
Appendix B

A THEOREM BY M. CUGIANI

Roth's Theorem suggests the following problem.

Let £ be a real algebraic number. To find a function e (Q) > 0 of the
integral variable Q, with the property

lim e(Q) = 0,
Q— »oo

such that there are at most finitely many distinct rational numbers r-
y

with positive denominator for which

Unfortunately, the method of Roth does not seem strong enough for solv-
ing this problem and finding such a function e(Q).

A weaker result may, however, be obtained and was, in fact, recently
found by Marco Cugiani1 . It states:

Theorem of Cugiani: Let % be a real algebraic number of degree f; let

e(Q) = 9f(logloglogQ)'T;
pW p(0 pO») e M /,* /,v

^^oft'o^'of5)'"*' where Q Q Q < •"' beanittf-
finite sequence of reduced rational numbers satisfying

P(k) (k)-2-e(Q-)

Then

(k+1)

limsup
logQ

This theorem is thus an improvement of that by Th. Schneider2 which was
mentioned already in the Introduction to Part 2.

In this appendix we shall sketch a proof of the following theorem which
contains Cugiani 's result as the special case X = JLI = 1.

Theorem 1: Denote by £ * 0 a real algebraic number of degree f; by
g? ^ 2 and gfl £ 2 two integers that are relatively prime; by X and n
two real numbers satisfying

1. Collectanea Mathematica, N. 169, Milano 1958.
2. J. reine angew. Math. 175 (1936), 182-192.
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170 LECTURES ON DIOPHANTINE APPROXIMATIONS

0 «£ X ̂  1, 0 ^ ]Lt< 1, X + J L I > 0;

by Ci, ca, and cs J&ree positive constants; by e (H) $&e Junction

e(H)= 5Vlog(4f) (logloglog H)~ *" ;

and by S = {/cH fcH K^,...} an infinite sequence of distinct rational
numbers

Kfe)=4! where P<kV 0, Q«+0, (P(k),Q(k))=l,

H(k)=max(|P(k)UQ(k)l) > ee,
&e properties

(2): |P(k)|g'

Then

logH(k+1)

lim sup Tj-v— = oo .
k-*°° logHW

1. The proof of Theorem 1 is indirect. It will be assumed that S has
the properties (1) and (2), but that the assertion is false; i.e., there exists a
constant c4 > 1 such that, for all k,

Hence if X is any sufficiently large positive number, there is an element K '
of 2 for which

H ^ H ^ ^ H 0 4 .

From now on we put for shortness

and denote by m a very large positive integer. We further put

w 9m-l | m8

t = e"m-2 , X = et

and note that e (H) is given by

e(H) = 5a(logloglogHrF.

that
2. By hypothesis S contains infinitely many distinct elements K , so

lim H^ = oo .
k-*oo
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It is therefore possible to select m elements

(h=1 '2 ..... m)

of S, of heights

Hh = H(ih) = max(|Phl,lQhl)> ee,
such that

X h ^ H h ^ X j j 4 (h=l,2,...,m),

where

2 20^ 2 20^ 2 2c^
Xi - X, X2= Hif ^ XX * , X8= H/ ^ X2t ,..., Xm = Hm.i

It foUows that

whence, in particular,

Hr< H2< ... <Hm.

Further, for all h,

These inequalities, however, imply that

em

(3): H h ^e e (h = 1,2,..., m),

because

__ m-l\m
9m-l m
2
 <ee

e

as soon as m is sufficiently large.
From (3),

v m

Hence the sum

m
0-= E €(Hh)

h=l
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satisfies the inequality,

a £ 5aVm .

3. Just as in §2, Chapter 7, define m-1 positive integers r2,...,rm in
terms of a further positive integer ri by the formulae

(rh-l)logHh < rilogHi < rnlogHh (h = 2,3,..., m).

Here ri will be chosen so large that the quantity

fcJ3!?L,m riirl
is already so small that

0 <e <£—•< 1.

