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The best examples of co-stable groups are algebraic groups over the

complex numbers. We try in Section 1 of this exposition to clarify what some

model theoretic concepts mean in some quite concrete situations and write down

for reference several simple facts which several model theorists have

reconstructed several times each. We raise further questions directed at

extensions of the Cherlin conjecture. These questions and related

remarks are aimed at clarifying the distinction between the group theoretic and

the geometric properties of an algebraic group. They emphasize the oft-

mentioned, in the abstract, insistence that a stable group may have further

structure. The comments here arise from lectures given at Notre Dame during

the 1986-87 year. Several of the results arose in a number of discussions with

among others Cherlin, Loveys, MacPherson, Marker, Martin, Nesin, Pillay,

Steinhorn and Tanaka.

* Partially supported by NSF grant DMS 8602588; much of the work on this paper was done

during the author's visit to Notre Dame.
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In Section 2 we explore the difference between the use of the term

'automorphism group1 in algebraic geometry and group theory. We show in

Section 3 that although earlier examples have shown that the stability spectrum

is not preserved by taking a finite extension of a group, every extension of Z°

by a finite group is superstable. In other words all crystallographic groups are

superstable.

1. co-STABLE AND ALGEBRAIC GROUPS

It is well known that any matrix group which is definable over the

complex numbers is co-stable of finite rank; indeed these provide the main

examples of such groups. Cherlin conjectured that a simple co-stable group of

finite rank is an algebraic group over an algebraically closed field. We will

discuss the meaning of 'is1 in this context and some extensions of the conjecture

to groups which are not simple. We proceed primarily by studying a few

examples.

Since the class of co-stable groups is closed under product, taking the

product of algebraic groups of different characteristic we obtain co-stable

groups which are not algebraic. Another example is the group Zpoo. Our main

interest here is with a distinction which arises already when considering

algebraic groups.

There are two natural ways for a model theorist to view an algebraic

subgroup of GL(n,(E) (the n x n invertible matrices over the complex

numbers): as apure group (G,-) or as an algebraic group G* = (G,-, RO wherer\
the Ri are the restrictions to G of all relations on (En definable (without

parameters) in the structure (Œ, +,-). We refer to the language of the second

structure as the geometric language. We discuss below which concepts

concerning algebraic groups are defined in the group language and which in the

geometric. But sometimes there is no difference. The following question was

essentially posed by Poizat.
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1 Question: For which affine algebraic groups are (G,-) and G*

biinterprctable?

It is natural to view this question over an arbitrary algebraically closed

field. In both this question and the next we have restricted for concieteness to

affine algebraic groups (where the universe of the group is a Zariski closed

subgrtoup of (Cn ). The questions are equally meaningful for arbitrary

algebraic groups (since an abstract variety can be viewed as finite union of

affine varieties modulo a definable equivalence relation). By ZU'ber, Poizat,

van den Dries, and Hrushovski the structures G and G* are biinterpretable if

G is simple (Theorem 4.16 of [17]). Since the projection functions are
definable, the structure G* is always (Oi-categorical. So G>I- categoricity is

a necessary but not sufficient condition for a positive answer to Question 1. It
is not sufficient since G = (S^)00 is (Oi- categorical and (as noted by Nesin)

can be viewed as an algebraic group as follows. G is elementarily equivalent

to the algebraic group over an infinite field k of characteristic 2

With a little more background we will see that in this case (G,-) is not
biinterpretable with G*. Recall that a (necessarily coi-categorical) structure A is

almost strongly minimal if, possibly expanding the language to name a finite

number of elements that realize a principal type, there is a definable subset D of
A which is strongly minimal such that A CI acl D. But (Z 2)® is not almost

strongly minimal and, again, the existence of coordinate functions implies that

G* is always almost strongly minimal.

2 Question: Characterize the (ûi-categorical affine algebraic groups.

It is hard to imagine a purely algebraic classification since there are
examples of coi-categorical algebraic groups which are simple, solvable but not

nilpotent, and nilpotent Every nonabelian Morley rank 2 group
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is O0i-categorical. This was shown by Cherlin [4] in the solvable but not

nilpotent case, by Tanaka [18] in the nilpotent case, and finally by a general

argument of Lascar [12]. Our use of almost strong minimality to show the
geometry is not defined in (Z^)® leads to the following refinement of the

question.

