

of C it is clear that S is contained in the subgroup generated by the union of

the GI'S (indeed C is). So this subgroup equals S.

For (a), let F be the closure of {r} under the same operation. So
F = {rn: n odd}, where rn = r-r -^r-.-.-r v(n> (n times; v(n) = (-l)n). Let q,C

be as in the first paragraph. Then it is clear that C is contained in the coset

generated by r. Conversely, say q = rn. From q-r!-r = q one sees that rm

depends only on the parity of m for m>n. So q = T2n+i = rn-rn"1* =

q. q-l. r. From this, one sees easily that every realization of r lies in the coset

generated by the realizations of q.
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