Chapter 6

THE APPROXIMATION POLYNOMIAL

1. The alm.

In the present chapter we shall construct a polynomial

$$
A\left(x_{1}, \ldots, x_{m}\right)=\sum_{i_{1}=0}^{r_{1}} \ldots \sum_{i_{m}=0}^{r_{m}} a_{i_{1}} \ldots i_{m} x_{1}^{i_{1}} \ldots x_{m}^{i_{m}} \neq 0
$$

which has integral coefficients that are not "not large" and which vanishes to a "very high" order at the point

$$
x_{1}=\xi, \ldots, x_{m}=\xi ;
$$

here $\boldsymbol{\xi}$ is a given algebraic number. The importance of this approximation polynomial will become clear in the next chapters.

The construction does not involve valuation theory, but it is convenient to admit finite extensions of the rational number field.
2. The powers of an algebraic number.

Here and further on,

$$
F(x)=F_{0} x^{f}+F_{1} x^{f-1}+\ldots+F_{f}
$$

denotes a fixed polynomial with integral coefficients such that

$$
f \geqslant 1, \quad F_{0} \neq 0, \quad F_{f} \neq 0
$$

and therefore $F(0) \neq 0$. We impose the additional condition that $F(x)$ has no multiple factor, hence that $\mathrm{F}(\mathrm{x})$ and its derivative $\mathrm{F}^{\prime}(\mathrm{x})$ are relatively prime.

Let Ω be an arbitrary (abstract) extension field of the rational field Γ in which $F(x)$ splits into a product of linear factors

$$
F(x)=F_{0}\left(x-\xi_{1}\right) \ldots\left(x-\xi_{f}\right) .
$$

The f zeros

$$
\xi=\xi_{1}, \ldots, \xi_{f}
$$

of $\mathbf{F}(\mathbf{x})$ are thus all distinct and different from zero.
We use the abbreviation

$$
c=2 \max \left(\left|F_{0}\right|,\left|F_{1}\right|, \ldots,\left|F_{f}\right|\right)
$$

so that $c \geqslant 2$ is an integer.
Lemma 1: For every exponent $1=0,1,2, \ldots$ there exist unique integers $\mathrm{g}_{0}^{(1)}, \mathrm{g}_{1}^{(1)}, \ldots, \mathrm{g}_{\mathrm{f}-1}^{(1)}$ such that
(1):

$$
F_{0}^{1} \xi_{\psi}^{1}=g_{0}^{(1)}+g_{1}^{(1)} \xi_{\psi}+\ldots+g_{f-1}^{(1)} \xi_{\psi}^{\mathrm{f}-1} \quad(\psi=1,2, \ldots, \mathrm{f})
$$

(2):

$$
\max \left(\left|g_{0}^{(1)}\right|,\left|\lg _{1}^{(1)}\right|, \ldots,\left|\operatorname{g}_{f-1}^{(1)}\right|\right) \leqslant c^{1}
$$

Proof: First, the coefficients g are unique because the Vandermonde determinant

$$
\left|\begin{array}{cccc}
1 & \xi_{1} & \xi_{1}^{2} \ldots & \xi_{1}^{f-1} \\
1 & \xi_{2} & \xi_{2}^{2} \ldots & \xi_{2}^{f-1} \\
\vdots & \vdots & \vdots & \vdots \\
1 & \xi_{f} & \xi_{f}^{2} \ldots & \xi_{f}^{f-1}
\end{array}\right|
$$

does not vanish. Secondly, the equations (1) hold trivially for $1 \leqslant f-1$ with $g_{1}^{(1)}=F_{0}^{1}$ and the other coefficients equal to zero. Third, for $1 \geqslant f-1$,