3 Question: Which toi-categorical groups are almost strongly minimal?

We will give examples below of algebraic groups in which the field is
definable but which are not (Oi-categorical. Thus the program for proving

some co-stable group G of finite Morley rank is an algebraic group has two

distinct steps:

i) Define a field k, necessarily algebraically closed, in G.

ii) Show G is an algebraic group over k.

The second step remains the sticking point for rank 2 nilpotent groups. Tanaka

[18] has extended the analysis in [4] to show every such group is
(Oi-categorical. All the known examples (cf. [18] and [13]) are in fact

algebraic groups. Nesin has shown ([13]) how to define the field in the group

language. The following observation was made by James Loveys and myself.

1.1 Lemma. If G is a Morley rank 2 nilpotent group then G is not almost

strongly minimal.

Proof. Let A denote (Z-)10!. Then any group in our class (up to elementary

equivalence) may be represented as a central extension of A by itself [4].

That is, we can represent G as A x A with the multiplication given by

(a, b) (c, d) = (a + c, b + d + f(a, c)) where f : A x A — » A i s a cocycle

satisfying certain equations (specified in e.g. [18]). Now let a be a group

homomorphism of A into A. Then it is easy to check that a defined by
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a (a, b) = (a, b + a(a)) is an automorphism of G which fixes the center of G

pointwise. To see G is not almost strongly minimal note that for any X =

{(ai,bi),...,(an,bn)} and any (a, b) with a not in the (finite) subgroup generated

by the ai, it is possible to choose infinitely many homomorphisms a of A

which map ai,..., an to 0 and differ on a. Thus the associated a demonstrate

that (a, b) £ acl (X U Z (G)). If G is almost strongly minimal, for any infinite

definable set W there is a finite set X with G ç: acl (X U W). With this

contradiction we finish. D

We would like to classify Morley rank 2 nilpotent nonabelian groups.

All known examples are definable in algebraically closed fields. As noted

before, Nesin has shown the field is definable in basic example. Is a field

definable in every such example? The preceding result shows that even for the

examples which are algebraic groups it is impossible to define the full geometric

structure in the group language. The question which remains is whether any

cocycle f which gives a rank 2 nilpotent group must be definable in the field

structure.

We will explore the relations between these questions by considering

some subgroups of the 2 x 2 matrices over the complex numbers. In describing

these examples we not only give concrete examples but report some algebraic

folklore which is helpful in the model theoretic context. We call a matrix

diagonal if all entries off the main diagonal are zero and scalar if it is a diagonal

matrix with all its nonzero entries equal. We fix the following notation.

G = GL(2,(C) = |0 d) : 3d -be * 0 J general linear

S = SL(2,(E) = {(c d) : ad ~ bc = ! }
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Z = Z(2,I)={(oa):a*o} center of G

ZQ= Z0(2,(C) = o a : a = l centerofS

PSL(2,(E) = S/Zo projective special linear

PGL(2,(E) = G/Z projective general linear

Note that PGL(2,Q and PSL(2,(E) are isomorphic groups. For, PSL is

defined to be S/Z fl S « Z - S/Z. But since (E is algebraically closed each matrix

A can be factored as a product of a scalar matrix and one of determinant one.

So Z- S = G. Of course these two groups are quite different over finite fields.

The word 'projective1 arises because the action of G on affine space becomes a

faithful action on projective space when the center is factored out. The special

linear group is definable in the general linear group; it is the commutator

subgroup. In general the commutator subgroup is not definable. However, it is

in this case. It is well known to algebraists that there is a bound on the number

of multiplications needed to generate the commutator subgroup of an algebraic

group over (E; a consequence of the Zil'ber indecomposability theorem extends

this to any connected co-stable group of finite Morley rank.

In the model theoretic context we say a (definable) subgroup is

connected if it has no definable subgroup of finite index (equivalently has

Morley degree 1). For any subset H of an co-stable group let fi be the minimal

definable subgroup containing fi. We occasionally use this notation below in

the context of stable groups. In such cases we implicitly assume that the group

is saturated and fi is the minimal type-definable subgroup containg H
(see[12]).
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1.2 Definition. A Borel subgroup of an algebraic group G is a

maximal connected solvable subgroup of G.

1.3 Fact. Every Borel subgroup of an algebraic group (over an

algebraically closed field) is definable in the pure group language.