Evidently

rhlogHh= fl+^^j(rn-l)logHh< (l+0)rilogHi < 2rilogHi,

hence

2rn_ilogHft.i & 2rilogHi >

and therefore

In particular, we find again that

m
ri> ra> ... >rm, £ rh*

h=l

4. Apply now Theorem 2 of the Appendix A, with F(x) a minimum poly-
nomial for f . The choice in §1,

, ms2=a2=log(4f)

is allowed because m may be assumed so large that the additional condition
of the theorem,

0 * 8 * 5

is likewise satisfied.
Next fix the parameters ph, ah> and rji of the Theorem by

Ph = ffh = *h> rh =^Ze(v^ (h = 1,2,..., m).

Since
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the further condition of the theorem,

also holds provided m and hence X, Hi,...,Hm are sufficiently large.
There follows then from the theorem the existence of a positive constant

c depending only on £ , and that of a polynomial
*i rm .

A(xi,...,xm) = 2 ... 2 aix ^xi^.x^O
ii=0 im=0 l"'m

with the following properties,
(i): The coefficients &iltu9i are integers such that

and they vanish unless

(ii): AJJ ...jm(£ v> 5) vanishes for all suffixes ji ,..., ]m such that

0 « J i « n f . . . f O « J m < r m f J JjL^(i.B) E fj -
h=l Th v^ 7 h=l Th

(iii): The following majorants hold,

We next apply Roth's Lemma of Chapter 5 to the derivatives of
A(XI ,...,xm) at xi= /ci,...,xm=/<m. This lemma is applicable provided that

lm(m-l)(2m+l) A^t ^m2

Hi ^ 2C and cmri ^ Hi , i.e. Hi ^ c
For large m both conditions are satisfied because

2 s
Tm

H i ^ X = e l

It follows then from Roth's Lemma that there exist suffixes li ,..., lm
satisfying

m . ^ •
0 « h* plf..., 0*lm*rm> £ £ « 2m+1

h=l h
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for which the rational number

Aft) = A^ ...lm(Ki >."vKm) = A^ um j

fe distinct from zero.
Put again

m

h=lrh "

The choice of t implies now that

as soon as m is sufficiently large.

5. From here on the proof runs very similar to that of the case d=l of
the First Approximation Theorem in Chapter 7. The slight change in notation

with respect to s (which corresponds to — in the former proof) does not
affect the discussion.

Denote by CB, c6, and c7 three further positive constants that depend on
£ , but not on m. Further let J* be the set of all systems of m integers
(Ji,-Jm) such that

m . /* \ m
li** ji^ 1*1,...,lm ^ Jm ̂  rm> 2j T u ^ l ^ " 8 ) u T. •

h=lTh ^ /h=l Th

Then, just as in §4 of Chapter 7,

Aft) * E Aj^.j^ ,...,«)\W"AW (Ki-tf^.-dtm-^™'1™,
(j)eJ*

and here
TI rm
Z... E l

ji=0 im=0

Now the Th were chosen such that

.» "1+^ (h = M,...,m) .

It follows then from the construction of Hh and rn that

m
m a x ^ ^ . . . ^ ^ " 1 1 1 ^ 1 m a x

(j)eJ* (j)eJ* h=l

(this inequality is continued on the following page)
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m

Here

m

«•! (>*«!)--* g
X+M '

and

^h^rh>|rh , hence E ^^2 £
10 * h=lTfc h=l

Therefore

and so, finally,

(4): |A(1)I * (clC.)mri
 Hr(X^ri{S-8) (m+^) - 2A} .

6. We next express again

as the quotient of two integers N(i)+0 and D(i)*0 that are relatively prime.
The discussion in §§6-7 of Chapter 7, specialised for the case d=l, may be
repeated without any essential change and leads to the inequalities

c6
mri

and

On dividing these, it follows that

(5):
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where E* denotes the expression

E* = (l-

7. We finally combine the upper bound (4) for | AQJ I with the lower
bound (5). Then we obtain the inequality

(6): HiE

where the exponent

after a trivial simplification, may be written as

E = Or8)* " t^MJmB - ̂  em -

Now

-, or £ 5aV~m~, 0 < 0 ^ — ,. . -7=- , , — ,V m m

and hence

as soon as m is sufficiently large. Therefore (6) implies that

^>TE
Hi ^ (CiCBC6C7) ,

contrary to the assumption that

-XHi ^X = er

when m is sufficiently large. This proves the assertion.