$$
\begin{aligned}
\mathrm{F}_{0}^{1+1}{ }_{\xi}^{\mathrm{l}+1} & =\mathrm{F}_{0} \xi_{\psi}\left(\mathrm{g}_{0}^{(1)}+\mathrm{g}_{1}^{(\mathrm{l})} \xi_{\psi}+\ldots+\mathrm{g}_{\mathrm{f}-1}^{(1)} \xi_{\psi}^{\mathrm{f}-1}\right)= \\
& =\left(\mathrm{F}_{0} \mathrm{~g}_{0}^{(1)} \xi_{\psi}+\mathrm{F}_{0} \mathrm{~g}_{1}^{(1)} \xi_{\psi}^{2}+\ldots+\mathrm{F}_{0} \mathrm{~g}_{\mathrm{f-2}}^{(1)}{ }_{\psi}^{\mathrm{f}-1}\right)-\mathrm{g}_{\mathrm{f-1}}^{(1)}\left(\mathrm{F}_{\mathrm{f}}+\mathrm{F}_{\mathrm{f-1}} \xi_{\psi}+\ldots+\mathrm{F}_{1} \xi_{\psi}^{\mathrm{f}-1}\right)
\end{aligned}
$$

and therefore

$$
g_{\phi}^{(1+1)}= \begin{cases}-F_{f} g_{f-1}^{(1)} & \text { if } \phi=0, \\ F_{0} g_{\phi-1}^{(1)}-F_{f-\phi} g_{f-1}^{(1)} & \text { if } \phi=1,2, \ldots, f-1,\end{cases}
$$

so that the coefficients are integers. Finally,

$$
\begin{gathered}
\max \left(\left|g_{0}^{(1)}\right|,\left|g_{1}^{(1)}\right|, \ldots,\left|g_{f-1}^{(1)}\right|\right)=\left|F_{0}^{1}\right| \leqslant c^{1} \text { if } 1 \leqslant f-1, \\
\max \left(\left|g_{0}^{(1+1)}\right|,\left|g_{1}^{(1+1)}\right|, \ldots,\left|g_{f-1}^{(1+1)}\right|\right) \leqslant c \max \left(\left|g_{0}^{(1)}\right|,\left|g_{1}^{(1)}\right|, \ldots,\left|g_{f-1}^{(1)}\right|\right) \text { if } 1 \geqslant f-1,
\end{gathered}
$$ whence the inequalities (2).

3. A lemma by Schneider.

The following lemma is essentially due to Th. Schneider ${ }^{1}$. The proof is taken from Cassels' book on Diophantine Approximation. In the appendix, an entirely different proof is used to prove a stronger result.

Lemma 2: Let $\mathrm{r}_{1}, \ldots, \mathrm{r}_{\mathrm{m}}$ be positive integers, and let s be a positive number. Each of the two systems of inequalities

$$
0 \leqslant i_{1} \leqslant r_{1}, \ldots, 0 \leqslant i_{m} \leqslant r_{m}, \sum_{h=1}^{m} \frac{i_{h}}{r_{h}} \leqslant \frac{1}{2}(m-s)
$$

1. J. reine angew. Math. 175 (1936), 182-192.
and

$$
0 \leqslant i_{1} \leqslant r_{1}, \ldots, 0 \leqslant i_{m} \leqslant r_{m}, \sum_{h=1}^{m} \frac{i_{h}}{r_{h}} \geqslant \frac{1}{2}(m+s)
$$

has at most

$$
\frac{\sqrt{2 m}}{s}\left(r_{1}+1\right) \ldots\left(r_{m}+1\right)
$$

solutions in sets of integers ($\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{m}}$).
Proof: The two systems of inequalities are changed into one-another by the transformation

$$
\left(i_{1}, \ldots, i_{m}\right) \rightarrow\left(r_{1}-i_{1}, \ldots, r_{m}-i_{m}\right)
$$

and so have the same number of solutions. It suffices therefore to consider the first system. The proof is by induction for m .

First let $\mathrm{m}=1$. The system

$$
0 \leqslant i_{1} \leqslant r_{1}, \frac{i_{1}}{r_{1}} \leqslant \frac{1}{2}(1-s)
$$

has no integral solution if $s>1$, and it has not more than

$$
\mathrm{r}_{1}+1<\frac{\sqrt{2}}{\mathrm{~s}}\left(\mathrm{r}_{1}+1\right)
$$

such solutions if $s \leqslant 1$; hence the assertion holds in this case.
Secondly let $m \geqslant 2$, and assume the lemma has already been proved for inequalities in $\mathbf{m - 1}$ unknowns. We may assume that