Proof. Recall that it was shown by Zil'ber [19] for œ-stable groups of finite

rank and by [2] for stable groups that if H is solvable then so is ft. So a

subgroup of a stable group which is maximal among the solvable subgroups

definable in the geometric language is definable in the group language. Now if

G is an algebraic group and B is Borel, then B is maximal among all solvable

closed subgroups not just the connected ones (See [11] Corollary A of Section

23) so B is definable as required. D

There may exist other maximal closed solvable groups. They will be

definable but have lower rank than a Borel. There are examples of finite

maximal solvable subgroups of semisimple algebraic groups (cf. [16]).

Here is a natural representation for a Borel subgroup of GL(2,(E).

B = B(2,(E) = {(o d) - ad * 0} Borel subgroup

Such a representation can be explained as follows. For any n, it is easy to see

that the group of upper triangular matrices is solvable. (The first commutator

subgroup has ones on the diagonal, the second has zeros on the superdiagonal,

the third has zeros on the superdiagonal and on the second superdiagonal, etc.)

The Lie-Kolchin-Malcev theorem asserts that every solvable subgroup is

conjugate to a subgroup of upper triangular matrices. Thus the group of upper

triangular matrices is a Borel subgroup.

The argument for the solvability of the upper triangular matrices shows

that the commutator subgroup of the upper triangular matrices is nilpotent.

Nesin [15] has extended this result by showing that the commutator subgroup

of a connected solvable group of finite Morley rank is nilpotent.
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In our further discussion we will need two more subgroups.

U = U(2,(E) = {(o i): bel} unipotent

T = T(2,(E) = {(od):ad*o} torus

The properties defining these groups are expressible in the geometric

language or more precisely in the language of matrix rings. An element a of a

matrix group is called unipotent if for some n, (a-l)n = 0, a closed subgroup

is unipotent if all its elements are. Note that an upper triangular matrix with

ones on the diagonal is unipotent. The subgroup U is a minimal definable

infinite unipotent group. Note that T(n,(E) is abstractly isomorphic to a direct

product of n copies of the multiplicative group of the field. That is, as a

subgroup of GL(n,(E), its elements are simultaneously diagonalizable. As a

maximal Abelian subgroup of a stable group, T is definable with parameters in

G (T = Z (CG(TO)) for a finite subset T0 of T).

1.4 Lemma. Consider the pure group G. Suppose G= GQX G i where

both GO and GI are infinite and GO is 0-definable in G. Then G is not

<u\-categorical.

Proof. We can apply the Feferman-Vaught theorem to obtain a two cardinal

model of Th(G). D

For any group H and finite subgroup F, if H is (Oi-categorical then so is

H/F. ïhe converse is false; an example of an unstable group G with a finite

center Z such that G/Z is coi-categorical is given in [14]. But this does not

stop us from proving the next result

1.5 Fact. GL(2,(E) is not coi-categorical.

Proof. Note that

01X2,0 « (SL(2,(C)xZ)/Zo
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where ZQ is the set of pairs (a,a) contained in SL(2,(E) x Z with a e ZQ. As

noted in the last lemma SL(2,(C) x Z has a two cardinal model and this property

is preserved by factoring out a finite normal subgroup; so GL(2,(E) is not

c&i-eategorical. D

So GL(2,(E) is another example of an algebraic group where the

geometric language is more expressive than the group theoretic. Now the same

argument shows

1.6 Fact. B(2,I) is not coi-categorical.

But this fact provides an interesting anomaly. It is easy to see that
(T,-) = T(2,(E) is strongly minimal and so coi-categorical. But it is easy to

verify

1.7 Proposition. B c. del (T U {(o l)l )•

there is nothing to prove. D

Why can't we conclude that B is coi-categorical? To explore this

question we introduce some further terminology.

1.8 Definition. Let GO be a definable substructure of an L-structure G. We

denote by GIGo the structure with universe GO and as n-ary relations all
restrictions to GO of 0-definable relations on Gn. Then we say GO is full in

G if the L structure GO is interdefinable with GIGo.
Since (B,-) is not u)i-categorical but (T,-) is, we infer that T is not full

in B. Just what structure does B impose on T ? We answer this question by

describing a structure on T which is definable in B and such that every
automorphism a of this structure extends to an automorphism of B. Note that

T is definable in the group language of B (with parameters) but is not

0-definable in B.
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To make this description note first that the scalar matrices (Z) of T,

although not definable in (T,-) are definable in (B,-) as the center of B.

