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1. Historical remarks. Outlines of Cantor's theory

Almost 100 years ago the German mathematician Georg Cantor was study-
ing the representation of functions of a real variable by trigonometric series.
This problem interested many mathematicians at that time. Trying to extend
the uniqueness of representation to functions with infinitely many singular
points he was led to the notion of a derived set. This was not only the begin-
ning of his study of point sets but lead him later to the creation of transfinite
ordinal numbers. This again lead him to develop his general set theory. The
further development of this, the different variations or modifications of it
that have been proposed in more recent years, the discussions and criticisms
with regard to this subject, will constitute the contents of my lectures on set
theory.

One ought to notice that there have been some anticipations of Cantor's
theory. For example B. Bolzano wrote a paper with the title: Paradoxien des
Unendlichen (1951) (Paradoxes of the Infinite), where he mentioned some of
the astonishing properties of infinite sets. Already Galilei had noticed the
remarkable fact that a part of an infinite set in a certain sense contained as
many elements as the whole set. On the other hand it ought to be remarked
that about the same time that Cantor exposed his ideas some other people
were busy in developing what we today call mathematical logic. These investi-
gations concerned among other things the fundamental notions and theorems of
mathematics, so that they should naturally contain set theory as well as other
more elementary or ordinary parts of mathematics. A part of the work of
another German mathematician, R. Dedekind, was also devoted to studies of a
similar kind. In particular, his book "Was sind und was sollen die Zahlen"
belongs hereto.

In my following first talks I will however confine my subject to just an
exposition of the most characteristic ideas in Cantor's work, mostly done in
the years 1874-97.

The real reason for a mathematician to develop a general set theory was
of course the fact that in mathematics we often have to do not only with single
mathematical objects but also with collections of them. Therefore the study
of properties of such collections, even infinite ones, must be of very great
importance.

There is one fact to which I would like to call attention. Most of mathe-
matics and perhaps above all the classical set theory has been developed in
accordance with the philosophical attitude called Platonism. This standpoint
means that we consider the mathematical objects as existing before and in-
dependent of our actual thinking. Perhaps an illustrating way of expressing
it is to say that when we are thinking about mathematical objects we are look-
ing at eternal preexisting objects. It seems clear that the word "existence"
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according to Platonism must have an absolute meaning so that everything we
talk about shall either exist or not in a definite way. This is the philosophical
background for classical mathematics generally and perhaps in particular for
classical set theory. Being aware of this, Cantor explicitly cites Plato.
Everybody is used to saying that a mathematical fact has been discovered,
not that it has been invented. That shows our natural tendency towards Plato-
nism. Whether this philosophical attitude is justified or not, however, I will
not discuss now. It will be better to postpone that to a later moment.

When Cantor developed his theory of sets he liked of course to conceive
the notion "set" as general as possible. He therefore desired to give a kind
of definition of this notion in accordance with this most general conception.
A definition in the proper sense this could not be, because a definition in the
proper sense means an explanation of a notion by means of more primitive or
previously defined notions. However, it is evident that the notion "set" is
too fundamental for such an explanation. Cantor says that a set is a collection
of arbitrary well-defined and well-distinguished objects. What is achieved,
perhaps, by this explanation is the emphasizing that there shall be no restric-
tion whatever with regard to the nature of the considered objects or to the
way these objects are collected into a whole. Taking the Platonist standpoint,
it is clear that this whole, the collection, must itself again be considered as
one of the objetts the set theory talks about and therefore can be taken as an
object in other collections. This is indeed clear, because there are no re-
strictions as to the nature of the objects.

Now we are very well acquainted with sets in daily life. These sets are
finite, but I shall not now enter into the distinction between finite and infinite
sets. The most important mathematical property of the finite sets is the
number of their elements. By the way I write

me M,

expressing that m is an element of or belongs to M. Indeed this notation is
used everywhere in the literature. If we shall compare two finite sets M and
N with regard to number, we may do that in the way of pairing off the ele-
ments by distributing as far as possible the elements of M and N into disjoint
pairs. Let us for simplicity assume M and N disjoint, that is, without com-
mon elements. If it is possible to distribute the elements of M and N into dis-
joint pairs (m,n), meM, neN, such that all meM and all neN occur in these
pairs, then it is evident that there are just as many elements m in M as ele-
ments n in N. If, however, we may build a set of pairs (m,n) such that all m
occur, but not all n, then in the case of finite sets M possesses less elements
than N. It is clear that it must be possible to compare sets by considering
such sets of disjoint pairs in the case of infinite sets as well. This leads to
one of the most important notions not only in the classical set theory but
also in ordinary mathematics, namely, the notation of one-to-one correspon*-
dence or mapping. We say that f is a one-to-one correspondence between the
sets M and N, if f is a set of mutually disjoint pairs (m,n) such that each
meM and each neN occur in one of the pairs. In order to be able to take into
account the case that M and N have some common elements, it is necessary
to replace the simple notion pair {a,b}, which means the set containing a and
b as elements, with the notion ordered pair (a,b), which can be conceived as
{{a,b}, {a} }. However I will here, to begin with, use the notion ordered pair,
triple etc. as known ideas without worrying about an analysis of them.
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Possessing the notion one-to-one correspondence or mapping, we may
obtain this generalisation of the number concept:

