Appendix B
A THEOREM BY M. CUGIANI

Roth’s Theorem suggests the following problem.

Let £ be a real algebraic number. To find a function €(Q) > 0 of the
integral variable Q, with the property

lim €@) =0,
Q—M:o(5 )

o1

such that there are al most finitely many distinct vational numbers
with positive denominalor for which

Eel<

Unfortunately, the method of Roth does not seem strong enough for solv-
ing this problem and finding such a function €(Q).

A weaker result may, however, be obtained and was, in fact, recently
found by Marco Cugiani®. It states:

Theorem of Cugiani: Let & be a real algebraic number of degree f; let

-2-¢@)

1
€(Q) = 9f (logloglog Q)" ¥;

and let %8,%;;,2(?,..., where €< QW< Q@< QB)< ..., ve an in-

Jfinite sequence of reduced rational numbers satisfying

(k) I (k)

P (k)-2-e@™)
-E|<Q (k =1,2,3,..) .
Qiks
Then
(k+1)
lim sup logQ@ m =00,
k—0 logQ

This theorem is thus an improvement of that by Th. Schneider® which was
mentioned already in the Introduction to Part 2.

In this appendix we shall sketch a proof of the following theorem which
contains Cugiani’s result as the special case A= =1,

Theorem 1: Denote by &£+ 0 a real algebraic number of degree f, by
g' =2 and g'"' =2 two inlegers that are relalively prime; by \ and u
two veal numbers satisfying

1. Collectanea Mathematica, N. 169, Milano 1958,
2. J. reine angew, Math, 175 (1936), 182-192.
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170 LECTURES ON DIOPHANTINE APPROXIMATIONS

O<sa=<1l O<spus<1l1, XA+u> 0
by c1, ca, and cy three positive constants; by e(H) the function

1
€(H) = 5vTog (41) (logloglog H)™ ¥ ;

and by = = {K(l), x('), x(’),...} an infinite sequence of distinct rational
numbers

(k) :
K(k) =—2(E where P(k)+ 0, Q(k)+ 0, (P(k),Q(k))=1,

B%max(12®], [Q¥) > &°,

with the properties
Q) k) | < ¢ 52w ™)
and
@) 1p®)g < a1 Q¥ gt < corlOn-1,
Then
lim sup L H(ll:+1) =o »
k—ew  1ogH

1. The proof of Theorem 1 is indirect. It will be assumed that X has
the properties (1) and (2), but that the assertion is false; i.e., there exists a
constant ¢¢ > 1 such that, for all k,

H(k+1) < H(k)c‘ )

Hence if X is any sufficiently large positive number, there is an element «
of Z for which

g < a® < g%,

From now on we put for shortness

a =vlog
and denote by m a very large positive integer. We further put
2 3
a -m.2™"1 T
8= t=e ’ X=e

and note that ¢ (H) is given by

€(H) = ba(log loglog H)" ¥ .
(k)

2. By hypothesis X contains infinitely many distinct elements «" "/, so
that

im 5% - o,

k— o

(k)
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It is therefore possible to select m elements

() _Pn _ 2

Qn 'Q—(E) (h = 1,2,...,m)

Kh =K

of Z, of heights
Hp = H(ih) = max(|Pnl,1Qnl) > €,

such that
Xp < Hp < Xp* (h=1,2,..,m),
where
2 2 2 20 2
X;= X, Xp= H;.I:- sX:lt ) X3= Hat sXﬂt yeeey Xm=Hm-1 6Xlll-].
It follows that
log Hh+1 E - _
—LLloth >3 (h=1,2,...,m-1),

whence, in particular,
H;< He< ... < Hp.

Further, for all h,

() ) ()" ()
xmex't/  Epex‘t <sx\t/ <x\t X
These inequalities, however, imply that
eem
(3): Hp<e (h=1,2,...,m),
because
m m-2®-1)m
2c4) ( m—1> 2cqe 2 m-1
5Ce 5, M2 moy, 3, (m"+m)-2 e
X< t/ _\ 2m™e - e(2c4) 19m°® .e <e®
as soon a8 m is sufficiently large.
From (3),
5
¢ (Hp) > \/% (h = 1,2,...,m).
Hence the sum
m
o= ), eHp)
h=1
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satisfies the inequality,
o= 5avym .