$$
\mathrm{s}>\cdot \sqrt{2 \mathrm{~m}}>1
$$

because the assertion is trivial otherwise.
For fixed $i=i_{m}$, where $0 \leqslant i \leqslant r_{m}$, the system (i_{1}, \ldots, i_{m-1}) satisfies the inequalities

$$
0 \leqslant i_{1} \leqslant r_{1}, \ldots, 0 \leqslant i_{m-1} \leqslant r_{m-1}, \sum_{h=1}^{m-1} \frac{i_{h}}{r_{h}} \leqslant \frac{1}{2}\left\{(m-1)-\left(s-1+\frac{2 i}{r_{m}}\right)\right\}
$$

and so, by the induction hypothesis, has not more than

$$
\frac{\sqrt{2(m-1)}}{s-1+\frac{2 i}{r_{m}}}\left(r_{1}+1\right) \ldots\left(r_{m-1}+1\right)
$$

possibilities. Hence, on putting

$$
\sigma=\frac{\sqrt{\frac{m-1}{m}}}{r_{m}+1} \sum_{i=0}^{r_{m}} \frac{s}{s-1+\frac{2 i}{r_{m}}}
$$

the original system has at most

$$
\sigma \frac{\sqrt{2 m}}{s}\left(r_{1}+1\right) \ldots\left(r_{m}+1\right)
$$

integral solutions ($i_{1}, \ldots, i_{m-1}, i$). The assertion is therefore proved if it can be shown that

$$
\sigma \leqslant 1 .
$$

Now

$$
\begin{aligned}
\sum_{i=0}^{r_{m}} \frac{s}{s-1+\frac{2 i}{r_{m}}} & =\frac{1}{2} \sum_{i=0}^{r_{m}}\left\{\frac{s}{s-1+\frac{2 i}{r_{m}}}+\frac{s}{s-1+\frac{2\left(r_{m}-i\right)}{r_{m}}}\right\}= \\
& =\sum_{i=0}^{r_{m}} \frac{s^{2}}{s^{2}-\left(1-\frac{2 i}{r_{m}}\right)^{2}} \leqslant \sum_{i=0}^{r_{m}} \frac{s^{2}}{s^{2}-1}=\frac{s^{2}}{s^{2}-1}\left(r_{m}+1\right),
\end{aligned}
$$

whence, by $s>\sqrt{2 m}$,

$$
\sigma \leqslant \sqrt{\frac{m-1}{m}} \cdot \frac{s^{2}}{s^{2}-1}<\sqrt{\frac{m-1}{m}} \cdot \frac{2 m}{2 m-1}=\sqrt{\frac{4 m^{2}-4 m}{4 m^{2}-4 m+1}}<1 .
$$

4. The construction of $A\left(x_{1}, \ldots, x_{m}\right)$. I.

As before, let r_{1}, \ldots, r_{m} be positive integers. Let further a and s be two positive numbers such that

$$
\begin{equation*}
a \geqslant 1, \quad s \geqslant 4 f \sqrt{2 m}, \tag{3}
\end{equation*}
$$

where f is the degree of $F(x)$.
A polynomial of the form

$$
B\left(x_{1}, \ldots, x_{m}\right)=\sum_{i_{1}=0}^{r_{1}} \ldots \sum_{i_{m}=0}^{r_{m}} b_{i_{1}} \ldots i_{m} x_{1}^{i_{1}} \ldots x_{m}^{i_{m}}
$$

is said to be admissible if, (i) its coefficients $b_{i_{1}} \ldots i_{m}$ may assume only the [a]+1 values

$$
0,1,2, \ldots,[\mathrm{a}]
$$

and further, (ii)

$$
b_{i_{1}} \ldots i_{m}=0 \quad \text { unless } \quad \frac{1}{2}(m-s)<\sum_{h=1}^{m} \frac{i_{h}}{r_{h}}<\frac{1}{2}(m+s) .
$$