M and N have the same cardinal number, if a mapping f exists of M on N.
This circumstance is written M ~ N.

Cantor says that the cardinal number M of M is what remains, if we
make an abstraction with regard to the individual characters of Us elements.
This definition is made much clearer by Russell, who says that M is the set
of all sets N being ~ M.
_ Further, this definition of the relatiqg = Between cardinals was natural:
M i N if M is ~ a subset of N. Further M < N if M ~ a subset of N, but N
not ~ M.

Let us again introduce some notations. I shall write A £ B when the set
A is contained in B, and AcB, if A is contained in B, but not inversely B in
A. Then we know that for the finite sets as we encounter them in everyday
life, there is never a mapping of the set on a proper part of itself. Thus, if
M is finite,

Nc M -» N <M.

Dedekind uses this as a definition of finite sets: A set M is finite, if it is not
~ any proper part N of itself.

On the other hand, if we look at the simplest infinite set we know,
namely the number series 0,1,2,..., then it is easily seen that this set admits
a mapping on a proper part of itself, for example, the set of positive integers
1,2,.... It is said that already Galilei wondered about this, and found it an
astonishing property of an infinite set, that a proper part of it could in a
certain sense be said to possess just as many elements as the whole set.

Some further notations may suitably be mentioned now. We write

M U i N resp. M O N

as the notation for the union of M and N, resp. the intersection of M and N.
Thus M U N contains as elements all the elements of M and N and only these,
while M n N contains as elements just the common elements of M and N. If
M n N is empty, i.e., M and N are disjoint, I shall often write M + N instead
of M U N. Both operations can be generalized very far. Let T be a set whose
elements are again sets A,B,C,.... Then I will write ST and DT as denotations
for the union of all sets A,B,C,..., resp. the intersection of all A,B,C,...

In natural analogy to the arithmetic of finite sets, addition of cardinals
is defined thus:

M + N = M + N, ifM and N are disjoint, and generally, if A,B,C,..., constitut-
ing all elements of T, are disjoint in pairs, then ST is said to be the sum of
the cardinals of all the elements A,B,C,... of T.

These definitions are justified by the simple theorem:

If A ~ A1, B ~ Bf, C ~ C1, , any two of A,B,C,.... as well as any two of
A f ,B f ,C f .... being disjoint, then ST ~ ST1, TT denoting the set of all AT,B f,
Ct, ....

The proof of this theorem is of course quite trivial, but as we shall see
later, the so-called axiom of choice must be applied.
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Multiplication of cardinals is defined in the simplest way by taking again
disjoint sets. If M and N are two such sets, we may build the set of all pairs
{m,n}, where m and n run independently through all elements of M and N.
This set will be written M • N. It is again easy to see that if M ~ M', N ~ N',
where MT and NT are again disjoint, then the set M1 • N1 of all pairs {mf, nf}
will be ~M • N. Therefore we may define an operation on the cardinal
numbers called multiplication by putting

M • N = M • N .

This can then in an obvious way be generalized to the general case, where T
is a set of mutually disjoint sets A,B,C,.... Letting PT denote the set of all
sets which consists of just one element from ja.ch of A,B,C,..., we say that
PT is the product of the cardinal numbers A,B,C,... Using ordered pairs we
may define the Cartesian product MX N of M and N. This is the set of all
ordered pairs (m,n) such that meN, neN. Of course MX N = M • N.

A natural assumption after the discovery that the natural number series
is ~ proper parts of itself was that many sets of mathematical objects ought
to possess the same cardinal number as the number series, even if they con-
tained the latter as a proper subset. This assumption Cantor proved to be
correct. Quite trivial is the remark that the series of integers > a certain
negative integer is of the same cardinality as the series of non-negative in-
tegers. A little more remarkable is the fact that this is true of the set of all
rational integers, negative, positive or zero. The last fact is verified by
writing the integers for ex. in this order:

0, -1, 1, -2, 2, -3, 3,

Or in other words, if we put for x = 0

y = 2x

and for x < 0

y = -2x - 1,

then this function y of x furnishes a 1-1- correspondence between all integers
on the one hand and the non-negative ones on the other hand.