3. Just as in §2, Chapter 7, define m-1 positive integers rgz,...,rm in
terms of a further positive integer r: by the formulae

(rn-1)logHp < rilogH: < rplogHp  (h = 2,3,...,m).
Here r: will be chosen so large that the quantity

6= m,; e
h=15...,m Th-1

is already so small that
1
0<0 < o <1,
Evidently

rhlogHp = (1+;—:~_—i (rp-1)logHp < (1+6)ri1logH; < 2rilogH,,

hence
2rp.-1logHp_ 1 > 2rilogHy > rplog Hp,
and therefore

lloghy . 1.2 . .1 =
Th-1> 3 TogHp1 Th=3-{"Th=¢Th (h=2,8,...,r).

In particular, we find again that

m
> rg> .. >rm, Z Th < mr;.
h=1

4. Apply now Theorem 2 of the Appendix A, with F(x) a minimum poly-
nomial for £. The choice in §1,

8= J% , ms®= a®=log(4f)

is allowed because m may be assumed so large that the additional condition
of the theorem,

0 <p=

Do =

is likewise satisfied.
Next fix the parameters pp, oh, and T of the Theorem by

_ (A+u)rh

_X+u+€ Hp (h=1,2,...,m).

Ph = Oh = Th, Th
Since

rh _, _ &Hp)
0<'rh 1_)«+u ?
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the further condition of the theorem,

I 1o'

also holds provided m and hence X, H,,..., Hm are sufficiently large.
There follows then from the theorem the existence of a positive constant
¢ depending only on £, and that of a polynomial

A(x1,.ee,Xm) = E Z ah x} .xm %0
170 10

with the following properties.
(i): The coefficients aj, ooy BT integers such that

Ty 4eeetI'm < cmn

lail u-iml <c

and they vanish unless

)

(%->m< Y o< (2

h=1 Th
(i1): Ay, ... jm(l;,... £) vanishes for all suffixes ji,...,jm such that

dn % h
0<j1< 71,0, 0<jm ST, E Ths(i')hzl'r_h .

(iii): The following majorants hold,

Ay .. jm&1yeees Xm) << T T () L (L),

ij..

.jm(X,--., x) << Fr et Tm(y ) +eeetTm

We next apply Roth’s Lemma of Chapter 5 to the derivatives of
A(X1,..0,Xm) at X1= k1,000, Xm=Km. This lemma is applicable provided that
1 m(m-1)(2m+1) -—l—rlt 1o

H > 2t and ™ <H™ , ie.H > et

For large m both conditions are satisfied because

2 3
'Em
H=X=e .
It follows then from Roth’s Lemma that there exist suffixes 11,...,1m
satisfying
m 1—
0<L<Ti,, 0<ly<rm, ) :‘—‘L < g+ om-1
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for which the rational number

P P
Aq) = Ah...lm("la'","m) = Ay, welm -Q—i,.__’ _Ql_:;

is distinct from zevo.
Put again

The choice of t implies now that

1
m-1\ ——= m
0< A<omH (e—m-z )2m-1 _ 2(%) <1

as soon as m is sufficiently large.

5. From here on the proof runs very similar to that of the case d=1 of
the First Approximation Theorem in Chapter 7. The slight change in notation

with respect to s (which corresponds to EB in the former proof) does not

affect the discussion.

Denote by cs, €s, and ¢, three further positive constants that depend on
&, but not on m. Further let J* be the set of all systems of m integers
(§1 yoee, Jm) Buch that

L€ 1S T1,elm S jm < 1h.>(__ Ih |
1€ 1S P14, lm < jm < Tm, Z ™ 3 hleh

Then, just as in §4 of Chapter 7,
2)-)
Aqg) = E Ah Jm(€ ,---,E)(ll “*\Im (h-E)j1 11...(Km'§)jm lm’
(G)ed
and here
3 )-(tz)
% Z 1Ay, ...jm & ,E)l(h <cg?
jl=0 jm
Now the 7 were chosen such that
Mu+e(Hp) = ()\+/.L)rh —h =1 +—(—h-) (h=1,2,...,m) .
It follows then from the construction of Hh and rp that