From Lemma 2, it follows immediately that the condition (ii) demands the vanishing of not more than

$$
2 \frac{\sqrt{2 m}}{s}\left(r_{1}+1\right) \ldots\left(r_{m}+1\right) \leqslant \frac{1}{2 f}\left(r_{1}+1\right) \ldots\left(r_{m}+1\right) \leqslant \frac{1}{2}\left(r_{1}+1\right) \ldots\left(r_{m}+1\right)
$$

of the $\left(r_{1}+1\right) \ldots\left(r_{m}+1\right)$ coefficients of B. Hence not less than

$$
\frac{1}{2}\left(r_{1}+1\right) \ldots\left(r_{m}+1\right)
$$

of the remaining coefficients of B may still run independently over [a] + 1
distinct values. It follows then that there are not less than

$$
M=([a]+1)^{\frac{1}{2}\left(r_{1}+1\right) \ldots\left(r_{m}+1\right)}
$$

admissible polynomials.
5. The construction of $A\left(x_{1}, \ldots, x_{m}\right)$. II.

As in the last chapter, put

$$
B_{j_{1} \ldots j_{m}}\left(x_{1}, \ldots, x_{m}\right)=\frac{\partial^{j_{1}+\ldots+j_{m}}{ }_{B\left(x_{1}, \ldots, x_{m}\right)}^{j_{1}!\ldots j_{m}!\partial x_{1} j_{1} \ldots \partial x_{m}^{j_{m}}}}{}
$$

Then

$$
B_{j_{1} \ldots j_{m}}\left(x_{1}, \ldots, x_{m}\right)=\sum_{i_{1}=0}^{r_{1}} \ldots \sum_{i_{m}=0}^{r_{m}} b_{i_{1}} \ldots i_{m}\binom{i_{1}}{j_{1}} \ldots\binom{i_{m}}{j_{m}} x^{i_{1}-j_{1}} \ldots x_{m}^{i_{m}-j_{m}}
$$

has non-negative integral coefficients if B is admissible. The same estimate as in 87 of last chapter leads to the majorant

$$
B_{j_{1} \ldots j_{m}}\left(x_{1}, \ldots, x_{m}\right) \ll a \cdot 2^{r_{1}+\ldots+r_{m}}\left(1+x_{1}\right)^{r_{1}} \ldots\left(1+x_{m}\right)^{r_{m}}
$$

and hence to

$$
B_{\mathrm{j}_{1} \ldots \mathrm{j} m}(\mathrm{x}, \ldots, \mathrm{x}) \ll \mathrm{a} \mathrm{\cdot} \cdot 2^{r_{1}+\ldots+r_{m}}(1+x)^{r_{1}+\ldots+r_{m}}
$$

Here

$$
(1+x)^{r_{1}+\ldots+r_{m}} \ll 2^{r_{1}+\ldots+r_{m}}\left(1+x+x^{2}+\ldots+x^{r_{1}+\ldots+r_{m}}\right)
$$

so that

$$
B_{j_{1} \ldots j_{m}}(x, \ldots, x) \ll a \cdot 2^{2\left(r_{1}+\ldots+r_{m}\right)}\left(1+x+x^{2}+\ldots+x^{r_{1}+\ldots+r_{m}}\right)
$$

Thus, for all non-negative suffixes j_{1}, \ldots, j_{m},

$$
B_{\mathrm{j}_{1} \ldots \mathrm{j}_{\mathrm{m}}}(\mathrm{x}, \ldots, \mathrm{x}),=\sum_{1=0}^{\mathrm{r}_{1}+\ldots+\mathrm{r}_{\mathrm{m}}} \beta_{1}^{(\mathrm{j})} \mathrm{x}^{1} \quad \text { say }
$$

is a polynomial in one variable x with non-negative integral coefficients $\beta_{1}^{(j)}$ not greater than

$$
a \cdot 2^{2\left(r_{1}+\ldots+r_{m}\right)}
$$

and of degree not exceeding

$$
\mathbf{r}_{1}+\ldots+\mathbf{r}_{\mathrm{m}}
$$

By Lemma 1, it follows now that

$$
\begin{aligned}
& =\sum_{\phi=0}^{\mathrm{f}-1} B_{\phi}^{(\mathrm{j})_{\xi} \phi} \quad(\psi=1,2, \ldots, \mathrm{f}),
\end{aligned}
$$

where

$$
B_{\phi}^{(\mathrm{j})}=\sum_{\mathrm{l}=0}^{\mathrm{r}_{1}+\ldots+\mathrm{r}_{\mathrm{m}}} \beta_{1}^{(\mathrm{j})} \mathrm{F}_{0}^{\mathrm{r}_{1}+\ldots+\mathrm{r}_{\mathrm{m}}-\mathrm{I}} \mathrm{~g}_{\phi}^{(\mathrm{l})}
$$

