
PART 2

RATIONAL APPROXIMATIONS OF

ALGEBRAIC NUMBERS

The problem and its history.
Let a be a real algebraic number of degree n^2; thus a. is irrational.

One of the results obtained in the proof of Theorem 1 of Chapter 3 was as
follows. Let

F(x) = Aoxm + Aix™-1 + ... + Am * 0

be any polynomial with integral coefficients, of degree at most m, and of
height

A = |F(x)|=max(lAol, |Aj,..., |Am|) £ 1.

Then

either F(a) =0 or |F(a) 1 5* Ci (m)^m'l\

where ci(m) > 0 depends on a and on m, but not on A.
Let now m=l and F(x)=Qx-'P where Q > 0 and P are integers; then

A=max(fp|, Q), and on putting GI = Ci(l), the last result implies that

because Qa-P* 0. This inequality is equivalent to

(1):

where c > 0 is another constant depending only on a . For either

and then Q,-n

or

^-|<|a|+l, hence max(|p|,Q) < (|a |+1)Q, and then

'-tl't
The inequality (1) is due to J. Liouville1 who used it in his construction of

real transcendental numbers. Apart from the value of the constant c, it is
best possible for quadratic irrationals (n=2). For, as was proved in two dif-
ferent ways in Chapters 3 and 4, if a is any irrational number (not neces-
sarily algebraic), then there are infinitely many distinct rational numbers
p
T? such that

1. C. B. Aoad. Sci. (Paris), 18 (1844), 883-885, 910-911.
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(2): -

Let, however, a be a real algebraic number of degree n^3. Then the
inequality (1) can be improved. Denote by M(a) the least upper bound of all
positive numbers p for which the inequality

has infinitely many distinct rational solutions Q. From the inequalities (1)

and (2) it is evident that

2 < M(a) < n.

The first improvement of the upper bound for M(ot) was obtained by A.
Thue2 who showed that

M(a) * | + 1.

Not only was his work of great importance by its implications for the theory
of DiophanUne equations, but, in addition, the method introduced by him
formed the basis for all later work on the subject.

Next, C. L. Siegel3 proved that

an inequality which is of great importance in the theory of Diophantine equa-
tions. A further improvement was given by F. J. Dyson4 who found that

M(a)

a result also obtained by A. Gelfond.
Finally, K. F. Roth5 has settled the problem by proving that

M(a) = 2.

This result may be stated in several equivalent forms. It implies that for
p >2 the inequality (3) has at most finitely many rational solutions and hence
that there is then a constant y (a,p) > 0 such that

I P I P
a-Q Py(a,p)Q~P for all rational numbers Q .

However, no method is known for actually finding such a constant y (a,p),
a disadvantage shared by the methods of Thue, Siegel, Dyson, and Roth, and
also by the work in this second part.

2. Skrifter udgivne af Videnskabs-Selskabet i Christiania, 1908, and J. reine angew.
Math. 135 (1909), 284-305.

3. Math. Z. 10 (1921), 173-213.
4. Acta math. 79 (1947), 225-240.
5. Mathematika 2 (1955), 1-20 and 168.
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Before Roth, Th. Schneider6 had already proved a weaker theorem. As-
sume there exists an infinite sequence of rational numbers

!?•§•'•!•' •••' where i * QI < ̂  < Qs < •••'
such that

(4): |a-^|*Q^ (k = 1,2,3,...)

for some p >2. Then

This theorem by Schneider is nearly as powerful as Roth's theorem for
certain applications to proofs of transcendency.

Generalisations of these results by Siegel and Schneider have been known
for many years. Already Siegel himself8 extended his result to the approxi-
mations of a by the numbers of an arbitrary algebraic number field of finite
degree. The corresponding analogue of Roth's theorem has recently been es-
tablished by W. J. LeVeque7 . As these lectures do not deal with the p-adic
completions of algebraic number fields, such generalisations will not be dis-
cussed. But it would have much interest to carry out a similar extension of
the later Approximation Theorems. See, however, Appendix C.

In another kind of generalisation, the numerator P or the denominator Q
p

of the rational approximation •=- is restricted by some arithmetic condition.

For instance, it may be demanded that Q is a power of a given positive in-
teger or that, more generally, the greatest prime factor of Q is bounded.
Such theorems were given by Schneider6 and myself8, but asserted only a re-
sult of the form (5). However, now that Roth's method is known, D. Ridout9

has obtained an extension of this kind for Roth's theorem which is free of this
defect.

A third kind of generalisation will seem natural to the reader of the first
part. Instead of studying the rational approximations of a real algebraic num-
ber, one considers those of a p-adic, g-adic, or g*-adic algebraic number a.
In the notation of Chapter 3, it is then especially the behaviour of the function

which is of interest. Some 25 years ago, I10 studied exactly this kind of prob-
lem by means of Siegel's methods. Again Ridout11 has obtained the analogous
extension of Roth's theorem.

6. J. reine angew. Math. 175 (1936), 182-192.
7. Topics in number theory, vol. 2, chapter 4 (Reading, Mass. 1956).
8. Proc. Kon. Akad. Amsterdam 39 (1936), 633-644, 729-737; Acta Arithmetica 3

(1938), 89-93.
9. Mathematika 4 (1957), 125-131.

10. Math. Ann. 107 (1933), 691-730; 108 (1933, 37-55). My results have been ex-
tended to the approximations of p-adic algebraic numbers by C. J. Parry, Acta math.
83 (1950), 1-100.

11. Mathematika 5 (1958), 40-48.
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The aim of the following chapters may now be stated as follows. We
shall combine the method of Roth with the idea of Schneider on arithmetic
restrictions for P and Q and that of mine on the use of p-adic algebraic
numbers. By deliberately applying g-adic numbers and the g-adic pseudo-
valuation, it will be possible to simplify many of the proofs, as compared with
my old paper10.

Although the following proofs will make essential use of both real and
g-adic numbers, at least one form of the final results will be completely free
of these numbers and state a property of rational numbers only. Thus real
and g-adic numbers will serve as tools, but not as an end in themselves.
This seems to me highly satisfactory. For the theory of numbers still has
its main interest in what it can tell us about the rational numbers and the
rational integers. But if we want to find properties of the rational numbers,
nothing must stop us in the choice of methods used for this purpose.