151ax Y- Ly v lem-£ ¥m-1m <e™ max T Hy ~(n-In){Muse (BR) } <

()ed* n=1

(this inequality is continued on the following page)
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<™ moy (.'lh lh)(xﬂl)—h
(j)eJ* h-

'rhs

< DT g -(A+u.)r1 Z
(i)eJ * h=1

Y- 3
I (A+u.)r1{( ) }
H, h=1"h h=1 Th
Here

m£h= li‘,l <1+5(lh) =m +

h=1 TR ph1 AL Ay ?

and

Th a%rh> —;-rh, hence hzl;%s ZhZ‘, I _ g4,

Therefore
(jsnax ks -& el Km-& [im-lm ¢ DOT1 p- O+ “{(‘21' 'B) (m-;-)‘%‘)-ZA}

and so, finally,
@) |A(1)| < (crcg)™T H;(Mp.)n{(% -s) (m+£_ﬂ) - ZA} .

6. We next express again

AQ =D

as the quotient of two integers N(j)*0 and D(;)#0 that are relatively prime.

The discussion in §§6-7 of Chapter 7, specialised for the case d=1, may be
repeated without any essential change and leads to the inequalities

ID (1)' < BT (1-u)(1+ O)r, {(% +s) m-A} + p(1+0)r, (m-A)

and

IN 1)|> ¢ H(1 A)r;{(; )m-A}.

On dividing these, it follows that

(®): lag! > e ™ B T
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where E* denotes the expression

(1—)L){(——s) m—A}- 1- u)(1+9){( +s) m-A} (146)(m-4) .

7. We finally combine the upper bound (4) for | A(l)' with the lower
bound (5). Then we obtain the inequality

(8): H!.E < (cacscecy)™ ’

where the exponent
= 1 o *
E= (h+y,){(2—s) (m+x+“) - ZA} + E*,

after a trivial simplification, may be written as

E= (%—s)o - {2+6(1~)}ms - I—ZE om - (A+2p-0)A |

Now

0=

n

1,0spus1, 1 , 025avym 0<t9\<—1 0sAs],
’ K vm ’ m’
and hence

Ez(l-—) 5avm - (2+—) -——l—l—m 3x1=
2 m

=1 - (a2 +—2- ]
= 2aJ_nT (Ea +m+1+3) > 3awl_n_1,
as soon a8 m is sufficiently large. Therefore (6) implies that
3 1/—
H, < (cicsce 07) ’
contrary to the assumption that

ﬂ-lN

Hz2X=
when m is sufficiently large. This proves the assertion.

8. It would not be difficult to extend Theorem 1 to the more general case
treated in the First Approximation Theorem. There may even be a corres-
ponding analogue of the Second Approximation Theorem; but a proof of such
an analogue would perhaps require new ideas.

At present it does not seem possible to replace the function ¢(H) by any
much smaller function of H, Such an improvement would require a stronger
result on the zeros of polynomials in many variables than Roth’s Lemma.

9. Two simple deductions from Theorem 1 have some interest in them-
selves and may therefore be mentioned here.

Theorem 2: Let p be a prime and q an integer such that
p > a2 2, hence (p,q) =1
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Let N = {n(‘), n(’), n(s),...} be a sirictly increasing sequence of positive
10nlogp .
< exp (— if neN,

integers such that
p\
(Q) ~En vloglog n

where gy is the integer nearest to (ﬁ)n Then

(k+1)
lim sup n =00,
k—o0 nzk)
Proof: For every positive integer n put
n
P, = g_ , Qn = éﬂn . R
where
dn = @, gga") = @, en).