Hence

$$
\begin{array}{rl}
\left|B_{\phi}^{(j)}\right| \leqslant \sum_{l=0}^{r_{1}+\ldots+r_{m}} & a \cdot 2^{2\left(r_{1}+\ldots+r_{m}\right)}\left(\frac{c}{2}\right)^{r_{1}+\ldots+r_{m}-1} \cdot c^{l} \leqslant \\
& \leqslant a \cdot 2^{2\left(r_{1}+\ldots+r_{m}\right)} c_{c^{r_{1}+\ldots+r_{m}}} \cdot \sum_{k=0}^{\infty}\left(\frac{1}{2}\right)^{k}
\end{array}
$$

because $\left|F_{0}\right| \leqslant \frac{1}{2} c$. Therefore, for all suffixes j_{1}, \ldots, j_{m} and ϕ,

$$
\left|B_{\phi}^{(\mathrm{j})}\right| \leqslant 2 \mathrm{a}(4 \mathrm{c})^{\mathrm{r}_{1}+\ldots+\mathrm{r}_{\mathrm{m}}}
$$

Here $B_{\phi}^{(\mathrm{j})}$ is an integer since $\beta_{1}^{(\mathrm{j})}$ and $\mathrm{g}_{\phi}^{(1)}$ are integers. Each number $B_{\phi}^{(\mathrm{j})}$ has then at most

$$
2\left[2 a(4 c)^{r_{1}+\ldots+r_{m}}\right]+1 \leqslant 5 a(4 c)^{r_{1}+\ldots+r_{m}}
$$

possible values, and the set of all f coefficients

$$
B_{\phi}^{(\mathrm{j})} \quad(\phi=0,1, \ldots, \mathrm{f}-1)
$$

of $\mathrm{B}_{\mathrm{j}_{1} \ldots \mathrm{j}_{\mathrm{m}}}\left(\xi_{\psi}, \ldots, \xi_{\psi}\right)$ has at most

$$
\left\{5 a(4 c)^{r_{1}+\ldots+r_{m}}\right\}^{f}
$$

possibilities.
Let $\left(j_{1}, \ldots, j_{m}\right)$ run over all systems of integers satisfying

$$
0 \leqslant j_{1} \leqslant r_{1}, \ldots, 0 \leqslant j_{m} \leqslant r_{m}, \quad \sum_{h=1}^{m} \frac{j_{h}}{r_{h}} \leqslant \frac{1}{2}(m-s) ;
$$

by Lemma 2, there are not more than

$$
\frac{\sqrt{2 m}}{s}\left(r_{1}+1\right) \ldots\left(r_{m}+1\right) \leqslant \frac{1}{4 f}\left(r_{1}+1\right) \ldots\left(r_{m}+1\right)
$$

such systems. The corresponding set of integral coefficients

$$
B_{\phi}^{(j)}, \text { where } \phi=0,1, \ldots, f-1 ; \quad 0 \leqslant j_{1} \leqslant r_{1}, \ldots, 0 \leqslant j_{m} \leqslant r_{m} ; \sum_{h=1}^{m} \frac{j_{h}}{r_{h}} \leqslant \frac{1}{2}(m-s)
$$

has then at most

$$
M^{*}=\left\{5 a(4 c)^{r_{1}+\ldots+r_{m}}\right\}^{\frac{1}{4}\left(r_{1}+1\right) \ldots\left(r_{m}+1\right)}
$$

possibilities.