Let P denote the set of all pairs of non-negative integers, while N is the
set of the non negative integers themselves. Then one finds that

= (x+y + 1) + /x\
\ 2 / (l)

yields a one-to-one correspondence between P and N. Indeed to every pair
(x, y) corresponds a unique value of z and to each value of z there is only one
pair of non-negative integers x, y such that the above equation is fulfilled.

Similarly the set of all ordered n-tuples (xi,..., xn) all x^eN has the same
cardinal number as N. All sets possessing this cardinal number are called
denumerable.

Turning to the more often considered sets of numbers, Cantor proved
that the set of all rational numbers is denumerable. We can take the rationals

a
in the form r-, b > 0, a and b coprime integers. Then we arrange the ra-

tionals so that lal + b successively takes the values 1,2,3,.... and the for



HISTORICAL REMARKS 5

which lal + b has the same value we arrange according to their magnitude.
Thus we obtain the sequence

£ l l ± l l 2 ^ j l j ^ I 3 : ^ j 4 H ^ ^ z 3 I ^ ^ 4 l H ^ + 3 j 4
1' 1' 1' 1' 2' 2' I9 1' 3' 3' 1' 1' 2' 3' 4' 4' 3' 2' 1'

containing all the rational numbers.
Cantor proved also that even the set of all algebraic numbers is denum-

erable. This can be done in the simplest way as follows. Every algebraic
number is a root in an irreducible equation anx

n + ....+ ao = 0 for some n,
the a0,.... an being integers with 1 as g.c. div. Now we can arrange the
n-tuples an, ...., a0 in a sequence by taking the successively increasing
values of

m = |an| + + I a 0 l + n.

Those with the same m we can take according to increasing values of n, and
for those with the same value of m and n, which are only finite in number, we
arrange the corresponding roots first according to their absolute value and
finally those which have the same absolute value we arrange according to
increasing amplitude.

One might get the impression that all infinite sets were denumerable.
However, Cantor proved that the set of all real numbers, even all reals be-
tween 0 and 1, is not denumerable. His proof is performed by the diagonal
method, called after him in the literature: Cantor's diagonal method.

We know that every real number = 0 and < 1 can be written as a decimal
fraction

0. ai a2....

and this decimal fraction is unique, if we require tnat there shall not occur
only 9Js from a certain place on. Then let us assume that

c*i = 0. an a2i ...

Q?2 = 0. aw a22 ...

were all reals ^ 0 and < 1. Let the real number 0 be O.bib2 ...., where br

for each r is the next digit after arr (0 when arr is 9) except when all an from
a certain i on are all 8; then we take the bi as 7 for example. Then obviously
0 ^ /3 < 1, while ]3 is 4= every at. Thus the set of reals i 0 and <1 is not denu-
merable.

This means that in Cantor's theory we have to do witn different infinite
cardinals. It is now natural to ask, if spaces of higher dimensions would
yield greater cardinals. Cantor showed that this is not the case. His result
that e.g., a plane could be mapped onto a line or say onto a segment of a
straight line astonished the mathematical world at that time. I shall now ex-
pose a proof of the fact that the 1. quadrant of a plane, say in Cartesian
coordinates the set of all pairs of positive real numbers x,y, can be mapped
on the real numbers z > 0. The definition of such a mapping is particularly
easy when we make use of the development of reals in continued fractions.
Any positive real number a can be developed thus:

a1 = ao + *
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where a<j^ 0, while ai, a2,.... are all ^ 1. Now I define the correspondence so
that the points (x, y), where x and y are both irrational, are mapped on the
irrational z > 2, the points (x,y), where x is irrational, y rational, are mapped
on the irrational z such that 1 < z < 2, the points (x, y), where x is rational,
y irrational, are mapped on the irrationals z < 1, and finally the rational
points (x,y) are mapped on the rationals z. This mapping is defined as fol-
lows. As often as x and y are both irrational, their continued fractions being

y -Q - 9 0 .

X + - y +

x2 + ... yi y2

the corresponding z shall be

1
z = XQ + 2 +

yo + 1 + —

* + ̂ + 1
1

+
x2

y2 +. . .
If x is irrational, but y rational, the corresponding z shall be

z = l + \
n +- + 1 +

+
X2

where n is the number given to y in an enumeration of all rationals. If x is
rational, y irrational, the corresponding z is, when n is the number of x,

1

n +
yo + l + —

Finally the (x,y) where x and y are both rational and > 0, are mapped in an
arbitrary way on the rational numbers z > 0.

Cantor also proved generally that the set UM of subsets of a set M was
of higher cardinality than M; however, I will talk about this theorem later.


