Indeed, if we put $f_{1}=\phi_{1}, f=\phi_{2}$ in Theorem 27 we get

$$
\alpha \beta+\alpha \gamma=\alpha(\beta+\gamma)
$$

and putting $\mathrm{f}_{1}=\phi_{1}, \mathrm{f}_{2}=\phi_{1}, \mathrm{f}=\boldsymbol{\phi}_{2}, \mathrm{f}_{3}=\boldsymbol{\phi}_{2}$, Theorem 26 yields

$$
(\alpha \beta) \gamma=\alpha(\beta \gamma)
$$

Further, if we put $f_{1}=\phi_{2}, f=\phi_{3}$, Theorem 27 yields

$$
\alpha^{\beta \cdot} \cdot \alpha^{\gamma}=\alpha^{\beta+\gamma}
$$

while putting $f_{1}=\phi_{2}, f_{2}=\phi_{1}, f=\phi_{3}, f_{3}=\phi_{2}$ one obtains, according to Theorem 26,

$$
\left(\alpha^{\beta}\right)^{\gamma}=\alpha^{\beta \gamma} .
$$

7. On the exponentiation of alephs

We have seen that an aleph is unchanged by elevation to a power with finite exponent. I shall add some remarks concerning the case of a transfinite exponent.

Since $2^{\aleph_{0}}>\aleph_{0}$, we have $\left(2^{\aleph_{0}}\right)^{\aleph_{0}} \geqq \aleph_{0} N_{0}$, but $\left(2^{N_{0}}\right)^{N_{0}}=2^{N_{0} N_{0}}=2^{\aleph_{0}}$. On the other hand $2^{\aleph_{0}} \leqq N_{0}{ }^{N_{0}}$. Hence

$$
2^{N_{0}}=\kappa_{0}{ }^{N_{0}} .
$$

Of course we then have for arbitrary finite n

$$
2^{\aleph_{0}}=n^{\aleph_{0}}=\aleph_{0}{ }^{\aleph_{0}},
$$

and not only that. Let namely $\aleph_{0}<\mathfrak{m} \leqq 2^{\aleph_{0}}$. Then

$$
2^{\aleph_{0}}={\aleph_{0}{ }^{\aleph_{0}} \leqq \mathfrak{m}^{\aleph_{0}} \leqq 2^{\aleph_{0}}, ~}_{\text {, }}
$$

whence

$$
\mathfrak{m}^{N_{0}}=2^{\aleph_{0}},
$$

In a similar way we obtain for an arbitrary \aleph_{α}

$$
2^{\aleph} \alpha=\mathfrak{m}^{\aleph \alpha} \alpha
$$

for all $m>1$ and $\leqq 2^{*} \alpha$.
From our axioms, in particular the axiom of choice, we have derived that every cardinal is an aleph. Therefore $2^{N} \alpha$ is an aleph. We can also prove by the axiom of choice that $2^{\aleph}{ }^{\alpha}>\aleph_{\alpha+1}$ or perhaps $=\aleph_{\alpha_{+1}}$. One has never succeeded in proving one of these two alternatives and according to a result of Gödel such a decision is impossible. However, in many applications of set theory it has been convenient to introduce the so-called generalized continuum hypothesis or aleph hypothesis, namely

$$
2^{\aleph} \alpha=\aleph_{\alpha+1} .
$$

In particular the equation $2^{\aleph_{0}}=\aleph_{1}$ is called the continuum hypothesis. Of course this assumption means that we introduce a new axiom, namely the following: Let M be a well-ordered set, UM as usual the set of its subsets, and N such a well-ordered set that every initial section of N is $\sim \mathrm{M}$, while N itself is not $\sim \mathrm{M}$. Then there exist in our domain D a set ϕ of ordered pairs which yields a one-to-one correspondence between UM and N.

If we have the axiom of choice, we may say more simply that if M is infinite, then every subset of $U M$ is either \sim a subset of M or it is $\sim U M$.

On the other hand there are a few aleph formulas which can be proved without the (generalized) continuum hypothesis. I shall give some of these.

A theorem of König says:
Theorem 28. If γ runs through all ordinals $<\lambda$, where λ is a limit number, then

$$
\sum_{\gamma<\lambda} \aleph_{\gamma}<\prod_{\gamma<\lambda} \aleph_{\gamma}
$$

This follows from the general inequality theorem of Zermelo proved earlier. By the way, we have $\sum_{\gamma<\lambda} \aleph_{\gamma}=\aleph_{\lambda}$ of course. As a particular case we have $\aleph_{\omega}<\aleph_{0} \aleph_{1} \aleph_{2} \ldots$. . Since $\aleph_{0} \aleph_{1} \aleph_{2} \ldots$. is $\leqq \aleph_{\omega}^{\aleph_{0}}$, we obtain the inequality

$$
\aleph_{\omega}^{\aleph_{0}}>\aleph_{\omega}
$$

Similarly $\aleph_{\omega_{1}}^{\aleph_{1}}$ is $>\aleph_{\omega_{1}}$, etc.
An equation of Hausdorff is
Theorem 29. $\kappa_{\alpha+1}^{\aleph_{\beta}}=\kappa_{\alpha}^{\aleph_{\beta}} \cdot \aleph_{\alpha+1}$,
where α and β are arbitrary ordinals.
Proof. 1) Let $\alpha<\beta$ so that $\alpha+1 \leqq \beta$. Then, since $\aleph_{\alpha+1} \leqq \aleph_{\beta}<2^{\aleph} \beta=$ $N_{\alpha}^{N_{\beta}}$,

