Appendix A

ANOTHER PROOF OF A LEMMA
BY SCHNEIDER

The lemma by Schneider proved in §3 of Chapter 6 may also be obtained
by means of a different method. This method has the advantage of leading to
a slightly stronger result. It is due to my former colleague, G.E.H. Reuter,
now professor of mathematics at the University of Durham.

1. A special case of Taylor’s formula with Lagrange’s error term states
that if f(x) is four times differentiable in a neighbourhood of x=0, then

(x) = £(0) + £(0)F, +1" (o)’%+ f"'(o)§+ fN(ﬁ)%:-

where ¢ is a number between 0 and x. Let us apply this formula to the
function f(x)=log cosh x for non-negative values of x. Then
f'(x) = tanh x, f''(x) = cosh™x, f'''(x) = -2 sinh x cosh~*x
and
fIV(x) = 4 cosh™®x - 6 cosh™x.
The fourth derivative assumes its maximum when cosh x=v3, and so

fIV(x) < % for all x=0.

It follows therefore that

1, 2x
logcoshx < Ex’ +354

and hence that
(1) cosh x < exp(%x' + 3-16x‘) if x=0.

2. Let again ri,...,rm be m positive integers; let further s, p1,...,om
be m+l positive numbers. We denote by N the number of sets of m integers
(i1,...,im) satisfying the inequalities

(2): 0<i1<Tri,..,0<iy<rm, Z Jl (2-)11 b’

or, what is.the same, the number of such seis satisfying

(3): 0=<ii=mr,... Ogim\rm,ziha(z)z

That both systems (2) and (3) have the same number of integral solutions is
obvious because the transformation

(1 500y im) = (111 000y T=1m)

interchanges their solutions.
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3. Denote by u a positive variable, and put

Th
_ i
Fp(u) = 1;}) { 2Ph>} (h =1,2,...,m),

o b8 of 122}
uuz—o iE=0 Be1\Ph

m
Flu)= T Fpu).
h=1

In the sum for Fp(u) replace i by rp-i and note that

rh-i _.Th _ i _Th"
ph 2ph  \Ph 2ph,
It follows that

-y a8 (e 20
g ol )
< (rp+l) 12012 vh °°sh{ pih ZPh)}

Now cosh x is decreasing for x < 0 and increasing for x 2 0. The maximum
is thus attained both when i=0 and when i=rp, and hence

Thu
20p °

and

Evidently,

Fp(u) < (rp+1) cosh
Therefore, by (1),

rhu
2pp

12 o \*
< (ri+l)...(rm+1) exp { ) (ZPh %121 m) } ’

F(u) < (ry+1).. (rm+1) II cosh 5 —

that is,

m
4): F(u) < (ri+l)...(rpy+1) exp {u ) 576 hzl( )}
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4, By definition, the inequalities (3) have N integral solutions (i1,..., im).
These inequalities may also be written as

m
0<ii<ry.., 0<ip<rny, E ph ;};h) =8 z "r;hh ’
h=1

and they therefore imply that

(8 { Z Ph 2Ph>} =P "“,,?1#'1;

On the other hand, all terms in the multiple sum for F(u) are positive.
It follows then from (5) that

F(u) =N 8
(u) >N exp uhZ;Ph

On combining this inequality with (4), we find that

(6): N < (r1+l)...(rm+1) exp{-sll ), By L Z( ) 576 Z )‘}

h=1 Ph
To simplify this estimate, put

1 ® 1
C1 ="nT Z Zh ’ _E ( ’ ( )
h=1ph h=1

and fix u in terms of s by

4c,8
Ca

u=

The inequality (6) then takes the form
(n): N < (ry+)...(rp+1) exp {_m (i‘:x P 11 clc4 )}

For the applications it suffices to consider values of 8 with

0656% and hence B‘S%S’.