Now the map

aO\ /aOWl IVa"4 0 A (\ ab'H
Ob,/1-» VObAOl/vO ry = Vo 1 /

identifies T/Z with U minus the identity element Define an addition on T/Z by
setting A ffi B = y ~l(y(A)- y(B)). A straightforward computation verifies that

(T/Z, ffi, •) is a field and of course y is an isomorphism between(T/Z, ffi) and

(U,-). We claim the structure B imposes on T is interdefinable with the
structure obtained by expanding the language to name the center and adding ffi

as an operation on T/Z. To see this we show that any automorphism a of the

group structure on T which induces an automorphism of the field structure on
T/Z extends to an automorphism of (B, •)• Let 6 denote the action of T on U

by conjugation. Then
B « U xieT

and identifying U with T/Z via y

B « T/Z*eT.

Now extend a to a : B -> B by a (u,t) = (au,at). Direct

computation verifies that a is an automorphism of B.

Summing up,

1.9 Lemma. As a subgroup of the Borel subgroup B, the torus T has a

distinguished subgroup Z and TIZ is an algebraically closed field; T has no

further structure.
As a counterpoint to this example consider the Borel subgroup B' of SL(2, (E):

{( 0 d): ^ = * J • ft *s easyto see B' is in the algebraic closure of the upper

triangular subgroup U'. To see it is in the definable closure is harder. Define a

1-1 map from U' to the diagonal elements by sending u e U' to the unique
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diagonal t such that for some diagonal x,x2 = t and x conjugates (Q l) to u-

2 THE AUTOMORPHISM PUN

Let the multiplicative group kx act by multiplication on the additive

group k4". It is a well known geometric fact that the 'automorphism group1 of

the affine line over k is isomorphic to the semidirect product of k+ by kx.

Each element can be thought of as a pair (a,b) which acts on k by sending x

to ax + b. In this section we will call this group the affine group. By

'automorphism group', the geometer does not mean the group of permutations

which preserve a certain set of relations on the line. Rather he means the

collection of 1 - 1 self morphisms (i.e. polynomial maps) of the line to itself

whose inverses are also morphisms. The Frobenius map is the standard

example that this is not the same as a bijective morphism. Note however, that a

bijective definable map has a definable inverse.

4 Question: Find a natural (in particular finite) set of relations R on the set

of complex numbers such that the set of automorphisms of (I, R) is

isomorphic to the cffine group.

Note that if the relations chosen are definable from the field structure,

any field automorphism (in the usual sense) would induce an automorphism of

the structure. So if we permit arbitrary abstract automorphisms the relations

imposed must include some which are not definable from the field structure.

Since the affine group acts strictly 2-transitively on I, it suffices to name each

orbit of three tuples to solve the question. But this language is uncountable and

no countable sublanguage of it will suffice.

A more tractable problem is to find a structure with universe Œ whose

group of definable automorphisms is isomorphic to the affine group. With

Pillay, Steinhorn and Loveys we arrived at the following solution. Put on I

the operations
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©(x,y,z) = x + y - z

and

®(x,y,z,w) = ((x-z)(y-z)/(w-z)) + z.

That is, hide both the zero and the one.

Now naming 0 and 1 allows one to recover the field and it admits

elimination of quantifiers. Suppose that <p(x,y) defines a permutation a of k.

Then in characteristic zero we will show <p is equivalent to a formula of the

form f (x,y) = 0 where f is a linear polynomial. It has been proved (e.g.

[17] Chapter 4.c) that a definable function defined on a variety is rational on a

Zariski open subset of the variety.

Since we are in characteristic 0 (and the field is algebraically closed) a

rational function is 1 -1 with infinite domain only if it is the ratio of linear

maps. Thus <p defines the graph of a fractional linear transformation. A

routine computation shows the only fractional linear transformations which

preserve the relation ©(x,y,z) = w are of the form ax + b. Now (k,+) is

irreducible as an co-stable group. Thus every element is a sum of generics and

so since a preserves © its definition as a linear function on an open set

extends to all of k and we finish.

The structure described above is inadequate to solve the problem in

characteristic p. In fact, no set of relations on (E which are definable from the

field structure and from which multiplication is defined can give the affine

group as the group of definable automorphisms. For, the Frobenius

automorphism would be definable and not in the affine group.

Given any set A and group of permutations G of A, the canonical

language associated with G and A has as relations the subsets of An which
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are left invariant by the action of G. Lemma 1.9 and our last remark lead to the

following question.

5 Question: When does the canonical language for A and G have a finite

basis (i.e. G = Aut (A,Ri,...,Rn)?

