
Ill R. A. FESHER'S THEORY OF ESTIMATION6*

The problem of estimation of the unknown parameter 0 is

the problem of finding a function t̂,...,:̂) of the observa-

tions such that t can be considered in a certain sense as a

*good* or "best" estimate of 0. Since the estimate t(x±,...^)

is a random variable, we cannot expect that its value should

coincide with that of the unknown parameter, but we will try to

choose t(x̂ f *..,xx|) in such a way as to make as great as pos-

sible the probability of the value of t lying as near as pos-

sible to the value of the unknown parameter 9.

This is a somewhat vague formulation of the requirement

for a "good* or "beat11 statistical estimate* It can be made

precise in different ways. Markoff6', for Instance, defines

the notion of a "best" estimate as follows) A statistic t (we

shall call any function of the observations a statistic) is a

best estimate of e if

(1) t is an unbiased estimate of e, l.e.,BQ(t) * 0 iden-

tically in 9 where Ee(t) denotes the expected value of

t under the assumption that d is the true value of the

parameter.

(2) EQ(t-e)
2*E0(t'-e)

2 identically in * for all t* which

satisfy (1).

This definition of a "best estimate11 seems to be a reasonable

and acceptable one since, in general 9 the smaller the variance

of t the greater is the probability that t will lie in a small

6) See references 3*6
6) See reference 15, p.544
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neighborhood of 9. It should bo remarked that although

virtue of Tahebleheff'a inequality) amallness of the variance

implies that the probability of t lying in a amall neighbor-

hood of 0 ia amall, the eonverae ia not neoeaaarlly true. It

may happen that a atatiatie t haa a large variance and, never-

theleaa, the probability of t lying in a amall neighborhood of

9 la Ugh. This circumstance constitutes some argument agalnat

ffarkoff'a definition. A more serious difficulty la, however,

the faet that a beat eatlmate in Markoff's sense seldom exiata.

R. A. Fisher's theory of eatimation la b.ased on the prin-

ciple of the maximum likelihood. It ia aaaumed that a probabi-

lity density

p(xlf...,xn, 9)

exiata in the aample apace, i.e., for any meaaurable aubaet W of

the aample apace

P(W|9) «/w ptx̂ ...̂ , 9) dx.

In particular, the emulative diatrlbutlon function ia

given by »n *&L p.

F(xlf...fx,,f 9) »J J ...J P(vlf...,vB, 9)dvlf...dvn.
•CO -00 -CO

The maximum likelihood estimate 9n(x1,...,xn) la defined aa

that value of 9 for which p(x̂ ,...,xiK|,9) becomes a maximum.

Now aaaume that X̂ ,...,̂  are n Independently dlatributed ran-

dom variables each having the aame diatribution. Thia can al-

ao be expreaaed by aaying that m̂ ,•••9xn are n Independent ob-

aervatlona on the aame random variable X. The main reault of

Fiaher'a theory of eatimation can be atated aa followas If

x̂ ,...jXn are n Independent obaervationa (n * 1,..., ad inf.)

on the aame random variable X and if the diatrlbutlon of X
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satisfies certain conditions (which are not too restrictive end

in practical application are frequently fulfilled) , then §n is

£S efficient estimate. The definition of an efficient estimate

is given as follows s

A sequence (t^\ (n »!,..., ad inf.) of statistics is

called an efficient estimate of 0 (the subscript n indicates

the number of observations of which tj| is a function) if

(l)the limit distribution ofrftT (tft - e) is a

normal distribution with zero mean and finite

variance, and

(2)for any sequence /tv | of statistics which satis-

fies (1)

where o2 » llm I0 [jK (tn - 9)]
 2

and o»2 » llm lg [Vi (tn - ef]2
o o

The ratio o /o9 is called the efficiency of

which is always £1.

Vaguely speaking, in large samples the maximum likelihood

estimate has the smallest variance compared with any other

statistic which is in the limit normally distributed. The re-

striction of the comparison to statistics which are in the

limit normally distributed seems to be a serious one. However,

as recent results show, the maximum likelihood estimate has a

much stronger property than efficiency, and It can be con-

sidered as a "best* large sample estimate of 0 compared even
7)

with statistics which are not normally distributed in the limit.

7) See reference 20
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The question of consistency and limit distribution of the

maximum likelihood estimate has been treated by H. Retelling,?.

A complete proof has been given by J. L. Doob, 1.

As an example,, let x̂ ,...,xn be n Independent observations

on a normally distributed varlate X with unknown mean and unit

variance. It can easily be verified that the maxlmun likeli-

hood estimate of 0 is given by

Let ^(^i, •••>xn) be the median of the observations x̂ ,...,̂ .

It can be shown that the limit 4istribution ofriT (t^ * e) is

normal with zero mean and variance £ . Hence, the efficiency
2

of the median for estimating 9 is equal to £ « 0*6366. ••
tr