8. It would not be difficult to extend Theorem 1 to the more general case
treated in the First Approximation Theorem. There may even be a corres-
ponding analogue of the Second Approximation Theorem; but a proof of such
an analogue would perhaps require new ideas.

At present it does not seem possible to replace the function e(H) by any
much smaller function of H. Such an improvement would require a stronger
result on the zeros of polynomials in many variables than Roth's Lemma.

9. Two simple deductions from Theorem 1 have some interest in them-
selves and may therefore be mentioned here.

Theorem 2: Let p be a prime and q an integer such that

p > q £ 2, hence (p,q) = 1.
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Let N = {n\l\ ir% n^,...} be a strictly increasing sequence of positive
integers such that

, /neN,
n

where gn is the integer nearest to (~\ . Then

(k+Dn
lim sup

Proof: For every positive integer n put

"»-£• *-S-*
where

dn - (Pn, gn«in) " <PD. fa>-

Both dn and Pn are powers of p; Qn is divisible by qn so that

n^logQn ,
logq '

and it IB obvious from

1(5)°--
2

that

lim |̂  = 1.

It follows that there are three positive constants yi, y2, and y3 such that

0 < Qn < YI Pn < yi pn and hence n

and
1^1 -n ^u-1 ^ -1 ^ -u
IQnlq * q * V2Qn > ° < Sn ^ VsQn

where ,^x
loe/2\

u.^!iflZ i-u-JSU
^ logp ' ** logp '

Here the upper bound for g^ is a consequence of the asymptotic relation

The lower bound for n in terms of Qn implies that for all sufficiently
large n,
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IQnlogp ^ . 91ogQn

Vloglog n VlogloglogQn '

From now on let neN. By the hypothesis,

la.
Qn Kn W,

^ —exp (- 10nl°gP^ ^
Sn \ Vloglogn/

^^ y Q-/*-9*0*0*0^^" 2

We apply now Theorem 1, with

Since

5Vlog(4f) = SVlogT" < 9,

the theorem gives

and from this, by

logQn-logyi ( ^ logQn
logp "* logq

the assertion follows at once.

10. As a second application we construct a class of trancendental num-
bers which, in general, are not Liouville numbers.

Theorem 3: 'Let g ^ 2 be a fixed integer, 6 a constant such that
0 < 8 < 1, {con} a» increasing infinite sequence of positive numbers tend-
ing to infinity, {j/n} a strictly increasing infinite sequence of positive
integers satisfying

(n = 1,2,3,...),

and {an} an infinite sequence of positive integers prime to g such that

number

n=l

transcendental.
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Proof: Put

n=l n=N+l

so that

The integers PN and QN are relatively prime because

PN = aN + 2 an g1*"1* B &N (mod g)
n=l

is prime to g.
From the hypothesis,

and

Let now N be sufficiently large. Since o>n increases to infinity with n, it
is obvious that

(1-0) con
Vloglogi/n

is an increasing function of n for n > N. Therefore

oo oo / (1-0) 0>n \

E -nil*"1*11 ^ E g^(1+VBgBgi57_ ....
n=N n=N

Z
n=N

Further

n=N n=N 1"g

because the integers vn are strictly Increasing with n. Hence
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A ^ (1-0) OJN
1 logQN

logg

for all sufficiently large N.
Assume now that the assertion is false and that £ is algebraic, say of

degree f . Then Theorem 1 may be applied with

X = 1, /i = 0, g" = g, ci = 1, ca = 1,

while g1 is an arbitrary integer prime to g. But for large N,

5Vlog(4f) < |(l-0)a>N

because CON tends to infinity. Hence it follows from the theorem that

or, what is the same,

lim sup
N->~

There exist then arbitrarily large N for which

For these N,

n=N n=N

and hence

0<RN<g- (1-0)"N-H f g'<
:

n=N

But

n=N n=N

whence

-30 < RN < g .(!_e) = const. QN .

However, this inequality contradicts Roth's Theorem, and we obtain the as-
sertion.