$$
\aleph_{\alpha}^{\aleph_{\beta}}=s_{\alpha+1}^{N_{\beta}}=2^{N_{\beta}} .
$$

2) Let $\alpha \geqq \beta$. Then we can write

$$
\aleph_{\alpha+1}^{\aleph_{\beta}}=\sum_{\mu<\omega_{\alpha+1}} \bar{\mu}^{\aleph_{\beta} \leqq \aleph_{\alpha}^{\aleph_{\beta}} \cdot \aleph_{\alpha+1} \leqq \aleph_{\alpha+1}^{\aleph_{\beta}} \aleph_{\alpha+1}=\aleph_{\alpha+1}^{\aleph_{\beta}}, ~ ; ~}
$$

whence the asserted equation.
A theorem of Tarski is:
Theorem 30. If $\bar{\gamma} \leqq \aleph_{\beta}$, then $\aleph_{\alpha}^{\aleph_{\beta}}=\aleph_{\alpha}^{\aleph_{\beta}} \cdot \kappa_{\alpha+\gamma}^{\bar{\gamma}}$.
The proof can be given by transfinite induction with respect to γ. The
theorem is true for $\gamma=0$. Let us assume its truth for γ. Then by Theorem 29

$$
\aleph_{\alpha+\gamma+1}^{\aleph_{\beta}}=\aleph_{\alpha+\gamma}^{\aleph_{\beta}} \cdot \aleph_{\alpha+\gamma+1}=\aleph_{\alpha}^{\aleph_{\beta}} \aleph_{\alpha+\gamma}^{\bar{\gamma}} \aleph_{\alpha+\gamma+1}=\aleph_{\alpha}^{\aleph_{\beta}} \aleph_{\alpha+\gamma}^{\overline{\gamma+1}} \aleph_{\alpha+\gamma+1}=\aleph_{\alpha}^{\aleph_{\beta}} \aleph_{\alpha+\gamma+1}^{\overline{\gamma+1}}
$$

Now let λ be a limit number such that $\bar{\lambda} \leqq \aleph_{\beta}$, while the theorem is assumed valid for all $\gamma<\lambda$. Then

$$
\aleph_{\alpha+\lambda}=\sum_{\gamma<\lambda} \aleph_{\alpha+\gamma}<\prod_{\gamma<\lambda} \aleph_{\alpha+\gamma}
$$

according to the theorem of König. Hence

$$
\begin{aligned}
\aleph_{\alpha+\lambda}^{\aleph_{\beta}} \leqq\left(\prod_{\gamma<\lambda} \aleph_{\alpha+\gamma}\right) \aleph_{\beta} & =\prod_{\gamma<\lambda} \aleph_{\alpha+\gamma}^{\aleph_{\beta}}=\prod_{\gamma<\lambda} \aleph_{\alpha}^{\aleph_{\beta} \aleph_{\alpha+\gamma}^{\bar{\gamma}}=\left(\aleph_{\alpha}^{\aleph_{\beta}}\right)^{\bar{\lambda}} \prod_{\gamma<\lambda} \aleph_{\alpha+\gamma}^{\bar{\gamma}}} \\
& \leqq \aleph_{\alpha}^{\aleph_{\beta} \bar{\lambda}} \cdot \aleph_{\alpha+\lambda}^{\bar{\lambda} \bar{\lambda}}=\aleph_{\alpha}^{\aleph_{\beta}} \cdot \aleph_{\alpha+\lambda}^{\bar{\lambda}}
\end{aligned}
$$

while on the other hand

$$
\aleph_{\alpha}^{\aleph_{\beta}} \aleph_{\alpha+\lambda}^{\bar{\lambda}} \leqq \aleph_{\alpha+\lambda}^{\aleph_{\beta}} \kappa_{\alpha+\lambda}^{\aleph_{\beta}}=\aleph_{\alpha+\lambda}^{\aleph_{\beta}}
$$

Therefore the theorem is valid for λ and is proved.
I shall further mention without proof the following two theorems:

1) In order that $2^{\aleph} \alpha=\aleph_{\beta}$ it is necessary and sufficient that β is the least ordinal number ξ such that $\aleph_{\xi}^{\aleph} \alpha<\aleph_{\xi+1}^{\aleph_{\alpha}}$.
2) We have $2^{\aleph \alpha}=\aleph_{\beta}$ if and only if β is the least ordinal number ξ such that $\aleph_{\xi}^{\aleph} \alpha=\aleph_{\xi}$.
A further question concerning the cardinal numbers is whether the socalled inaccessible cardinals exist. An aleph \aleph_{Ω} would be called inaccessible if $\omega_{\Omega}=\Omega$, or if one prefers, $\bar{\Omega}=\aleph_{\Omega}$. This question may again be undecidable so that the introduction of further axioms might be desirable. However, I will not pursue this subject further here.