6. The construction of $A\left(x_{1}, \ldots, x_{m}\right)$. III.

There are not less than

$$
M=([a]+1)^{\frac{1}{2}\left(r_{1}+1\right) \ldots\left(r_{m}+1\right)}>a^{\frac{1}{2}\left(r_{1}+1\right) \ldots\left(r_{m+1}\right)}
$$

admissible polynomials B. We therefore choose

$$
a=5(4 c)^{r_{1}+\ldots+r_{m}}
$$

so that

$$
\mathbf{M}>\mathbf{M}^{*}
$$

There are then more admissible polynomials B than corresponding sets of coefficients $B_{\phi}^{(\mathrm{j})}$. Hence there exist two distinct admissible polynomials

$$
\bar{B}\left(x_{1}, \ldots, x_{m}\right)=\sum_{i_{1}=0}^{r_{1}} \ldots \sum_{i_{m}=0}^{r_{m}} \bar{b}_{i_{1}} \ldots i_{m} x_{1}^{i_{1}} \ldots x_{m}^{i_{m}}
$$

and

$$
\overline{\bar{B}}\left(x_{1}, \ldots, x_{m}\right)=\sum_{i_{1}=0}^{r_{1}} \ldots \sum_{i_{m}=0}^{r_{m}} \bar{b}_{i_{1}} \ldots i_{m} x_{1}^{i_{1}} \ldots x_{m}^{i_{m}}
$$

with the following property: Define integers $\bar{B}_{\phi}^{(\mathrm{j})}$ and $\overline{\bar{B}}_{\phi}^{(\mathrm{j})}$ such that

$$
\mathrm{F}_{0}^{\left.\mathbf{r}_{1}+\ldots+\mathrm{r}_{\mathrm{m}} \bar{B}_{\mathrm{j}_{1} \ldots \mathrm{j}_{\mathrm{m}}}\left(\xi_{\psi}, \ldots, \xi_{\psi}\right)=\sum_{\phi=0}^{\mathrm{f}-1} \bar{B}_{\phi}^{(\mathrm{j})}{ }_{\xi} \phi \quad(\psi=1,2, \ldots, \mathrm{f}), ~\right) . \quad(\psi)}
$$

and

$$
\mathbf{F}_{0}^{\mathbf{r}_{1}+\ldots+\mathbf{r}_{\mathrm{m}} \overline{\bar{B}}_{\mathrm{j}_{1} \ldots \mathrm{j}_{\mathrm{m}}}\left(\xi_{\psi}, \ldots, \xi_{\psi}\right)=\sum_{\phi=0}^{\mathrm{f}-1} \overline{\bar{B}}_{\phi}^{(\mathrm{j})_{\xi} \phi} \quad(\psi=1,2, \ldots, \mathrm{f}) \quad(\psi)}
$$

Then
$\bar{B}{ }_{\phi}^{(j)}=\overline{\bar{B}}{ }_{\phi}^{(j)}$ if $\phi=0,1, \ldots, f-1 ; 0 \leqslant j_{1} \leqslant r_{1}, \ldots, 0 \leqslant j_{m} \leqslant r_{m} ; \sum_{h=1}^{m} \frac{j_{h}}{r_{h}} \leqslant \frac{1}{2}(m-s)$.

Put

$$
\begin{aligned}
A\left(x_{1}, \ldots, x_{m}\right) & =\bar{B}\left(x_{1}, \ldots, x_{m}\right)-\overline{\bar{B}}\left(x_{1}, \ldots, x_{m}\right)= \\
& =\sum_{i_{1}=0}^{r_{1}} \ldots \sum_{i_{m}=0}^{r_{m}} a_{i_{1}} \ldots i_{m} x_{1}^{i_{1}} \ldots x_{m}^{i_{m}} .
\end{aligned}
$$

Since $\overline{\mathrm{B}}$ and $\overline{\overline{\mathrm{B}}}$ are distinct,

$$
\mathrm{A}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}\right) \neq 0 .
$$

From the construction, the coefficients $a_{i_{1}} \ldots i_{m}$ of A are integers of absolute values not exceeding a, thus satisfying

$$
\left|a_{i_{1}} \ldots i_{m}\right| \leqslant 5(4 c)^{r_{1}+\ldots+r_{m}}
$$

Moreover,

$$
a_{i_{1} \ldots i_{m}}=0 \quad \text { unless } \quad \frac{1}{2}(m-s)<\sum_{h=1}^{m} \frac{i_{h}}{r_{h}}<\frac{1}{2}(m+s),
$$