1t follows in this case from (7) that
(8): N < (r1+l)...(rp+1) exp (-Cms®)
where C denotes the expression

_ 2 cic

ez 9ck

5. We finally impose on rh and pp the additional conditions
r 1
IBE" llsl_o' (h= 1,2,...,]11)
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These inequalities evidently imply that

9 11 ( ) 11\ 11)‘
0S%<710°’ 10) <% =<\10 (m <

and hence that

g _§___ 10 121 < 3
3 121 ~ Ca ( ) 2’
10
c: (121) <8 < 3.
[
* (10)
It follows therefore that
_Eziu{ 1.el e, 02 ( 1 )
C-c’ 1-18(32 e 22 1'18 5-3 =1,

Thus the following result has been proved.

Theorem 1: Let ri,...,rm be m positive integers, and let 8, p1,...

be m+l positive numbers such that

0<s8 =< 5, |ph 1| (h=1,2,...,m).

There are al most

(r1+1). ..(rm+1)e-lma

integral solutions (i1,...,iy,) of the inequalities

2B

m
0<i1<ri,..,0<ims<rm, -hs<l-) Y,
p=1Ph \2 h=1

or, what is the same, of the inequalities

‘ Y 1) Y m
0<ii<riye.,0sipmsr 2(—+s) -2
1 1 geeoy m mo hglph 9 hZ=1 Ph

4

»Pm

Let us compare this estimate with that given by the Lemma 2 of Chapter

6 in the special case when p1=r1,...,0m=rm! The notation is slightly
distinct at the two places. If we return to that of Lemma 2, then, by this

lemma, the inequalities
i1 1
0<i1<T1,..,0<im<rm, ) S E(m's) (or = §(m+s))
h=1 B

have not more than

vV2m
8

(r141)...(rp+1)



ANOTHER PROOF OF A LEMMA BY SCHNEIDER 167

integral solutions, and by Theorem 1 not more than

8 )”
(r1+1)...(rm+1)e ym
It is easily verified thal always

Hence Theorem 1 is not only more general, but also a little stronger
than Lemma 2. Unfortunately, this improvement does not seem to be of
great use in Roth’s theory.

6. In Chapter 6 the Lemma 2 enabled us to prove the existence of the
approximation polynomial A(x,...,Xy) which played such an important role
in the proof of Roth’s Theorem and the more general Approximation Theorems.
Theorem 1 allows to construct a more general approximation polynomial.
There is no need for giving the details of the proof which is just like that in
Chapter 6. The final result is as follows.

Theorem 2: Let

F(x) = Fuxf + F;xf'1 +..+Fp, where 121, Fo+0,Fg+0,

be a polynomial with integral coefficients which has no multiple factors
and does not vanish at x=0. There exists a positive constant c depend-
ing only on F(x) as follows. Let m be a positive integer, s a real num-
ber such that

0= ; , ms® =log(4f);
let r1,...,rm be m positive integers; and let p:,...,pm,01,...,0m,
T1,...,Tm be 3m positive numbers satisfying

"!;l—l:- <—:—0, r—':'l|<1]6;|:.l; 1| :0 (h=1,2,...,m).
Then there exisis a polynomial
T1
AlKy,eeeyXm) = D) o Z ay . 1. .xi{ln $0
11=0  im=0

with the following properties.

(i): The coefficients are integers satisfying

T1+e+m
E

la'il -ui.l'nlS ¢

and each coefficient aj, ;j  vanishes unless bolh

o Th T i (1 )m rh
El o (2 )hz op  ond hgl o <(3*s hgl o

h=
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(i1): ijmjm(x,...,x) is divisible by F(x) for all suffixes j1,...,imy Such
that

m m
h (1_ ) Th
0 < 1S X1,000y 0 < Jpy < Ty, h§17h <(3 h§1 ™
(iil): The following majoranis hold,

Ay ---jm(m yeeesXm) << €T I (140) T (L4xpy) T,

]

Aj;...jm(x,...,x) << cr1+...+rm(1_‘_x)r1+...+rm .

Should it be possible to replace Roth’s Lemma in Chapter 5 by a stronger
result, then Theorem 2 might become of importance.