Hrushovski [10] has shown that assuming the structure on A is co-

stable and co-categorical the language can be taken finite; can anything

reasonable be said in more generality? In [9], the proof of Representation

Lemma 2 on page 63 shows that if the action of G is definable then there is a

bound on the arity of relations which must be added to form a basis.

Another puzzle is to find a set of relations on (EU {00} to make the

definable automorphism group qf the resulting structure be the fractional linear

transformations. That is, to solve for the projective line the problem we have

solved here for the affine line. Hrushovski has indicated informally a solution

to this problem and its generalization to an arbitrary curve.

3 CRYSTALLOGRAPHIC GROUPS

In this section we show that a class of groups which have been studied

intensively by both mathematicians and chemists are superstable of finite U-

rank. Along the way we recall some examples of Cherlin and Rosenstein and

Thomas which show the result is a little more special than one might hope. All

of these are concerned with the preservation of the stability classification by

finite extensions of groups.

For our purposes we take as a definition the conclusion to a theorem of

Zassenhaus giving the following algebraic equivalent of the standard definition

of a crystallographic group as a group of symmetries of real n-space [8].

3.1 Definition. G is a crystallographic group if G has a maximal abelian

subgroup A such that A < G, G/A is finite and A is isomorphic to Zn for

some n.
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The first step in the argument that every crystallographic group is

superstable is to recall from [3] that every abelian by finite group is stable. But

taking finite extensions can disturb the stability spectrum. The following

example was pointed out to us by Simon Thomas. Such an example was

requested in [14].

3.2 Example. Let GI = GL(2,(E). Embed 2^2 = (a) into the group of

automorphisms of GI by setting

€ !)) - G S)
where a denotes the complex conjugate of a. Now if G2 is the semidirect

product of GI by Z2 under this action, 62 is not stable because the centralizer of
a in G2 is isomorphic to GL(2,IR) and the reals are interprétable in GL(2,IR).

Thomas had showed this interpretability result and it is contained in the

discussion before Lemma 1.9 (if we replace Œ by IR and note that the Borel

group is definable in GL2).

It is easy to see [3] that the stability class of a group G with an abelian

subgroup A of finite index is determined by the Z[G/A] (integral group ring)

module structure of A and a cocycle map from G/A x G/A —» A. Since G/A is

finite the cocycle can be given by naming the finitely many elements in the

range. However, Example 3 of [7] shows that the module structure of A may

fail to be co-stable even if A is co-stable and G/A is finite (indeed G/A «

TLi x Z2). Slight variants will make the module structure not even superstable.

Thus to show that every finite extension of Zn (for any n) is co-stable we must

rely on some further properties of Zn.

3.3 Definition. An R module A is hereditarily K-stable if for every ring S

such that A admits an S module structure compatible with its R-^nodule

structure the S-module A is K-stable.
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The point of the definition is to demand that no S can make an

appropriate descending chain of R submodules become definable. This

definition leads in the natural way to the notion of structure being hereditarily

co-stable, hereditarily superstable or hereditarily stable. Since [6] showed that

the stability class of module is determined by the relevant definable chain

conditions (cf. [1] or [17]) the following result is obvious. (S cannot cause

subgroups which do not exist to become definable! )

3.4 Lemma, i) If there is no descending chain of R-submodules of A then

A is hereditarily ay-stable.

ii) If there is no descending chain of R-submodules of A such that succesive

elements of the chain are of infinite index then A is hereditarily superstable.

Finally we conclude

3.5 Lemma. For every n, the group Zn is hereditarily superstable.

Proof. We will show that Zn contains no infinite decreasing chain of

subgroups <Aj : i < co> such that AI+I has infinite index in AI. Since every

subgroup of Zn is freely generated by at most n elements (has rank at most n)

it suffices to show: If A c, B c: Zn and [B:A] is infinite then the rank of A

is strictly less than the rank of B. By Lemma 15.4 of [5] we observe the

following. For any free abelian group B and subgroup A it is possible to

choose bases bi,...,bm for B, ai,...,afc for A with k < m and nonnegative

integers ni such that ai =nfbi and B/A« ©<bi > /<nibi >. ThusB/Ais

infinite just if k < m (Le. some ni is zero).

The U-rank of Zn is bounded by n since the U-rank can be infinite

only if there are arbitrarily long finite chains of subgroups with infinite index at

each step. Thus we can deduce

3.6 Conclusion. Every crystallographic group is superstable with finite U-

rank.
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