and furthermore,
$A_{j_{1}} \ldots j_{m}\left(\xi_{\psi}, \ldots, \xi_{\psi}\right)=0$ if $\psi=1,2, \ldots, f ; 0 \leqslant j_{1} \leqslant r_{1}, \ldots, 0 \leqslant j_{m} \leqslant r_{m} ; \sum_{h=1}^{m} \frac{j_{h}}{r_{h}} \leqslant \frac{1}{2}(m-s)$.
Instead, we may also say that $A_{j_{1}} \ldots j_{m}(x, \ldots, x)$ is divisible by $F(x)$ whenever

$$
0 \leqslant j_{1} \leqslant r_{1}, \ldots, 0 \leqslant j_{m} \leqslant r_{m}, \sum_{h=1}^{m} \frac{j_{h}}{r_{h}} \leqslant \frac{1}{2}(m-s) ;
$$

for the zeros ξ_{1}, \ldots, ξ_{f} of $F(x)$ are all distinct. We note that the upper bound for the coefficients of A implies again majorants analogous to those found for B.

The following result has thus been proved.
Theorem 2: Let
$F(x)=F_{0} x^{f}+F_{1} x^{f-1}+\ldots+F_{f}, \quad$ where $f \geqslant 1, F_{0} \neq 0, F_{f} \neq 0$,
be a polynomial with integral coefficients which has no multiple factors and does not vanish for $\mathrm{x}=0$. Put

$$
c=2 \max \left(\left|F_{0}\right|,\left|F_{1}\right|, \ldots,\left|F_{f}\right|\right) .
$$

Let $\mathrm{r}_{1}, \ldots, \mathrm{r}_{\mathrm{m}}$ be positive integers, and let s be a real number not less than $4 \mathrm{f} \sqrt{2 \mathrm{~m}}$. There exists a polynomial

$$
A\left(x_{1}, \ldots, x_{m}\right)=\sum_{i_{1}=0}^{r_{1}} \ldots \sum_{i_{m}=0}^{r_{m}} a_{i_{1}} \ldots i_{m} x_{1}^{i_{1}} \ldots x_{m}^{i_{m}} \notin 0
$$

with the following properties.
(1): Its coefficients $\mathrm{a}_{\mathrm{i}_{1}} \ldots \mathrm{i}_{\mathrm{m}}$ are integers satisfying

$$
\left|a_{i_{1} \ldots i_{m}}\right| \leqslant 5(4 c)^{r_{1}+\ldots+r_{m}}
$$

and they vanish unless

$$
\frac{1}{2}(m-s)<\sum_{h=1}^{m} \frac{i_{h}}{r_{h}}<\frac{1}{2}(m+s)
$$

(2): $A_{\mathrm{j}_{1}} \ldots \mathrm{jm}_{\mathrm{m}}(\mathrm{x}, \ldots, \mathrm{x})$ is divisible by $\mathrm{F}(\mathrm{x})$ whenever

$$
0 \leqslant j_{2} \leqslant r_{1}, \ldots, 0 \leqslant j_{m} \leqslant r_{m}, \sum_{h=1}^{m} \frac{j_{h}}{r_{h}} \leqslant \frac{1}{2}(m-s) .
$$

(3): The following majorants hold,

$$
\begin{aligned}
& A_{j_{1}} \ldots j_{m}\left(x_{1}, \ldots, x_{m}\right) \ll 5(8 c)^{r_{1}+\ldots+r_{m}}\left(1+x_{1}\right)^{r_{1}} \ldots\left(1+x_{m}\right)^{r_{m}}, \\
& A_{j_{1}} \ldots j_{m}(x, \ldots, x) \ll 5(8 c)^{r_{1}+\ldots+r_{m}}(1+x)^{r_{1}+\ldots+r_{m}}
\end{aligned}
$$

This theorem will be applied only for large values of m , and s will always be small compared with m . The last two majorants hold, of course, by the formula

$$
A_{j_{1} \ldots j_{m}}\left(x_{1}, \ldots, x_{m}\right) \ll 2^{r_{1}+\ldots+r_{m}} a\left(1+x_{1}\right)^{r_{1}} \ldots\left(1+x_{m}\right)^{r_{m}}
$$

proved in Chapter 5, 87, since in the present case,

$$
a \leqslant 5(4 c)^{r_{1}+\ldots+r_{m}}
$$