Both d, and P, are powers of p; Qp is divisible by q® so that

n< logQn ,
logq
and it is obvious from
p\" _ 1
I(q) &n|< 3
that
Pn
im = =1,
dm Qe
It follows that there are three positive constants ¥i, Y2, and ys such that
0< Qp Sy Pps yap? and hence n ;logl -logyx ,
ogp
and
- -1 -1 -
IQans q "< YnQ# » 0< gy ‘YaQn“
where
log b Io
pu= , l-p=72d
logp logp

Here the upper bound for g,-ll is a consequence of the asymptotic relation

@~ (3) -

The lower bound for n in terms of Q implies that for all sufficiently
large n,
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10nlogp s 9logQn
vloglog n vIogloglogQ, *

From now on let neN. By the hypothesis,

P A | p\® 1 10nlo
P _ 4 (_) <l ( _ap) <
Qn gn q €n P vioglogn
<y Q-u-9(log10gloan) T
We apply now Theorem 1, with
log D

=1 =1 A=0 u= - _o &)_ Pplk)
g_la f"‘1; )"‘0: u= logp ’ g'_p’ g" =q, K _6;1.“?5 .

6viog(4f) =5vVlogd < 9,

Since

the theorem gives
10gQy (k+L)

lm sup e QnTE)
and from this, by
logQp-logy: . . . 10gQn loan
logp ?
the assertion follows at once.

10. As a second application we construct a class of trancendental num-
bers which, in general, are not Liouville numbers.

Theorem 3: Let g = 2 be a fixed integer, 6 a constant such that
0<06<1, {w n} an increasing infinite sequence of positive numbers tend-
ing to mﬁmty, {vn} a strictly increasing infinite Sequence of positive
integers salisfying

v =3, Vn+l Z Vn 1 +(hﬁ)§7 = 1,2,3,... )’
n

and {an} an infinite sequence of positive integers prime to g such that

an41 < go(Vn-f-l'Vn) (n = 1,2,3,.--)-
Then the real number
L]
E= ) ang ™™
n=1

is transcendental.



A THEOREM BY M. CUGIANI 179

Proof: Put
N 0
Py=gN ) apg™®, Qy=¢N Ry= ), ang'®,
n=1 n=N+1
so that

g-%%:RN> 0.

The integers PN and QN are relatively prime because

-1
PN = apn + 21 a,ngVN'"n = ay (mod g)
n=

is prime to g.
From the hypothesis,

aps18 Ml < g 8(vn+1-vn)-vn4l _ g-{(l-G)Vn+1+9Vn}

and

(1-8)wn
10 +ovg > (10w (14— 4 oop oy (144 n_).
(1-6)vpyy + 6vn > ( )Vn< Tog Tog Vn> *%n Vn( vloglog vy

Let now N be sufficiently large. Since wp increases to infinity with n, it
is obvious that
” (1-6) wn
n viogTlogvn

is an increasing function of n for n = N. Therefore
© © (1-6) wn
- - 1
0< Ry = ZN aps1 8 P < ZN g\ *ioglogvn ) <
n= n=

% . (1-0)wN
< ) g™ N oglogyy <
n=N
(1-0) wN o
-uN (1 +———=- ~{vn-vN)
g’ N vioglog vN ZNE n-v .
n=.

Further

0 -]

(m -(n- 1
Y g(VnVN)SZ g(nN)=1_ <9
n=N n=N g

because the integers v are strictly increasing with n. Hence
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_(1-8) wN _1_ (1-6) wN

-vN (1 +
0<Ry<2¢g N ( Vioglog vy Joglog 1ogQN

-1- i"(l'a) wN
<QN +vlogloglogQy

for all sufficiently large N.
Assume now that the assertion is false and that ¢ is algebraic, say of
degree f. Then Theorem 1 may be applied with

A=1,u=0,g"=g c1=1,¢c =1,
while g' is an arbitrary integer prime to g. But for large N,

5VTog{df) < %(l-e)wN

because wyy tends to infinity. Hence it follows from the theorem that

1
1im sup .o_gS.Nil = ’
N —00 IOg QN

or, what is the same,
ulrfll _ﬁgp -’%‘N'—l =
There exist then arbitrarily large N for which
VN+1 > %1% .
For these N,

0<Ry< 3 g (1-Omaattnd o 5 (1-Onn

n=N n=N
and hence
0< Ry < g 1IN 3 ~(-00n41-vNa) |
n=N
But )
‘i’; e 1-00na1-v41) o °z°; g~ (1-0@-N) _ N
n=N n=N 1-g "
whence
~-3vN
0< RN<1—€g71—9) = const. QN .

However, this inequality contradicts Roth’s Theorem, and we obtain the as-
sertion,



